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AN ALGORITHM BASED ON ROLLING TO GENERATE
SMOOTH INTERPOLATING CURVES ON ELLIPSOIDS

Krzysztof A. Krakowski and Fátima Silva Leite

We present an algorithm to generate a smooth curve interpolating a set of data on an n-
dimensional ellipsoid, which is given in closed form. This is inspired by an algorithm based on
a rolling and wrapping technique, described in [11] for data on a general manifold embedded
in Euclidean space. Since the ellipsoid can be embedded in an Euclidean space, this algorithm
can be implemented, at least theoretically. However, one of the basic steps of that algorithm
consists in rolling the ellipsoid, over its affine tangent space at a point, along a curve. This
would allow to project data from the ellipsoid to a space where interpolation problems can be
easily solved. However, even if one chooses to roll along a geodesic, the fact that explicit forms
for Euclidean geodesics on the ellipsoid are not known, would be a major obstacle to implement
the rolling part of the algorithm. To overcome this problem and achieve our goal, we embed
the ellipsoid and its affine tangent space in Rn+1 equipped with an appropriate Riemannian
metric, so that geodesics are given in explicit form and, consequently, the kinematics of the
rolling motion are easy to solve. By doing so, we can rewrite the algorithm to generate a smooth
interpolating curve on the ellipsoid which is given in closed form.
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1. INTRODUCTION

There are several classical methods to generate smooth interpolating curves in Euclidean
spaces. Cubic splines are possibly the most interesting from the point of view of ap-
plications, since they also minimize changes in velocity. However, if one requires the
curve and data points to live on a curved space, the classical methods do not produce
a reasonable answer. Interpolation problems on manifolds have been studied by sev-
eral authors, starting with the pioneer work of Noakes, Heinzinger and Paden in [18].
Following this, other authors further developed the theory of geometric splines on man-
ifolds using a variational approach (see, for instance, [2, 4] and [5]). A more general
variational problem, that of fitting a curve to data points on a Riemannian manifold,
was presented and studied in [17]. For the particular case when these curves solve a
first or second order problem, a Palais-based steepest descent algorithm that solves the
problem numerically was presented in [21] and complemented with illustrations in the
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2-plane and the 2-sphere. An analytical approach was proposed and studied in [7], but,
as in the former approach, the results, although theoretically very interesting, are very
difficult to implement except in trivial cases. To overcome this problem, a geometric
algorithm, which generalises the classical De Casteljau algorithm, was developed in [20]
and [3]. However, the algorithm on non Euclidean spaces produces interpolating curves
defined implicitly, which makes its implementation very hard. The main drawback in
all these approaches is that they do not produce interpolating curves in closed form.

In this paper we present an algorithm that generates interpolating curves on ellipsoids
given in explicit form. This algorithm is based on a procedure to generate interpolating
curves on manifolds embedded in Euclidean space, first described in [12] for the 2-sphere,
generalised in [10] for the n-sphere and in [11] for the rotation group and Grassmann
manifolds. The algorithm is based on a rolling/unrolling and wrapping/unwrapping
technique that will be fully described in the last two sections.

Rolling a manifold upon another manifold of the same dimension, with the constraints
of no-slip and no-twist, is a non-holonomic problem that has kept much attention. The
classical rolling sphere problems had an increasing interest based on the numerous ap-
plications in physics and engineering. The mathematical formulation of rolling motions
due to [19] and [22] led to a kinematic interpretation of Levi-Civita and normal con-
nections of submanifolds. These were followed by the work of several authors. Without
being exhaustive, we refer the work about rolling bodies in [1], the work on optimality
properties of rolling motions of spheres and other spaces of constant curvature studied
in [23] and [13], the kinematics of rolling orthogonal groups, Grassmann manifolds and
Stiefel manifolds in [11] and [8], and, more recently, generalisations of rolling in general
Riemannian manifolds presented in [9].

The present paper, involving rolling motions of ellipsoids, is an extended version
of our previous work in [14]. The ellipsoids are embedded in Rn+1 equipped with an
appropriate Riemannian metric, so that geodesics are given in explicit form and the
kinematics of rolling are easy to solve. By doing so, the algorithm presented here to
generate a smooth interpolating curve on the ellipsoid is given in closed form.

To achieve our goal, we organise the paper as follows. The interpolating problem is
formulated in Section 2, the general description of rolling maps appears in Section 3, the
appropriate geometry of the ellipsoid is presented in Section 4, the kinematic equations
for the rolling motion of an ellipsoid on its affine tangent space at a point is the con-
tent of Section 5, and, finally, the last two Sections include the algorithm to solve the
interpolating problem and some simulations. Other considerations about rolling along
piecewise smooth curves are also included.

2. SMOOTH INTERPOLATION ON THE ELLIPSOID EN

Let d1, d2, . . . , dn+1 be positive real numbers. The n-dimensional ellipsoid is defined as

En :=
{ (

x1, x2, . . . , xn+1

)
∈ Rn+1 :

x2
1

d2
1

+
x2

2

d2
2

+ · · ·+
x2

n+1

d2
n+1

= 1
}

.
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2.1. Statement of the problem

Given a set of k + 1 distinct points pi ∈ En, i = 0, 1, . . . , k, vectors V0 and Vk tangent
to En at p0 and pk respectively, and fixed times ti, where

0 = t0 < t1 < · · · < tk−1 < tk = τ,

we aim to solve the following problem:

Problem 2.1. Find a C2-smooth curve

γ : [0, τ ] → En (1)

satisfying interpolation conditions:

γ(ti) = pi, 1 ≤ i ≤ k − 1, (2)

and boundary conditions:

γ(0) = p0, γ(τ) = pk,
γ̇(0) = V0, γ̇(τ) = Vk.

(3)

In the last section of this paper we present an algorithm that solves this problem and
is an adaptation of the algorithm presented in [11] for generating interpolating curves
on manifolds embedded in Euclidean space. One important step in this algorithm is
based on a rolling technique that consists fn rolling the given manifold over its affine
tangent space at a point, along geodesic curves. The main drawback when trying to
use the algorithm in [11] is that if the ellipsoid is embedded in Euclidean space, the
corresponding geodesics have no explicit closed form. The problem of deriving geodesics
on the ellipsoid goes back to Jacobi. A modern treatment of geodesics on quadratics
through studies of geodesic flows has been given in [6]. The solution can be obtained
in ellipsoidal coordinates. However, it is possible to embed the ellipsoid in another
Riemannian manifold where geodesics can be expressed in closed form. This is the
approach taken here. Moreover, rolling motions along these geodesics can be described
easily, following the ideas in [9] to describe rolling motions of manifolds embedded in
arbitrary Riemannian manifolds. So, in order that we can follow the implementation of
the algorithm, we dedicate the next section to rolling maps. After presenting the general
definition, we derive the kinematic equations for rolling the ellipsoid En over its affine
tangent space at a point.

3. ROLLING MAPS

We use an extended Sharpe’s definition [22] of a rolling map which is applicable to
Riemannian manifolds and can be found in [9]. Hereafter I ⊂ R denotes a closed
interval.

Definition 3.1. Let M0 and M1 be two n-manifolds isometrically embedded in an m-
dimensional Riemannian manifold M and σ1 : I → M1 a smooth curve in M1. A rolling
map of M1 on M0 along the curve σ1, without slipping or twisting, is a map χ : I →
Isom(M), a Lie group of isometries of M, satisfying the following conditions, for all t ∈ I:
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Rolling

(a) χ(t)(σ1(t)) ∈ M0;

(b) Tχ(t)(σ1(t))(χ(t)(M1)) = Tχ(t)(σ1(t))M0.

The curve σ0 : I → M0 defined by σ0(t) := χ(t)(σ1(t)) is called the development
curve of σ1.

No-slip σ̇0(t) = χ∗(t)(σ̇1(t)), where χ∗ is the push-forward of χ.

No-twist

tangential :
(
χ̇(t) ◦ χ−1(t)

)
∗(Tσ0(t)M0) ⊂ Tσ0(t)M

⊥
0 ,

normal :
(
χ̇(t) ◦ χ−1(t)

)
∗(Tσ0(t)M

⊥
0 ) ⊂ Tσ0(t)M0, where TpM⊥

0 denotes the nor-
mal space at p ∈ M0.

This definition can be extended to the situation when σ1 is only piecewise smooth.
In this case χ is also piecewise smooth and the constraints of no-slip and no-twist are
valid for almost all t.

It is worth to recall that χ̇ is a mapping from I to TIsom(M) and χ̇(t) : M → TM
acts on M according to

χ̇(t)(p) := lim
s→0

χ(t + s)(p)− χ(t)(p)
s

.

The curve χ̇ ◦ χ−1 : I → isom(M) lies in the Lie algebra of the Lie group of isometries
Isom(M) of the manifold M. The tangent mapping χ∗ : I → Isom(M) maps interval I to
a subgroup of Isom(M) and consequently

(
χ̇◦χ−1

)
∗ : I → isom(M) lies in a sub-algebra,

it is a generalisation of “spatial angular velocity” in R3, cf. Figure 1.

ω

M0

S
2

Fig. 1. Spatial angular velocity of the rolling sphere.
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Remark 3.2. The “no-slip” condition is equivalent to

χ̇(t)(σ1(t)) =
(
χ̇(t) ◦ χ−1(t)

)
(σ0(t)) = 0. (4)

The “no-twist” conditions are equivalent to

tangential : for any vector field V1 along σ1 : I → M1 let V0 be the vector field along
the development curve σ0 : I → M0 induced by χ, then

∇1
σ̇1(t)

V1(t) = χ(t)−1
∗ (∇0

σ̇0(t)
V0(t)) ∈ Tσ1(t)M1;

normal : for any normal vector field Λ1 along σ1 : I → M1 let Λ0 be the vector field
along the development curve σ0 : I → M0 induced by χ, then

∇1⊥
σ̇1(t)Λ1(t) = χ(t)−1

∗ (∇0⊥
σ̇0(t)Λ0(t)) ∈

(
Tσ1(t)M1

)⊥
,

where ∇0⊥ and ∇1⊥ are the normal connections on M0 and M1, respectively,
compatible with the induced metric.

For a proof we refer the reader to [9].

3.1. The configuration space and the distribution

The configuration space Σ of the rolling map χ is the space of all possible positions of
M0 tangent to M1

Σ =
{ (

p, g, q
)
∈ M0 × Isom(M)×M1 : g(TqM1) = TpM0

}
.

Lemma 3.3. (Sharpe [22] generalised in Hüper et al. [9]) The mapping χ : I →
Isom(M) is a rolling map if and only if

(
σ0,χ∗, σ1

)
is tangent to the n-dimensional

distribution on Σ given by the following set of differential equations

(a) σ̇0 = χ∗σ̇1;

(b)
(
χ̇ χ−1

)
∗V = II0(σ̇0, V )− χ∗ II1(χ−1

∗ σ̇0,χ
−1
∗ V ), for all V ∈ Tσ0(t)M0;

(c)
(
χ̇ χ−1

)
∗Λ = Ξ0(σ̇0,Λ)− χ∗ Ξ1(χ−1

∗ σ̇0,χ
−1
∗ Λ), for all Λ ∈

(
Tσ0(t)M0

)⊥.

Here II is the second fundamental form and Ξ is the Weingarten map.

If M0 is locally isometric to Euclidean space, i. e., if M0 is flat, then II0 ≡ 0 ≡ Ξ0 and
the above conditions, (b) and (c), simplify to(

χ̇ χ−1
)
∗V = −(χ∗ II1)(σ̇0, V ) and

(
χ̇ χ−1

)
∗Λ = −(χ∗ Ξ1)(σ̇0,Λ), (5)

where (χ∗ II) and (χ∗ Ξ) are push-forwards of the two tensors. We might as well write
the above equations in terms of angular velocity in the body coordinate system. Then(

χ−1χ̇
)
∗V = −II1(σ̇1, V ) and

(
χ−1χ̇

)
∗Λ = −Ξ1(σ̇1,Λ), (6)

for all V ∈ Tσ1(t)M1 and Λ ∈
(
Tσ1(t)M1

)⊥.
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Example 3.4. For the special case of M1 = Sn, the unit sphere, rolling upon M0 '
Rn, embedded in Euclidean space M = Rn+1 and Isom(M) = SE(n + 1), the second
fundamental form the Weingarten map are given by II(U, V ) =

〈
U, V

〉
N and Ξ(U,N) =

−U , where N is the unit normal vector. Differential equations (5) and (6) have the rank
two solutions, respectively(

χ̇ χ−1
)
∗ = σ̇0 ∧N and

(
χ−1χ̇

)
∗ = σ̇1 ∧ σ1, (7)

where the wedge product ‘∧’ is thought to be U ∧V = U⊗V −V ⊗U . When σ1 : I → Sn

is a geodesic then
(
χ̇ χ−1

)
∗ and

(
χ−1χ̇

)
∗ are constant curves in the Lie algebra se(n+1).

This is easily seen by differentiating (7) with respect to t

d
dt

(
σ̇0 ∧N

)
= σ̈0 ∧N = 0 and

d
dt

(
σ̇1 ∧ σ1

)
= σ̈1 ∧ σ1 + σ̇1 ∧ σ̇1 = 0.

Here is a modification of the previous example, when the development curve is a circle.
By symmetry, the rolling curve must be a small circle on the sphere. As a consequence
of the no-slip condition the perimeters of the two circles are equal.

Example 3.5. Let σ0(t) = (r cos(ωt), r sin(ωt),−1), a circle of radius r, then (7) yields

(
χ̇ χ−1

)
∗ = ωr

 0 0 sin(ωt)
0 0 − cos(ωt)

− sin(ωt) cos(ωt) 0

 .

Solution can be found with a change of coordinates χ∗(t) = etQχ̃∗(t), with etQ = U(t).
Take

Q =

0 −ω 0
ω 0 0
0 0 0

 then U(t) =

cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1


and

UT(t)

 0 0 sin(ωt)
0 0 − cos(ωt)

− sin(ωt) cos(ωt) 0

 U(t) =

0 0 0
0 0 −1
0 1 0


is a constant matrix. The transformed equation becomes

χ̇∗χ
−1
∗ =

(
U̇ χ̃∗ + U ˙̃χ∗

)
χ̃−1
∗ UT = U̇UT + U ˙̃χ∗χ̃−1

∗ UT = Q + U ˙̃χ∗χ̃−1
∗ UT.

Hence

˙̃χ∗χ̃−1
∗ = UTχ̇∗χ

−1
∗ U −Q =

0 0 0
0 0 −1
0 1 0

−

0 −ω 0
ω 0 0
0 0 0


is a constant matrix. This case now reduces to the simple case considered in Example 3.4.
One can now easily solve the above equation for χ∗ and recover χ from the “no-slip”
condition (4).
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4. THE GEOMETRY OF THE ELLIPSOID

Let the Euclidean metric in Rn+1 be denoted by
〈
·, ·

〉
. The positive definite matrix

D = diag(d1, d2, . . . , dn+1) � 0 induces another metric on Rn+1 defined by
(
U, V

)
7→〈

U, V
〉
D−2 :=

〈
U,D−2V

〉
. This metric space will be denoted by M =

(
Rn+1,

〈
·, ·

〉
D−2

)
.

Since 〈
DU,DV

〉
D−2 =

〈
DU,D−2DV

〉
=

〈
U, V

〉
,

then the mapping
ϕ : (Rn+1,

〈
·, ·

〉
) → M, (8)

given in the standard coordinates by x 7→ Dx, is an isometry. M is an example of a space
equipped with a left-invariant metric. Unlike the Euclidean space, groups of isometries
acting on objects from the left hand side is different than from the right. The main
reason for introducing M is that the ellipsoid En behaves like the sphere in Euclidean
space with its standard metric.

4.1. The Riemannian connection

Let ∇ be the standard Riemannian connection on Rn+1. Then ϕ∗∇ is the Riemannian
connection on M, cf. [16, Proposition 5.6]. More precisely, ∀X, Y ∈ TM, ϕ∗

(
∇XY

)
=

∇ϕ∗X (ϕ∗Y ), hence
∇XY = D∇D−1X

(
D−1Y

)
= ∇D−1XY (9)

is the Riemannian connection on M. We leave it to the reader to check that ∇ defined
by (9) is indeed the Riemannian connection (or Levi-Civita connection) on M, and it is
compatible with respect to

〈
·, ·

〉
D−2 and is torsion free.

Let γ : I → M be a curve in M and let V : I → TM be a vector field along γ, i. e.,
V (t) ∈ Tγ(t)M, for all t ∈ I. Let γ̄ and V be their isometric images in Rn+1. Then
by (9) and because D is constant, there is

∇γ̇V = D∇ ˙̄γV = DV̇ = V̇ .

Hence the covariant derivative of the vector field V does not depend on γ!

4.2. The group of isometries of M

Let Isom(M) denote the (Lie) group of isometries of M. Suppose that ϕ : M → M is an
isometry. Therefore, for any p ∈ M and U, V ∈ TpM the following equality holds〈

U, V
〉
D−2 =

〈
ϕ∗U,ϕ∗V

〉
D−2

or, equivalently, 〈
U,D−2V

〉
=

〈
ϕ∗U,D−2ϕ∗V

〉
=

〈
U,ϕT

∗D
−2ϕ∗V

〉
.

It follows now that D−2 = ϕT
∗D

−2ϕ∗. Then, ϕ∗ ∈ GD−2 , where GD−2 is the matrix
quadratic Lie group defined as

GD−2 :=
{

g : gTD−2g = D−2
}
.
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The Lie algebra of GD−2 is defined as:

LD−2 :=
{

A : ATD−2 = −D−2A
}
.

It can be easily seen that, for any g ∈ GD−2 , there exists exactly one R ∈ SO(n + 1)
such that g = DRD−1. Therefore GD−2 = D · SO(n + 1) ·D−1 and the two groups are
isomorphic, i. e., GD−2 ∼= SO(n + 1). Also, for any Ω ∈ LD−2 , there exists exactly one
A ∈ so(n + 1) such that Ω = DAD−1. At the same time, we established that Isom(M) =
GD−2nRn+1 ∼= SE(m). In the reminder of this paper elements of Isom(M) will be denoted
as pairs (g, s), with g ∈ GD−2 and s ∈ Rn+1. The group operations in GD−2 n Rn+1 are
defined as: (g, s)−1 =

(
g−1,−g−1s

)
and (g1, s1) · (g2, s2) = (g1g2, g1s2 + s1).

4.3. The ellipsoid as the unit sphere in M

The ellipsoid En is the unit sphere in M. It can be defined by

En :=
{

x ∈ M : |x|D−2 = 1
}
. (10)

For ε > 0, let γ : (−ε, ε) → En be any differentiable curve with γ(0) = p and γ̇(0) = V .
Differentiating the condition |γ|D−2 = 1 with respect to t yields

0 =
d
dt
|γ|2D−2 = 2

〈
γ̇,D−2γ

〉
= 2

〈
γ̇, γ

〉
D−2 .

At t = 0, the above equality yields
〈
V, p

〉
D−2 = 0. Henceforth the tangent space TpEn is

the subspace orthogonal to p in M with respect to its metric
〈
·, ·

〉
D−2 . The unit normal

vector Λ ∈ (TpEn)⊥ is given by Λ = p/|p|D−2 = p. Hence, the Weingarten map ΞΛ at
p ∈ En is minus the identity, i. e., ΞΛ = −id. The scalar second fundamental form h
can be easily derived from the Weingarten equation

〈
ΞΛ(X), Y

〉
D−2 = −

〈
X, Y

〉
D−2 =

−h(X, Y ). Hence the second fundamental form II(X, Y ) =
〈
X, Y

〉
D−2p.

The tangent space may be defined in terms of D as:

TpEn :=
{
DAD−1p : A ∈ so(n + 1)

}
. (11)

4.4. Geodesics on the ellipsoid

Given a point p0 ∈ En and a vector V0 ∈ Tp0En, there exists unique geodesic t 7→ γ(t)
satisfying γ(0) = p0, γ̇(0) = V0. This geodesic is defined by

γ(t) = p0 cos(t |V0|) + V0
sin(t |V0|)
|V0|

. (12)

The algorithm to be presented in the last section depends on the implementation of
geodesic arcs that join two points on the ellipsoid. So, at this stage we also present
an explicit formula to compute the geodesic arc t 7→ γ(t) on

(
En,

〈
·, ·

〉
D−2

)
, joining the

points pi (at t = ti) and pi+1 (at t = ti+1) (with pi 6= ±pi+1):

γ(t) =
1

sin θi

{
sin

( θi

ti+1 − ti
(ti+1 − t)

)
pi + sin

( θi

ti+1 − ti
(t− ti)

)
pi+1

}
, (13)



552 K. A. KRAKOWSKI AND F. S. LEITE

where θi = arccos
〈
pi, pi+1

〉
D−2 .

This can be easily checked by computing γ̈(t), to conclude that γ̈(t) = −θ2
i γ(t), hence

γ̈(t) belongs to
(
Tγ(t)En

)⊥ in M.

5. ROLLING THE ELLIPSOID

We aim to write kinematic equations for the ellipsoid En rolling upon its affine tangent
space, when both are embedded in M =

(
Rn+1,

〈
·, ·

〉
D−2

)
. We derive the equations in a

few steps, starting with the distribution of the rolling map.

5.1. The rolling map

For M1 = En choose an initial point of contact p0 that, without loss of generality, to be
the “south pole” of the ellipsoid. Then p0 := −Den+1 = −dn+1en+1 ∈ Sn

D. The affine
tangent space at p0 is defined by

M0 = Taff
p0
En :=

{
x ∈ M : x = p0 + (p0)

⊥ }
,

where (p0)
⊥ denotes the vector space normal to p0 with respect to the metric D−2. The

configuration space Σ ⊂ Taff
p0
En × GD−2 × En of the rolling map χ is the space of all

possible positions of the unit sphere En tangent to its affine tangent space. Namely

Σ =
{ (

p, g, q
)
∈ M0 × GD−2 × En : g(TqEn) = TpM0

}
.

Lemma 3.3 yields an analog of (7) as follows

ġg−1 =
(
σ̇0 ∧ p0

)
D−2.

Denote A = Ṙ R−1. Then ġg−1 = DAD−1 and the above equality becomes

A(t) = u(t) pT
0 D−1 −D−1 p0 uT(t), (14)

where u = (u1, . . . , un, 0)T = −D−1σ̇0.
Let σ1(t) = g−1(t)(p0), where g : I → GD−2 satisfies g(0) = id. Since the metric〈

·, ·
〉
D−2 is left-invariant with respect to GD−2 and GD−2 acts transitively on En, any

curve can be parameterised in this way. The following proposition establishes kinematic
equations for a rolling map of the ellipsoid.

Proposition 5.1. Let R : I → SO(n+1) and s : I → Rn+1 be solutions to the following
set of equations {

ṡ(t) = −DA(t)D−1p0

Ṙ(t) = A(t)R(t)
, (15)

with R(0) = id and s(0) = 0. Then, χ : I → GD−2 n Rn+1 given by

χ(t) =
(
g(t), s(t)

)
=

(
DR(t)D−1, s(t)

)
(16)

is a rolling map of the ellipsoid rolling on its affine tangent space in M, with rolling
curve σ1(t) = DR−1D−1p0 and its development σ0(t) = s(t) + p0.
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P r o o f . This is just a matter of checking that all the conditions of Definition 3.1 hold.
(One can find an alternative proof of Proposition 5.1 in [9].)

(Rolling) It is easy to verify that since ṡ(t) is normal to p0 in M then equality (a) holds:

χ(t)(σ1(t)) =
(
DR(t)D−1

)(
DR(t)TD−1

)
p0 + s(t) = p0 + s(t) ∈ M0.

To verify (b) it is enough to see that since the metric on M is left invariant with respect
to GD−2 , this group sends the unit sphere to itself. Also, since the normal spaces of En

and Taff
p0
En coincide at the point of contact, so do the tangent spaces.

(No-slip) From the above calculations of the development curve it follows that

σ̇0 = ṡ = −gg−1 ġg−1p0 = −ġg−1p0 = −DAD−1p0.

(No-twist) It is enough to verify the tangential part because the normal one follows
immediately from (15). For any vector V ∈ Tσ0(t)M0.(

ġg−1
)
(V ) = DAD−1V = D

(
upT

0 D−1 −D−1p0u
T
)
D−1V

= Du
〈
p0, V

〉
D−2 − p0

〈
u,D−1V

〉
= −

〈
u,D−1V

〉
p0 ∈ T⊥p0

En.

The proof is now complete. �

In general, the kinematic equations (15) may be hard to solve. However, when A(t) =
A is constant, explicit solutions can be found. This corresponds to rolling motions along
geodesics.

Corollary 5.2. For the special situation when A(t) = A is constant, the solution of
the kinematic equations (15) is given by

R(t) = exp (tA) and s(t) = −tDAD−1p0,

the rolling curve and its development, given respectively by

σ1(t) = g−1(t)p0 = D exp (−tA)D−1p0,

σ0(t) = p0 + s(t) = p0 − tDAD−1p0,
(17)

are geodesics on the ellipsoid
(
En,

〈
·, ·

〉
D−2

)
and on its affine tangent space(

Taff
p0
En,

〈
·, ·

〉
D−2

)
.

P r o o f . The only statement that requires a computation is that σ1 is a geodesic on the
ellipsoid for the metric induced by D−2. This is easily checked by computing its second
derivative and comparing with (11) as follows:

σ̇1(t) = −DA exp (−tA)D−1p0 = −DAD−1σ1(t),

σ̈1(t) = DA2D−1σ1(t) = − |u|2 σ1(t) ∈ (Tσ1(t)E
n)⊥.

The last equality can be verified by noting that
〈
u,D−1p0

〉
= 0 and, because A2×

exp (−tA)D−1p0 = exp (−tA) A2D−1p0, then it follows from (14) that

A2D−1p0 = A
(
AD−1p0

)
= Au = − |u|2 D−1p0.

What was to show. �
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Remark 5.3. The power series

exp (−tA)D−1p0 =
∞∑

i=0

(−t)i

i!
Ai D−1p0

=
∞∑

k=0

(−1)k t2k

(2k)!
|u|2k D−1p0 −

∞∑
k=0

(−1)k t2k+1

(2k + 1)!
|u|2k

u

yields the expression for the geometric exponential map. Hence,

σ1(t) = p0 cos(t |u|)−Du
sin(t |u|)
|u|

, (18)

and −Du ∈ Tp0En is the initial velocity vector of the geodesic σ1. This agrees with the
formula (12) and gives a geometric interpretation of the control vector u in (14).

From the point of view of Control Theory, the ellipsoid rolling on its affine tangent
space is controllable. This is a direct consequence of the positivity of the Gaussian
curvature of the ellipsoid. In turn, one can steer the ellipsoid from an admissible config-
uration (any configuration in which the ellipsoid is tangent to the affine tangent space at
a point) to any other admissible configuration, only by rolling without twist and without
slip. Interested reader is referred to [15] for more details.

6. ALGORITHM TO GENERATE AN INTERPOLATING CURVE
ON THE ELLIPSOID EN

This algorithm is based on a procedure to generate interpolating curves on some man-
ifolds embedded in Euclidean space, first described in [12] for the 2-sphere, generalised
in [10] for the n-sphere and in [11] for the rotation group and Grassmann manifolds.
Here we show how this algorithm can be extended to the ellipsoid En to generate an in-
terpolating curve, given in closed form, that solves the Problem 2.1 stated in Subsection
2.1. We also implement the algorithm for the 2-dimensional ellipsoid.

The basic idea behind the algorithm is to project the data from En to Taff
p0
En, solve

an interpolation problem in this affine space and, finally, projecting back to En the
interpolating curve on the affine space. The projection uses a mixed technique of
rolling/unrolling and unwrapping/wrapping, performed by an appropriate rolling map
and a convenient diffeomorphism. These two maps must satisfy some conditions, as
follows.

1. The rolling map (to perform the rolling/unrolling):

Choose a rolling map χ = (DRD−1, s) : [0, τ ] → GD−2 n Rn+1 of En on Taff
p0
En,

along a smooth curve α1 that joins p0 (at t = 0) to pk (at t = τ), with development
α0.

2. The local diffeomorphism (to perform the unwrapping/wrapping):
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Choose a suitable local diffeomorphism, on an open neighbourhood U of p0,

Φ: U ⊂ En → Taff
p0
En,

so that
Φ(p0) = p0 and ∂Φ−1(p0) = idn+1, (19)

where ∂Φ denotes the Jacobian matrix of Φ.

6.1. The Algorithm

The algorithm consists essentially of five steps.

Step 1. Compute the rolling curve

α1 : [0, τ ] → En,

connecting p0 with pk, i. e., such that

α1(0) = p0 and α1(τ) = pk.

Step 2. Unwrap the boundary data by rolling En along α1, so that:

p0 7→ χ(0)p0 := q0 = p0 ∈ Taff
p0
En,

pk 7→ χ(τ)pk := qk ∈ Taff
p0
En,

as well as
V0 7→ χ∗(0)V0 := W0 = V0 ∈ Tq0(T

aff
p0
En),

Vk 7→ χ∗(τ)Vk := Wk ∈ Tqk
(Taff

p0
En).

Step 3. Unwrap the remaining interpolating points pi at ti, i = 1, . . . , k− 1, from En to
Taff

p0
En, using the diffeomorphism Φ and the time dependent rolling map χ, so that

pi 7→ Φ
(
χ(ti)pi − α0(ti) + p0

)
+ α0(ti)− p0 =: qi. (20)

Step 4. Solve the interpolating problem on Taff
p0
En for the projected data {q0, . . . , qk;W0,

Wk}, to generate a C2-smooth curve

β : [0, τ ] → Taff
p0
En

satisfying

β(0) = p0 = q0, β(ti) = qi, β(τ) = qk,

β̇(0) = V0 = W0, β̇(τ) = Wk.

Step 5. Wrap β([0, τ ]) back onto the ellipsoid using Φ−1, while unrolling along α1, to
produce a curve γ, defined by the following explicit formula.

γ(t) := χ−1(t)
(
Φ−1

(
β(t)− α0(t) + p0

)
+ α0(t)− p0

)
. (21)



556 K. A. KRAKOWSKI AND F. S. LEITE

Theorem 6.1. The curve γ : [0, τ ] 7→ En defined by (21) solves Problem 2.1.

P r o o f . Recall that s(t) = α0(t) − p0, χ(t) =
(
DR(t)D−1, s(t)

)
=

(
g(t), s(t)

)
and

χ−1(t) =
(
g−1(t),−g−1s(t)

)
. A simple calculation shows that

γ(t) = g−1(t)
(
Φ−1

(
β(t)− s(t)

))
,

then

γ̇(t) = ġ−1(t)
(
Φ−1

(
β(t)− s(t)

))
+ g−1(t)

(
∂Φ−1

(
β(t)− s(t)

)(
β̇(t)− ṡ(t)

))
= −g−1(t) ◦ ġ(t)

(
γ(t)

)
+ g−1(t)

(
∂Φ−1

(
β(t)− s(t)

)(
β̇(t)− ṡ(t)

))
.

To compute the boundary conditions, note that g(0) = id, s(0) = 0 and β(0) = p0. So,

γ(0) = Φ−1
(
β(0)− s(0)

)
= Φ−1(p0) = p0.

Also, β(τ) = α0(τ), which implies

γ(τ) = g−1(τ)
(
Φ−1(p0)

)
= g−1(τ)(p0) = α1(τ) = pk.

Since β̇(τ) = α̇0(τ) = χ∗(τ)α̇1(τ), we have β̇(τ) = g(τ)Vk. As a consequence,

γ̇(0) = −g−1(0) ◦ ġ(0)
(
γ(0)

)
+ g−1(0)

(
∂Φ−1(p0)

)(
β̇(0)− ṡ(0)

)
= ṡ(0) +

(
β̇(0)− ṡ(0)

)
= V0,

γ̇(τ) = −g−1(τ) ◦ ġ(τ)
(
γ(τ)

)
+ g−1(τ)

(
∂Φ−1(β(τ)− s(τ))(β̇(τ)− ṡ(τ)

)
= −g−1(τ) ◦ ġ(τ)

(
pk

)
+ g−1(τ)

(
β̇(τ)− ṡ(τ)

)
= g−1(τ)

(
β̇(τ)

)
= Vk.

Finally, looking at the expression of γ(ti) and using the expression

β(ti) = Φ
(
χ(ti)pi − α0(ti) + p0

)
+ α0(ti)− p0,

that comes from (20), since β(ti) = qi, we obtain after simplifications γ(ti) = pi. The
resulting curve is C2-smooth by construction, since Φ and χ are smooth and β is C2-
smooth. This concludes the proof. �

Remark 6.2. At this point it is important to point out that Step 4. can be easily
implemented, although performed on a non-Euclidean submanifold. This is due to the
fact that geodesics, and other polynomial curves are the same on

(
Taff

p0
En,

〈
·, ·

〉
D−2

)
and(

Taff
p0
En,

〈
·, ·

〉)
. Indeed, the Euler Lagrange equation is the same for the two problems

min
x

∫ τ

0

〈
x(k)(t), x(k)(t)

〉
dt

and
min

x

∫ τ

0

〈
x(k)(t), x(k)(t)

〉
D−2 dt

and is given by x(2k) = 0. In particular, for k = 2, cubic polynomials (cubic splines) in
Taff

p0
En may be generated by the classical De Casteljau algorithm.
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6.2. Rolling along piecewise smooth curves

In case we are only interested in an interpolating curve that is C1-smooth, the condition
that the rolling curve is smooth maybe replaced by piecewise smooth, as the following
proposition shows. It remains an open question what are the necessary conditions on Φ
to ensure that γ is C2-smooth.

Proposition 6.3. If the rolling curve passes through the data points, i. e., α1(ti) = pi,
and is smooth on each subinterval (ti, ti+1), i = 0, . . . , k−1, then the curve γ : [0, τ ] → En

is always C1-smooth.

P r o o f . From Step 4 of the algorithm it follows that

β(ti) = Φ
(
χ(ti)(pi)− s(ti)

)
+ s(ti)

and consequently

Φ−1 (β(ti)− s(ti)) = Φ−1
(
Φ

(
χ(ti)(pi)− s(ti)

))
= χ(ti)(pi)− s(ti).

Now, since α1(ti) = pi

χ(ti)(pi)− α0(ti) + p0 = χ(ti)(α1(ti))− α0(ti) + p0

= χ(ti) ◦ χ−1(ti)(α0(ti))− α0(ti) + p0 = p0.

The left derivative of γ at ti, i = 0, . . . , k − 1, becomes now

γ̇(t−i ) = χ̇−1(t−i ) ◦ χ(ti)(pi) + χ−1
∗ (ti)

(
∂Φ−1(p0)(β̇(ti)− ṡ(t−i )) + ṡ(t−i )

)
= χ̇−1(t−i ) ◦ χ(ti)(pi) + χ−1

∗ (ti)
(
β̇(ti)

)
= −χ−1

∗ (ti) ◦ χ̇(t−i )(pi) + χ−1
∗ (ti)

(
β̇(ti)

)
.

By the no-slip condition

χ−1
∗ (ti) ◦ χ̇(t−i )(pi) = χ−1

∗ (ti) ◦ χ̇(t−i )(α1(ti)) = χ−1
∗ (ti) (0) = 0

and therefore
γ̇(t−i ) = χ−1

∗ (ti)
(
β̇(ti)

)
.

Right derivative of γ at ti, i = 1, . . . , k, is derived in the same way. �

In the situation referred in the last statement, one particular choice for the rolling
curve is the broken geodesic going through the given data, in which case the correspond-
ing kinematic equations are easily solved.

Given a series p0, p1, . . . , pk of k + 1 points in En, choose each segment of the rolling
curve σ1|[ti,ti+1] from pi to pi+1 to be a geodesic (13). To derive the rolling map χ, write
each segment in terms of the exponent of some (n + 1)× (n + 1)-matrix Ai

σ1|[ti,ti+1](t) = D exp
(
− (t− ti) Ai

)
D−1pi. (22)
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It can be easily shown that the matrix Ai that satisfies (22) is of the following form

Ai =
θi

(ti+1 − ti) sin θi
D−1

(
pip

T
i+1 − pi+1p

T
i

)
D−1.

The piecewise smooth rolling map χ assumes the following form

χ(t) := χ0(t1) ◦ χ1(t2) ◦ · · · ◦ χi−1(ti) ◦ χi(t), for t ∈ [ti, tt+1],

where each segment χi : [ti, ti+1] → GD−2 nRn+1 is given by χi(t) =
(
DRi(t)D−1, si(t)

)
,

with
Ri(t) = exp

(
(t− ti) Ai

)
and si(t) = − (t− ti) DAiD

−1pi.

For any ti−1 < t < ti, the development curve σ0 is given by

σ0(t) = χ0(t1) ◦ χ1(t2) ◦ · · · ◦ χi−1(t)
(
σ1|[ti−1,ti](t)

)
,

where each segment of the rolling curve is mapped to

χi(t)
(
σ1|[ti,ti+1](t)

)
= D exp

(
(t− ti) Ai

)
D−1D exp

(
− (t− ti) Ai

)
D−1pi

− (t− ti) DAiD
−1pi = pi − (t− ti) DAiD

−1pi

and each point pi is mapped to

qi = σ0(ti) = χ(ti)
(
σ1(ti)

)
= χ0(t1) ◦ χ1(t2) ◦ · · · ◦ χi−1(ti)

(
pi

)
.

7. IMPLEMENTATION OF THE ALGORITHM ON E2

In order to implement the algorithm on E2, we have to choose the rolling map so that the
corresponding kinematic equations can be solved explicitly. For that reason, we choose
χ : [0, τ ] → GD−2 n Rn+1 to be the the rolling map of E2 on Taff

p0
E2, along the geodesic

α1 that joins p0 (at t = 0) to pk (at t = τ), with development α0. Our choice for the
local diffeomorphism Φ is the stereographic projection from the “north pole”. Before we
proceed with the implementation of the algorithm, we give details about this projection.

7.1. Stereographic projection of E2

The stereographic projection from the “north pole” of the ellipsoid to the tangent space
at the “south pole” p0 =

(
0, 0,−d3

)> ∈ E2 is given by:

Φ: E2 \ {
(
0, 0, d3

)>} → Taff
p0
E2

x1

x2

x3

 7→



2d3x1
d3 − x3

2d3x2
d3 − x3

−d3

 ,



Interpolation on ellipsoids 559

Fig. 2. Smooth interpolation on the ellipsoid.

with the inverse
Φ−1 : Taff

p0
E2 → E2 \ {

(
0, 0, d3

)>}
 ξ1

ξ2

−d3

 7→



4d2
1d

2
2ξ1

d2
2ξ

2
1 + d2

1ξ
2
2 + 4d2

1d
2
2

4d2
1d

2
2ξ2

d2
2ξ

2
1 + d2

1ξ
2
2 + 4d2

1d
2
2

(d2
2ξ

2
1 + d2

1ξ
2
2 − 4d2

1d
2
2)d3

d2
2ξ

2
1 + d2

1ξ
2
2 + 4d2

1d
2
2


.

Remark 7.1. It can easily be shown that Φ satisfies the following:

Φ(p0) = p0, ∂Φ−1(p0) = id3,

where ∂Φ−1 denotes the Jacobian matrix of the differentiable map Φ−1.
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Fig. 3. Comparison of interpolation on the ellipsoid through two

geodesic segments between conjugate (antipodal) points.

We now have all the necessary ingredients to generate interpolating curves on E2.
Figure 2 shows the main steps of the algorithm and the resulting interpolating curve.

Although Theorem 6.1 guarantees that a solution to the interpolation problem exists,
it says nothing about its uniqueness. It is clear from (21) that the interpolating curve
γ depends on the choice of a rolling curve α1 and a diffeomorphism Φ. But even when
the later is fixed and the rolling curve is chosen to be a geodesic arc joining the initial
and the final points, there might be many solution curves for the interpolating problem.
This occurs, and was already expected, when those points are antipodal since there are
infinitely many geodesics joining them. Figure 3 illustrates what happens when two
different geodesic segments joining antipodal points are used as rolling curves. It is
worth noting different directions of the transformed ending vectors Wk in each case.
This is a result of the curvature of the ellipsoid.

8. CONCLUSIONS

We have presented an algorithm to generate a C2-smooth interpolating curve on the
n-dimensional ellipsoid, based on a rolling and wrapping technique which produces a
solution given in closed form. In order to accomplish this, the ellipsoid was embedded in
Rn+1 equipped with an appropriate non-Euclidean metric, and the kinematic equations
for rolling the ellipsoid over the affine tangent space at a point were derived. As far as
we know, this approach to rolling motions of the ellipsoid is new, having appeared only
in our reference [14], a shorter version of the present paper.
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This algorithm extends to any smooth manifold as long as the action of the first
component of the rolling map keeps the manifold invariant, and the kinematic equations
for rolling are known and can be solved explicitly. This algorithm can also be easily
extended to generate Ck-smooth interpolating curves, for k > 2, as long as the boundary
conditions are adjusted to incorporate appropriate constraints on higher derivatives.

In which concerns the interpolation algorithm, the present work generalises ideas
and results contained in [10, 12] and [11], where only certain manifolds embedded in
Euclidean spaces have been considered. The novelty of our results is the approach to
solve interpolation problems on the ellipsoid through rolling motions in a non-Euclidean
space. The link between smooth curves in different spaces leads to a simple solution.
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