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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 4 , PAGES 5 9 6 – 6 1 5

OPTIMAL, ADAPTIVE AND SINGLE STATE FEEDBACK
CONTROL FOR A 3D CHAOTIC SYSTEM WITH GOLDEN
PROPORTION EQUILIBRIA

Hassan Saberi Nik, Ping He and Sayyed Taha Talebian

In this paper, the problems on purposefully controlling chaos for a three-dimensional quadratic
continuous autonomous chaotic system, namely the chaotic Pehlivan–Uyaroglu system are in-
vestigated. The chaotic system, has three equilibrium points and more interestingly the equi-
librium points have golden proportion values, which can generate single folded attractor. We
developed an optimal control design, in order to stabilize the unstable equilibrium points of
this system. Furthermore, we propose Lyapunov stability to control the Pehlivan–Uyaroglu sys-
tem with unknown parameters by way of a feedback control approach and a single controller.
Numerical simulations are performed to demonstrate the effectiveness of the proposed control
strategies.

Keywords: autonomous chaotic system, optimal control, adaptive control, single state
feedback control, Pontryagin Minimum Principle

Classification: 34D20, 58E25, 93C10, 37N35

1. INTRODUCTION

Chaos control is an important topic in the nonlinear control systems and has great sig-
nificance in the application of chaos. Chaos is of fundamental concern in a wide range of
fields, including secure communications, optics, chemical and biological systems, and so
forth [1, 2, 3, 4]. The desirability, or otherwise, of chaos depends on the particular appli-
cation. Sometimes chaos effect is undesirable in practice, and it restricts the operating
range of many electronic and mechanic devices. In this case, therefore, it is necessary
that the chaotic behavior should be controlled, e. g. by driving the chaotic attractors to
a specific region of the system or by eliminating chaos entirely through the application
of suitable control laws.

Since Ott, Grebogi, and Yorke [5] firstly proposed the method of chaos control in 1990,
chaos control including stabilization of unstable equilibrium points, and more generally,
unstable periodic solutions, has attracted increasing attention in recent years, and lots
of successful experiments have been reported. These include adaptive control, adaptive
fuzzy control, sliding mode control, robust control, time-delayed feedback control, double
delayed feedback control, bang-bang control, optimal control, intelligent control, etc.; see
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[6, 7, 8, 9, 10, 11, 12, 13, 14]. It is also a challenging topic for the control of multiscroll
chaotic systems. In general, compared with the single-scroll chaotic attractors, the
multi-scroll chaotic attractors have much higher complexity and more adjustability. In
particular, multi-scroll chaotic attractors have many specific properties and functions.
For example, Lu et.al reviewed the main advances in theories, methods, implementations,
and applications of multi-scroll chaos generation [15, 16].

Over the past two decades, there has been increasing interest in exploiting chaotic dy-
namics in engineering applications, where some attention has been focused on effectively
creating chaos via simple physical systems, such as electronic circuits [17, 18]. Lately,
the pursuit of designing circuits to produce chaotic attractors has become a focal point
for electronics engineers, not only because of their theoretical interest, but also due to
their potential real-world applications in various chaos-based technologies and informa-
tion systems [19, 20]. Recently, a new three-dimensional autonomous chaotic system is
presented by Pehlivan and Uyaroglu [21], with golden ratio equilibria. This system has
eight terms, two quadratic nonlinearities and two parameters (a and b). The chaotic at-
tractor equations have three equilibrium points and more interestingly the equilibrium
points have golden proportion values. Dynamical properties of this new system were
analyzed by means of equilibrium points, eigenvalue structures, Lyapunov exponents.
The chaos generator of the new chaotic system was confirmed through a novel electronic
circuit design. Module-based approach was used to chaotic circuit design. All these
characteristics are very useful in many real-world applications. It is obvious that, the
unknown dynamical behaviors of the strange chaotic attractors deserve further investi-
gation and are very desirable for engineering applications such as secure communications
in the near future [21]. As we know, the famous golden proportion τ = 1+

√
5

2 , found
often in nature. Many objects alive in the natural world that possess pentagonal sym-
metry, such as marine stars, inflorescences of many flowers, and phyllotaxis objects have
a numerical description given by the Fibonacci numbers which are themselves based
on the golden proportion. In this study, we propose a strategy for optimal control of
the chaotic Pehlivan–Uyaroglu system. For this purpose, we will apply the Pontryagin
Minimum Principle (PMP) [22]. Furthermore, the design of the feedback controller is
achieved through an application of the optimal control and Lyapunov stability theories
which guarantee the global stability of the nonlinear error system. Meanwhile, the single
state feedback stabilization of the Pehlivan–Uyaroglu system is also addressed.

This paper is organized as follows. In Section 2, the preliminaries and problem
description of the chaotic Pehlivan–Uyaroglu system and it’s stability analysis are pre-
sented. In Section 3, the problem statement and optimal control scheme are presented
for the Pehlivan–Uyaroglu system. In Section 4, an adaptive control law is designed to
stabilize the chaotic system with unknown parameters. Section 5, presents a single state
feedback stabilization of the Pehlivan–Uyaroglu system. In Section 6, we summarize the
main results obtained in this paper.

2. THE PEHLIVAN–UYAROGLU SYSTEM AND STABILITY ANALYSIS

In this section, we discuss the equilibrium and stability of the chaotic Pehlivan–Uyaroglu
system. The equations describing the dynamics of the Pehlivan–Uyaroglu system can
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be written as

ẋ = y − x− az,

ẏ = xz − x, (1)
ż = −xy − y + b,

where x, y and z are system state variables and a and b are positive constant parameters.
This new system is found to be chaotic in a wide parameter range and has many interest-
ing complex dynamical behaviors. Typical parameters are a = 2, b = 1 or a = 0.5, b = 1.
Chaotic attractor and phase diagrams of (1) are shown in Figures 1 – 4.

2.1. Dissipation

The differential coefficient of the system (1) can be obtained as

∇ · F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
= −1 = r, (2)

while F = (F1, F2, F3) = (y − x − az, xz − x,−xy − y + b). Therefore, system (1) is
dissipative.

dF

dt
= rF ⇒ F = F0e

−t. (3)

Therefore, system (1) is dissipative.

2.2. Equilibrium and stability

In the following, we consider the equilibrium of system (1). By calculation, it can be
shown that when a = 2, b = 1 or a = 0.5, b = 1, the system (1) has three equilibrium
points, which are respectively, described as follows



E1 =
(
−a−1+

√
a2−2a+1+4b
2 , a−1+

√
a2−2a+1+4b

2 , 1
)

,

E2 =
(
−a−1−

√
a2−2a+1+4b
2 , a−1−

√
a2−2a+1+4b

2 , 1
)

,

E3 =
(
0, b, b

a

)
.

(4)

As the variables x, y, z ∈ R, this implies that fixed point to exist, a 6= 0 and a2 − 2a +
1 + 4b > 0. So, (a − 1)2 + 4b > 0, and a ∈ R. When a = 0, the system has unbounded
solutions.

The equilibrium points of the system are
E1 =

(
−3+

√
5

2 , 1+
√

5
2 , 1

)
, E2 =

(
−3−

√
5

2 , 1−
√

5
2 , 1

)
, E3 =

(
0, 1, 1

2

)
for a = 2, for b = 1

values.
More interestingly the equilibrium points have golden proportion values as

E1 =
(
−τ−2, τ, τ0

)
, E2 =

(
−τ2,−τ−1, τ0

)
, E3 =

(
0, τ0,

τ0

2

)
.
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The famous golden proportion τ = 1+
√

5
2 , found often in nature. In the last years, the

golden proportion has played an increasing role in modern physical research.

Proposition 2.1. The equilibrium points E1, E2, E3 of system (1) with a = 2, b = 1 or
a = 0.5, b = 1, are unstable.

P r o o f . The Jacobian matrix of the system (1) is given by

J =

 −1 1 −a
z − 1 0 x
−y −x− 1 0

 . (5)

The eigenvalues of the Jacobian matrix JE1 are given by
λ1 = 1.565818, λ2 = −2.331903, λ3 = −0.233915. for a = 2, b = 1. �

It is observed that the eigenvalue λ1 is positive. According to Lyapanov theorem the
equilibrium point E1 is unstable. By this manner, we can see that other equilibrium
points E2, E3 are also unstable.
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Fig. 1. Time response of the system states with a = 2, b = 1.
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Fig. 2. Time response of the system states with a = 0.5, b = 1.
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Fig. 3. Chaotic attractor of system with a = 2, b = 1.
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Fig. 4. Chaotic attractor of system with a = 0.5, b = 1.

3. OPTIMAL CONTROL OF THE PEHLIVAN–UYAROGLU CHAOTIC SYSTEM

In this section, optimal stabilization of the Pehlivan–Uyaroglu chaotic system (1) is
about its steady states is discussed. First, we add the controls u1, u2 and u3 to the
equations in system (1): 

ẋ = y − x− az + u1,

ẏ = xz − x + u2,

ż = −xy − y + b + u3,

(6)

where uj(j = 1, 2, 3) are control inputs which will be satisfied from the conditions of
the optimal the dynamical system (1) about its equilibrium points Ei, (i = 1, 2, 3) with
respect to the cost function J . The proposed control strategy is designed to achieve in
a given time tf to the equilibrium point with an optimal control inputs. The initial and
final conditions are 

x(0) = x0, x(tf ) = x,

y(0) = y0, y(tf ) = y,

z(0) = z0, z(tf ) = z,

(7)

where (x, y, z) denote the coordinates of the equilibrium points E1 − E3.
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3.1. Designed of the optimal controller

The objective functional to be minimized is defined as

J =
1
2

∫ tf

0

3∑
i=1

(αi(φi − φi)
2 + βiui

2) dt, (8)

where αi, βi, (i = 1, 2, 3) are positive constants, φ1 = x, φ2 = y, φ3 = z, and φ1 =
x, φ2 = y, φ3 = z. It is note that, the cost function is a positive definite function of the
variables φi, and ui, i = 1, . . . , 3. In particular, we will derive the fundamental nonlin-
ear Two-Point Boundary Value Problem (TPBVP) arising in PMP. The corresponding
Hamiltonian function will be

H = −1
2

[
α1(x− x)2 + α2(y − y)2 + α3(z − z)2 + β1u1

2 + β2u2
2 + β3u3

2
]

+ λ1[y − x− az + u1] + λ2[xz − x + u2]
+ λ3[−xy − y + b + u3]. (9)

Where, λi, (i = 1, 2, 3) are co-state variables. According to the Pontryagin Minimum
Principle, we obtain the Hamiltonian equations :

λ̇1 = −∂H

∂x
,

λ̇2 = −∂H

∂y
, (10)

λ̇3 = −∂H

∂z
.

Substituting (9) into (10), the co-state equations can be derived in the form:
λ̇1 = α1(x− x) + λ1 − λ2z + λ2 + λ3y,

λ̇2 = α2(y − y)− λ1 + λ3x + λ3,

λ̇3 = α3(z − z) + aλ1 − λ2x.

(11)

The optimal control functions that have to be used are determined from the conditions
∂H
∂ui

= 0, (i = 1, 2, 3). Hence, we get

ui
∗ =

λi

βi
, (i = 1, 2, 3). (12)

Substituting from (12) into (6) we get the nonlinear controlled state equations:
ẋ = y − x− az + λ1

β1
,

ẏ = xz − x + λ2
β2

,

ż = −xy − y + b + λ3
β3

.

(13)
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This system of nonlinear differential equations in addition to (11) form a complete system
to solve the optimal control of Pehlivan–Uyaroglu chaotic system. This system has the
following boundary conditions


x(0) = x0, x(tf ) = x,

y(0) = y0, y(tf ) = y,

z(0) = z0, z(tf ) = z,

λi(tf ) = 0, i = 1, 2, 3.

(14)

Then, by solving the nonlinear systems (11) and (13) with the boundary conditions of
(14), we obtain the optimal control law and the optimal state trajectory.

3.2. Analysis and numerical simulation

In this subsection to demonstrate and verify the effectiveness of the theoretical anal-
ysis, we solve the systems (13) and (14). In the following numerical simulations, the
MATLAB’s bvp4c in-built solver is used to solve the systems. The initial values and
system parameters are selected as x(0) = 50, y(0) = 0, z(0) = 0, a = 2, b = 1 and
a = 0.5, b = 1 in all simulations so that new autonomous chaotic system exhibits a
chaotic behavior if no control is applied. Also, the positive constants in cost function
J , are chosen α1 = 0.1, α2 = 0.1, α3 = 0.1, β1 = 5, β2 = 5, β3 = 5. The behaviors of
the states (x, y, z) of the controlled new autonomous chaotic system (1) with time are
displayed in Figures 5 – 10.
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Fig. 6. The stabilized behavior of state and control functions for equilibrium point

E2 (a = 2, b = 1).
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Fig. 7. The stabilized behavior of state and control functions for equilibrium point

E3 (a = 2, b = 1).
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Fig. 8. The stabilized behavior of state and control functions for equilibrium point
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Fig. 9. The stabilized behavior of state and control functions for equilibrium point

E2 (a = 0.5, b = 1).
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Fig. 10. The stabilized behavior of state and control functions for equilibrium point

E3 (a = 0.5, b = 1).

4. ADAPTIVE CONTROL OF THE PEHLIVAN–UYAROGLU CHAOTIC SYSTEM

In this section, we obtain new results for the adaptive control of the Pehlivan–Uyaroglu
chaotic system based on the Lyapunov stability theory and from the conditions of the
asymptotic stability of this system about its steady states.

4.1. Designed of the adaptive controller

Let us assume that we have the controlled coupled system in the following form
ẋ = y − x− az + v1,

ẏ = xz − x + v2,

ż = −xy − y + b + v3,

(15)

where x, y, z are the states of the system, a, b are unknown parameters of the system,
and v1, v2, v3 are the adaptive controllers to be designed.
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Theorem 4.1. The novel chaotic system (15) with unknown system parameters is
globally and exponentially stabilized for all initial states by the adaptive control law:

v1 = −y + x + a1z − k1(x− x),
v2 = −xz + x− k2(y − y), (16)
v3 = xy + y − b− k3(z − z),

and the following parameter estimation update law

ȧ1 = −z(x− x) + k4(a− a1),
ḃ1 = k5(b− b1), (17)

where a1, b1 are estimate values of uncertain parameters a, b and ki(i = 1, . . . , 5) are
positive constants, respectively.

P r o o f . Substituting (16) into (15), we get the closed-loop system as
ẋ = −(a− a1)z − k1(x− x),
ẏ = −k2(y − y),
ż = −k3(z − z).

(18)

For the derivation of the update law for adjusting the parameter estimates, the Lyapunov
approach is used.
We consider the quadratic Lyapunov function

V (x, y, z, ã, b̃) =
1
2

(
(x− x)2 + (y − y)2 + (z − z

)2
+ ã2 + b̃2) (19)

where the variables ã = a− a1, b̃ = b− b1.
Taking time derivative of the Lyapunov function V along the trajectories of (18), we
obtain

V̇ = (x− x)ẋ + (y − y)ẏ + (z − z)ż + ã ˙̃a + b̃
˙̃
b

= −k1(x− x)2 − k2(y − y)2 − k3(z − z)2 + (a− a1) (−z(x− x)− ȧ1)
−(b− b1)ḃ1. (20)

Substituting (17) into (20), the time derivative of the Lyapunov function becomes

V̇ = −k1(x− x)2 − k2(y − y)2 − k3(z − z)2 − k4(a− a)2 − k5(b− b)2 < 0, (21)

The Lyapunov function V is positive definite and its derivative V̇ is negative definite in
the neighborhood of the zero solution for system (15). According to the Lyapunov sta-
bility theory, the equilibrium solution E(x, y, z) of the controlled system (15) is asymp-
totically stable, namely, the controlled system (15) can asymptotically converge to the
equilibrium E(x, y, z) with the adaptive control law (16) and the parameter estimation
update law (17). This completes the proof. �
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4.2. Numerical results

For the numerical simulations, we solve the controlled Pehlivan–Uyaroglu chaotic system
(15) with the adaptive control law (16) and the parameter update law (17). In the
following numerical simulations, the MATLAB’s ode45 in-built solver is used to solve
the systems. The initial values and system parameters are selected as x(0) = 0, y(0) =
0, z(0) = 0, a = 2, b = 1 and a = 0.5, b = 1. For the adaptive and update laws, we
take ki = 5 for i = 1, 2, . . . , 5.

Suppose that the initial values of the parameter estimates are chosen as a1(0) =
0, b1(0) = 0. Figures 11 – 16 show that the controlled chaotic system (15) converges to
Ei (i = 1, . . . , 3) exponentially with time. Also, these figures show that the parameter
estimates a1(t), b1(t) converge to the system parameter values a = 2, b = 1 and a =
0.5, b = 1. exponentially with time.

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

t

S
ta

te

 

 

x(t)

y(t)

z(t)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

t

P
a
ra

m
et

er
es

ti
m

a
te

s

 

 
a(t)

b(t)
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Fig. 13. Time history of the state functions and parameter estimates for

equilibrium point E3 (a = 2, b = 1).
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Fig. 14. Time history of the state functions and parameter estimates for

equilibrium point E1 (a = 0.5, b = 1).
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Fig. 15. Time history of the state functions and parameter estimates for

equilibrium point E2 (a = 0.5, b = 1).
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Fig. 16. Time history of the state functions and parameter estimates for

equilibrium point E3 (a = 0.5, b = 1).

5. SINGLE STATE FEEDBACK STABILIZATION
OF THE PEHLIVAN–UYAROGLU CHAOTIC SYSTEM

The new chaotic system is also can be stabilization by a single controller added in state
y. In this section, we discuss single state feedback stabilization of the Pehlivan–Uyaroglu
chaotic system. The controlled of the Pehlivan–Uyaroglu system can be written as ẋ = y − x− az,

ẏ = xz − x + u,
ż = −xy − y + b,

(22)

where u is the controller.

5.1. Designed of single state feedback controller

Let O(x̄, ȳ, x̄) is the equilibrium of Pehlivan–Uyaroglu chaotic system (1), that is, 0 = −x̄ȳ − ȳ + b,
0 = x̄z̄ − x̄,
0 = ȳ − x̄− az̄.

(23)

Let us consider the following transformation: x1 = z − z̄,
x2 = y − ȳ,
x3 = x− x̄.

(24)

Using this transformation, the Pehlivan–Uyaroglu chaotic system (22) can be written as
follows:  ẋ1 = −(x̄ + 1)x2 − ȳx3 − x2x3,

ẋ2 = x̄x1 + (z̄ − 1)x3 + x1x3 + u,
ẋ3 = −ax1 + x2 − x3.

(25)
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Consider a output equation as follows:

y = x1. (26)

We can rewrite the system (25) – (26) with a compaction form, which is given by{ ˙̂x = f(x̂) + g(x̂)u,
y = h(x̂)

(27)

where

x̂ =

 x1

x2

x3

 , f(x̂) =

 f1(x̂)
f2(x̂)
f3(x̂)

 =

 −(x̄ + 1)x2 − ȳx3 − x2x3

x̄x1 + (z̄ − 1)x3 + x1x3

−ax1 + x2 − x3

 ,

g(x̂) =

 0
1
0

 , h(x̂) = x1.

By the simple calculation, we have
Lgh(x̂) = 0,
Lfh(x̂) = −(x̄ + 1)x2 − ȳx3 − x2x3,
L2

fh(x̂) = −(x̄ + 1)[x̄x1 + (z̄ − 1)x3 + x1x3]− (ȳ + x2)[−ax1 + x2 − x3],
LgLfh(x̂) = −(x̄ + 1) 6= 0.

(28)

Then, the system (27) has a relative degree 2. Let us define the following transfor-
mation

z =

 z1

z2

z3

 =

 h(x̂)
Lfh(x̂)

x3

 =

 x1

−(x̄ + 1)x2 − ȳx3 − x2x3

x3

 . (29)

Therefore, the system (27) can be written as follows:
ż1 = z2,
ż2 = L2

fh(x̂) + LgLfh(x̂)u,

ż3 = −az1 − z2+ȳz3
(x̄+1)+z3

− z3.
(30)

The zero dynamics equation of the system (30) is

ż3 = − ȳz3

(x̄ + 1) + z3
− z3. (31)

The linearization of the system (31) is

ż3 = −
(

1 +
ȳ

(x̄ + 1)

)
z3 + o(z3). (32)

which is asymptotically stable.
Under the action of controller

u = − 1
LgLfh(x̂)

(L2
fh(x̂) + c1z1 + c2z2). (33)
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From (24), (33) and applying (28), it follows that

u = − 1
−(x̄ + 1)

{−(x̄ + 1)[x̄(z − z̄) + (z̄ − 1)(x− x̄) + (z − z̄)(x− x̄)] (34)

−y[−a(z − z̄) + (y − ȳ)− (x− x̄)] + c1(z − z̄)
+c2[−(x̄ + 1)(y − ȳ)− ȳ(x− x̄)− (y − ȳ)(x− x̄)]}.

5.2. Numerical Simulations

In this subsection, some numerical examples are given to verity the effectiveness of the
proposed control scheme. We solve the controlled Pehlivan–Uyaroglu chaotic system
(22) with the single controller (34). In the following numerical simulations, the MAT-
LAB’s ode45 in-built solver is used to solve the systems. The initial values and system
parameters are selected as x(0) = 1, y(0) = 2, z(0) = −1. Figures 17 – 22, show that
the controlled chaotic system (22) converges to Ei (i = 1, 2, 3) exponentially with time.
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Fig. 17. The stabilized behavior of state and control functions for

equilibrium point E1 (a = 2, b = 1).
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equilibrium point E2 (a = 2, b = 1).
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Fig. 19. The stabilized behavior of state and control functions for

equilibrium point E3 (a = 2, b = 1).
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Fig. 20. The stabilized behavior of state and control functions for

equilibrium point E1 (a = 0.5, b = 1).
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Fig. 21. The stabilized behavior of state and control functions for

equilibrium point E2 (a = 0.5, b = 1).
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Fig. 22. The stabilized behavior of state and control functions for

equilibrium point E3 (a = 0.5, b = 1).

6. CONCLUSION

We have studied the chaotic Pehlivan–Uyaroglu system. First, an optimal control law
was designed for the chaotic system, based on the PMP. Then, an adaptive and feedback
control law was introduced to stabilize the chaotic system with unknown parameters.
Furthermore, we discuss on single state feedback stabilization of the Pehlivan–Uyaroglu
system. Numerical simulations demonstrate the effectiveness of the analytical results.
It is noteworthy that, the control and synchronization problem of complex networks has
been a focus for many researchers in recent years [23, 24, 25, 26]. In the future, we will
consider the optimal control problem of complex networks [27, 28, 29].
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