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ANOTHER SET OF VERIFIABLE CONDITIONS
FOR AVERAGE MARKOV DECISION PROCESSES
WITH BOREL SPACES

Xiaolong Zou and Xianping Guo

In this paper we give a new set of verifiable conditions for the existence of average optimal
stationary policies in discrete-time Markov decision processes with Borel spaces and unbounded
reward/cost functions. More precisely, we provide another set of conditions, which only con-
sists of a Lyapunov-type condition and the common continuity-compactness conditions. These
conditions are imposed on the primitive data of the model of Markov decision processes and
thus easy to verify. We also give two examples for which all our conditions are satisfied, but
some of conditions in the related literature fail to hold.
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1. INTRODUCTION

The average reward criterion is one of the most popular performance criteria in discrete-
time Markov decision processes (MDP). Much work has been done on this topic and we
give a brief survey here. According to the state space, all of the existing works can be
roughly classified into three classes: finite state space, countably infinite state space,
and general state space. When the state space and the action space are both finite, the
existence of an average optimal stationary policy is indeed guaranteed, see [3, pp. 165–
176], [12, p. 450], for instance. However, when the state space is countably infinite,
counterexamples have been constructed in [13, 14] to show that there may not exist
an average optimal stationary policy. Therefore, many works have been devoted to
the study on conditions which guarantee the existence of an average optimal stationary
policy. For the case of a denumerable state space, see [1, pp. 298–315], [12, pp. 414–
416], [14, pp. 132–157], for instance; and see [1, 5, 6], [7, pp. 86–100], [8, pp. 128–131]
for the case of Borel spaces. This paper further studies the average reward criterion for
discrete-time MDP in Borel spaces.

As far as we know, there are three main approaches to study the existence of an
average optimal stationary policy for discrete-time MDP in Borel spaces; see [6], and
[15]. The first one is the well-known “average optimality equation approach”, see [7,
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p. 97], [8, p. 130], for instance. By analyzing the solutions of the optimality equation,
the existence of an average optimal stationary policy is derived. To establish the average
optimality equation, some strong conditions are needed, such as the equi-continuity of
the relative difference, hα(x), of the discounted optimal value function in [7, p. 96], and
the uniformly w-geometric ergodicity condition together with the irreducibility of the
corresponding Markov processes for each deterministic stationary policy in [8, p. 130].
Furthermore, for the verification of the uniformly w-geometric ergodicity condition, a
set of the Lyapunov-type condition and the minorant condition is given in [3, 4] and [8,
p. 126] respectively. The second one is the “optimality inequality approach”, which needs
the usage of the Abelian theorem relating the average reward criterion to the discount
reward criterion, and thus it is designed for the case of nonnegative costs only. Readers
may refer to [7, p. 80] where the relative difference hα(x) is required to be bounded from
below, in both the state x and the discounted factor α. The last one is the so-called
“optimality two-inequality approach”, which is developed by [6]. This approach allows
a much weaker condition that the relative difference hα(x) is assumed to be ω-bounded
(see Assumption 3.3 in [6]), and so hα(x) can be unbounded (in states) from above and
from below. This assumption is stated as Condition C in this paper. It is shown in [6]
that the uniformly w-geometric ergodicity condition in [8, p. 130] implies Condition C.
For the verification of the uniformly w-geometric ergodicity condition, to the best of
our knowledge, there are two sets of verifiable conditions (i. e. ones that are imposed
on the primitive data of the model of MDP). Roughly, one of the two sets consists of a
Lyapunov-type condition and the minorant condition in [4] and [8, p. 126], and another
set with the Lyapunov-type and stochastic monotonicity conditions in [6].

This paper aims to give new and verifiable conditions for the existence of an average
optimal stationary policy (i. e. another set of conditions for the verification of Condition
C above). Inspired by the arguments in [9], we decompose hα(x) into two parts: one
being the expected discounted reward/cost till the first time the chain starting from
any state x enters the state z (denote this stopping time by τz), and the other being
the expected discounted reward/cost times the mean of (ατz − 1). We use a Lyapunov-
type condition (i. e. the inequality (4.1) in this paper) to derive new estimates for
the two parts. Basing the new estimates, we give a new set of conditions that also
ensures the existence of an average optimal stationary policy; see Assumptions 1, 2 and
Theorem 4.1 below. Our conditions consist of a so-called Lyapunov-type condition and
the standard continuity-compactness conditions, which are imposed on the primitive
data of the model of MDP and thus more easy to verify in certain situations. Unlike the
verifiable conditions in [6] and in [8, p. 126], our new conditions don’t need to calculate
any bound for exponential convergence rates of the Markov chains governed by different
deterministic stationary polices as [6], [8, p. 126] do. Thus, our conditions show that
for the verification of Condition C both of the stochastic monotonicity in [6] and the
minorant condition in [8, p. 126] can be dropped. To further show the advantage of our
new conditions, we give two examples. One of the examples is on applications of our
results to admission control problems of queueing systems in [14], and the other one
is to show the difference between our conditions and those in the previous literature.
It should be noted that the two examples satisfy our new conditions, whereas some of
conditions in [3, 4, 6, 8] fail to hold for the second example; see Remarks 4.1 and 5.2,
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for details.
The rest of this paper is organized as follows. In Section 2, we define the model of

MDP and state the optimality problem we are concerned with. In Section 3, we recall
some existing conditions for the existence of an average optimal stationary policy. In
Section 4, we give our new conditions, under which we prove the existence of an average
optimal stationary policy. The last section illustrates some applications of the results
with two examples.

2. THE CONTROL MODELS

In this section we introduce the control model of discrete-time MDP, state the optimality
problems we are dealing with.

The model of MDP is a set of primitive data (X, A,K,Q, c) with the following mean-
ing:

• X is the Borel state space (a Borel subset of a complete separable metric space),
endowed with the Borel σ-algebra B(X). An element in X is denoted by x ∈ X;

• A is the Borel action space, endowed with the Borel σ-algebra B(A). An element
in A is denoted by a ∈ A;

• The set A(x) in B(A) denotes the set of all available actions at x ∈ X. And the
set of all possible state-action combinations is denoted by K, that is K := {(x, a) :
x ∈ X, a ∈ A(x)}. Moreover, K is assumed to be a Borel subset of X ×A;

• Q(·|x, a) is a stochastic kernel on X given (x, a) ∈ K, that is, given x ∈ X and
a ∈ A(x), Q(·|x, a) is a probability measure on B(X), while given a set B ∈ B(X),
Q(B|·, ·) is a B(K)-measurable function. In what follows, when we say a measur-
able function we mean it’s Borel measurable. Q(B|x, a) gives the probability that
the next state falls in B if the current state is x and action a is taken.

• c(x, a): K → R is assumed to be a real-valued and measurable function, and it
gives the one-stage cost of a system if the current state is x and action a is taken.
(Since c(x, a) is allowed to take positive and negative values in this paper, it can
be interpreted as the reward other than the “cost”.)

A discrete-time MDP evolves as follows. A decision maker observes a system state
at each time n. Whenever the system state is at x ∈ X, he/she chooses an action a
from A(x). As a consequence, he/she incurs a cost c(x, a) that depends on x and a, and
at the same time the system moves from the state x to a new state according to the
distribution of the transition function Q(·|x, a). At the new state, the decision maker
chooses a suitable action, and so on. In order to minimize his/her cost (or maximize the
reward, when c(x, a) take negative values), the decision maker aims to find a formalism
of choosing the actions to be taken, i. e. a policy in MDP.

To formally define a policy, we introduce some notation: for each n ≥ 0, let Hn denote
the family of admissible histories up to time n, that is, H0 := X, and Hn := K ×Hn−1

for each n ≥ 1.
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Definition 2.1. A randomized history-dependent policy is a sequence π := (πn, n ≥ 0)
of stochastic kernels πn on A given Hn that satisfy

πn(A(x)|hn) = 1 for all hn = (x0, a0, . . . , xn−1, an−1, x) ∈ Hn, n ≥ 0.

The class of all randomized history-dependent policies is denoted by Π. A policy
π := (πn, n ≥ 0) ∈ Π is called stationary if there exists a measurable function f on X,
with f(x) ∈ A(x) for all x ∈ X, such that

πn({f(x)}|hn) = πn({f(x)}|x) = 1 for all hn = (x0, a0, . . . , xn−1, an−1, x) ∈ Hn, n ≥ 0.

For simplicity, we denote this stationary policy by f . The class of all stationary policies
is denoted by F , which means that F is the set of all measurable functions f on X with
f(x) ∈ A(x) for all x ∈ X. Obviously, F ⊂ Π.

For each x ∈ X and π ∈ Π, by the theorem of C. Ionescu Tulcea (see [7, p. 178] for
instance), there exist a unique probability measure space (Ω,F , Pπ

x ) and discrete-time
stochastic processes {xn} and {an}, defined on Ω, such that, for each B ∈ B(X) and
n ≥ 1,

Pπ
x (xn+1 ∈ B|hn, an) = Q(B|xn, an) (2.1)

for hn = (x0, a0, . . . , xn−1, an−1, xn) ∈ Hn, where xn and an denote the state and action
variables at time n ≥ 1, respectively. The expectation operator with respect to Pπ

x is
denoted by Eπ

x . In particular, when the policy π := f is in F , the corresponding process
{xn} is a Markov process with the transition law Qf (·|x):=Q(·|x, f(x)).

We now state the average optimality problem we are concerned with. The total
expected n-stage cost when using the policy π, given the initial state x0 = x, is defined
by

Jn(x, π) := Eπ
x

[
n−1∑
t=0

c(xt, at)

]
and the long run expected average cost is defined as follows:

J(x, π) := limsup
n−→∞

Jn(x, π)/n. (2.2)

Definition 2.2. A policy π∗ is called average optimal if

J(x, π∗) = inf
π∈Π

J(x, π) =: J∗(x) for all x ∈ X, (2.3)

and J∗(x) is called the average cost value function.

The main goal of this paper is to give new conditions for the existence of an average
optimal stationary policy.

3. EXISTING OPTIMALITY CONDITIONS AND RESULTS

In this section, we introduce the general optimality conditions (i. e. Conditions A, B
and C below) given in [6], which are sufficient to guarantee the existence of an average
optimal stationary policy.

Firstly, we state the so-called “expected growth condition” below (i. e. Assumption
3.1 in [6]) for the finiteness of the expected average cost J(x, π).
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Condition A. (i) There exist positive constants β < 1 and b, and a measurable function
ω ≥ 1 on X such that∫

X

Q(dy|x, a)ω(y) ≤ βω(x) + b for all x ∈ X, a ∈ A(x). (3.1)

(ii) There exists a constant M > 0, such that |c(x, a)| ≤ Mω(x) for all (x, a) ∈ K.

The following conditions are the standard continuity-compactness conditions, which
are commonly used in MDP, see [8, p. 44] or Assumption 3.2 in [6] for instance.

Condition B. (i) For each x ∈ X, A(x) is compact.
(ii) For each fixed x ∈ X, c(x, a) is lower semi-continuous in a ∈ A(x), and the function∫

X
u(y)Q(dy|x, a) is continuous in a ∈ A(x) for all bounded measurable functions u on

X and for u := ω defined as in Condition A.

In addition to the above two conditions A and B, a key condition (i. e. Condition
C below or Assumption 3.3 in [6]) is needed in ensuring the existence of an average
optimal stationary policy. To state it, we have to introduce some notation such as the
discounted cost Vα(x, π).

For a fixed discount factor α ∈ (0, 1), x ∈ X, and π ∈ Π, the discounted cost Vα(x, π),
and the corresponding discounted optimal value function V ∗

α (x), are defined as follows:

Vα(x, π) := Eπ
x

[ ∞∑
n=0

αnc(xn, an)

]
, V ∗

α (x) := inf
π∈Π

Vα(x, π).

The relative difference of the discounted optimal value function V ∗
α (x) is defined by

hα(x) := V ∗
α (x)− V ∗

α (z), where z is some fixed state.
Furthermore, for any measurable function ω(x) ≥ 1 on X, we define both the w-

weighted norm, ‖u‖ω, of a real-valued function u on X, by

‖u‖ω := sup
x∈X

ω(x)−1|u(x)|

and the Banach space of all ω-bounded measurable functions Bω(X) := {u ∈ B(X) :
‖u‖ω < ∞}.

We are ready to state Condition C now (i. e. Assumption 3.3 in [6]).

Condition C. There exist two functions, v1, v2 ∈ Bω(X), and some state, z ∈ X, such
that

v1(x) ≤ hα(x) ≤ v2(x) for all x ∈ X and α ∈ (0, 1).

Under the above conditions, we have the following results, which are taken from
Theorem 4.1 in [6].
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Theorem 3.1. Under Conditions A, B, C, the following assertions hold:

(a) There exist a constant g∗, two functions u∗1, u∗2 ∈ Bω(X), and a stationary policy
f∗ ∈ F , satisfying the following two optimality inequalities

g∗ + u∗1(x) ≤ inf
a∈A(x)

{
c(x, a) +

∫
X

u∗1(y)Q(dy|x, a)
}

for all x ∈ X, (3.2)

g∗ + u∗2(x) ≥ inf
a∈A(x)

{
c(x, a) +

∫
X

u∗2(y)Q(dy|x, a)
}

(3.3)

= c(x, f∗(x)) +
∫

X

u∗2(y)Q(dy|x, f∗(x)) for all x ∈ X. (3.4)

(b) g∗= inf
π∈Π

J(x, π) for all x ∈ X.

(c) Any stationary policy, f ∈ F , realizing the minimum of (3.3) is average optimal;
thus, f∗ in (3.4) is an average optimal stationary policy.

Theorem 3.1 shows the existence of an average optimal stationary policy. Obviously,
the Condition C in Theorem 3.1 is not easy to verify, whereas [6] provides some sufficient
and verifiable conditions for it. We next give new assumptions for the verification of
Condition C and for the existence of an average optimal stationary policy.

4. NEW CONDITIONS AND MAIN RESULTS

As is known, [6] provides quite general assumptions (i. e. Conditions A, B, and C above)
to guarantee the existence of an average optimal stationary policy. The aim of our paper
is to give new sufficient conditions for the verification of Conditions A–C. Since the
Condition B is imposed on the primitive data (X, A,K,Q, c) of the model, our efforts
are devoted to the verification of Conditions A and C, and we give new assumptions
below.

Assumption 1. There exist a measurable function ω ≥ 1 on X, positive constants
0 < λ < 1, b1 < ∞, and some state z ∈ X, such that∫

X

Q(dy|x, a)ω(y) ≤ λω(x) + b1I{z}(x) for each (x, a) ∈ K, (4.1)

where ID stands for the indicator function of any set D.

Assumption 2. |c(x, a)| ≤ M1ω(x) for all (x, a) ∈ K, with some constant M1 > 0.

The hypothesis of (4.1) is called a Lyapunov-type condition. Note that Assumptions
1 and 2 are imposed on the primitive data (X, A,K,Q, c).

We are ready to give our main result of this paper.

Theorem 4.1. Suppose that Assumptions 1, 2, and Condition B are satisfied for the
primitive data (X, A,K,Q, c). Then Conditions A and C also hold. Thus (by Theorem
3.1), there exists an average optimal stationary policy for the control model.
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P r o o f . See below. �

Remark 4.1. (a) A key feature of Assumptions 1 and 2 is that they mainly involve the
Lyapunov-type condition. However, in order to verify Condition C in [6, Lemma 3.3(b)],
besides Assumptions 1, 2, the hypothesis of stochastic monotonicity of the resulting
Markov chains {xn} is also required (for each f ∈ F ).

(b) The inequality (4.1) is slightly stronger than the Lyapunov-type condition (iv) in
Proposition 10.2.5 in [8] (i. e. the Condition P4 in Remark 5.2 below). However, some
additional ones such as the minorant condition (i) in Proposition 10.2.5 in [8] (i. e. the
Condition P1 in Remark 5.2 below) are needed.

(c) Since ω(x) may be unbounded on X, we see from Assumption 2 that the cost function
is allowed to be unbounded from above and from below. Thus, our Theorem 4.1 is
suitable for some certain models where the cost function is not necessarily nonnegative
(see Example 5.1 below).

(d) We will give an example (i. e. Example 5.2 below), for which our assumptions are
all satisfied, whereas some of conditions in [3, p. 187], [4], [6, Lemma 3.3], [8, p. 126] fail
to hold.

To prove Theorem 4.1, we need some auxiliary facts given in the following lemmas.
The first lemma provides some estimates of the expected first passage time and expected
total cost during the first passage time from any initial state x to the state z. It’s well
worth noting that the proof of Lemma 4.2 follows the way in [11, pp. 264–266].

For every x ∈ X, let τz := inf{n ≥ 1 : xn = z} be the first passage time of first
hitting state z of the process {xn}.

Lemma 4.2. Under Assumptions 1 and 2, the following assertions hold.

(a) Ef
x

[∑τz−1
i=0 ω(xi)

]
≤ ω(x)+b1

1−λ and Ef
x [τz] ≤ ω(x)+b1

1−λ for each x ∈ X and f ∈ F .

(b) Ef
x

[∑τz−1
i=0 c(xi, f(xi))

]
≤ M1

ω(x)+b1
1−λ for each x ∈ X and f ∈ F .

P r o o f . For ease of notation, let g(x) := (1− λ)ω(x) for x ∈ X. Given any x ∈ X and
f ∈ F , from (4.1) we get∫

X

Qf (dy|x)ω(y) ≤ ω(x)− (g(x) ∧N) + b1I{z}(x) for each N ≥ 1, (4.2)

where the symbol “∧” means taking minimum.
Let Fi := σ(x0, x1, . . . , xi) be the smallest σ-algebra generated by the first (i + 1)

random variables x0, x1, . . . , xi. By (2.1) we have
∫

X
Qf (dy|xi)ω(y) =Ef

x [ω(xi+1)|Fi].
So that with the operator Ef

x , (4.2) can be rewritten as

Ef
x [ω(xi+1)|Fi] ≤ ω(xi)− (g(xi) ∧N) + b1I{z}(xi), i = 0, 1, 2, . . . . (4.3)
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For each n ≥ 1, define a sequence of stopping times τn
z := min{n, τz, inf{k ≥ 0 : ω(xk) ≥

n}}. Then clearly τn
z ↑ τz as n →∞, and

∑τn
z −1

i=0 ω(xi) ≤ n2. Since for any given sample
path taken from Ω, τn

z is deterministic, we see that

ω(xτn
z
) = ω(x0) +

τn
z∑

i=1

(ω(xi)− ω(xi−1)) = ω(x0) +
n∑

i=1

I{τn
z ≥i}(ω(xi)− ω(xi−1)). (4.4)

Noting that {τn
z ≥ i} ∈ Fi−1, we obtain from (4.4)

0 ≤ Ef
x

[
ω(xτn

z
)
]

= Ef
x [ω(x0)] + Ef

x

[
n∑

i=1

I{τn
z ≥i}(ω(xi)− ω(xi−1))

]

= ω(x) +
n∑

i=1

Ef
x

[
Ef

x

[
I{τn

z ≥i}(ω(xi)− ω(xi−1))|Fi−1

]]
= ω(x) +

n∑
i=1

Ef
x

[
I{τn

z ≥i}(Ef
x [ω(xi)|Fi−1]− ω(xi−1))

]
≤ ω(x) +

n∑
i=1

Ef
x

[
I{τn

z ≥i}(−(g(xi−1) ∧N) + b1I{z}(xi−1))
]

= ω(x) + Ef
x

 τn
z∑

i=1

(−(g(xi−1) ∧N) + b1I{z}(xi−1))

 , (4.5)

where the last second inequality uses (4.3).
Noting that

∑τn
z

i=1(g(xi−1) ∧N) ≤ nN , from (4.5) we have

Ef
x

 τn
z∑

i=1

(g(xi−1) ∧N)

 ≤ ω(x) + b1E
f
x

 τn
z∑

i=1

I{z}(xi−1)

 ≤ ω(x) + b1. (4.6)

Letting n → ∞ and then N → ∞ in (4.6), by the monotone convergence theorem and
the definition of g(x), the following holds

Ef
x

[
τz−1∑
i=0

ω(xi)

]
≤ ω(x) + b1

1− λ
,

which, together with Assumption 2 and the hypothesis that ω ≥ 1 on X, completes the
proofs. �

The following lemma about the discounted optimal criterion is needed in proving
Theorem 4.1.

Lemma 4.3. Under Assumptions 1 and 2, we have

|(1− α)Vα(x, π)| ≤ M1ω(x) + M1b1/(1− λ) for all x ∈ X, α ∈ (0, 1) and π ∈ Π.
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P r o o f . Fix any initial state x ∈ X and any policy π ∈ Π. First we assert that

Eπ
x [ω(xn)] ≤ λnω(x) + b1(1− λn)/(1− λ). (4.7)

Indeed, for any n ≥ 1, by (2.1) and (4.1), we obtain

Eπ
x [ω(xn)|x0, a0, x1, a1, . . . , xn−1, an−1] =

∫
X

ω(y)Q(dy|xn−1, an−1) ≤ λω(xn−1) + b1.

Hence, by taking the expectation operator Eπ
x , we have

Eπ
x [ω(xn)] ≤ λEπ

x [ω(xn−1)] + b1

≤ λ2Eπ
x [ω(xn−2)] + b1 + b1λ

≤ . . . . . . . . .

≤ λnω(x) + b1 + b1λ + · · ·+ b1λ
n−1

= λnω(x) + b1(1− λn)/(1− λ).

So that

|Vα(x, π)| =

∣∣∣∣∣Eπ
x

[ ∞∑
n=0

αnc(xn, an)

]∣∣∣∣∣
≤ M1

∞∑
n=0

αnEπ
x [ω(xn)]

≤ M1

∞∑
n=0

αn (λnω(x) + b1(1− λn)/(1− λ))

≤ M1ω(x)/(1− α) + M1b1/((1− α)(1− λ)),

where we have used (4.7) and the hypotheses that |c(x, a)| ≤ M1ω(x) and 0 < λ < 1. �

P r o o f of Theorem 4.1.
Since Assumptions 1 and 2 imply Condition A, we only have to show Condition C.

Under Assumptions 1, 2 and Condition B, by Theorem 8.3.6 in [7] or Lemma 3.2 in
[6], for each 0 < α < 1, there exists a stationary policy fα (depending on α) satisfying
V ∗

α (x)=Vα(x, fα) for all x ∈ X. For ease of notation, let cf (x) := c(x, f(x)) for all x ∈ X
and f ∈ F . Using the strong Markov property, we have

hα(x) = V ∗
α (x)− V ∗

α (z)
= Vα(x, fα)− Vα(z, fα)

= Efα
x

[
τz−1∑
n=0

αncfα(xn)

]
− Vα(z, fα) + Efα

x

[
Efα

x

[ ∞∑
n=τz

αncfα(xn)|Fτz

]]

= Efα
x

[
τz−1∑
n=0

αncfα(xn)

]
+ Vα(z, fα)Efα

x [ατz − 1] . (4.8)
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Since 1− αn ≤ (1− α)n for all n ≥ 1, by (4.8) and Lemmas 4.2 and 4.3, we have

|hα(x)| ≤ Efα
x

[
τz−1∑
n=0

αn|cfα(xn)|

]
+ |Vα(z, fα)|Efα

x [|ατz − 1|]

≤ Efα
x

[
τz−1∑
n=0

αn|cfα(xn)|

]
+ |(1− α)Vα(z, fα)|Efα

x [τz]

≤ M1(ω(x) + b1)/(1− λ) + M1 (ω(z) + b1/(1− λ)) (ω(x) + b1)/(1− λ)

≤ M1(1 + b1)
1− λ

(
1 + ω(z) +

b1

1− λ

)
ω(x), (4.9)

where the last inequality uses the hypothesis that ω(x) ≥ 1. Taking

v1(x) := −M1(1 + b1)
1− λ

(
1 + ω(z) +

b1

1− λ

)
ω(x),

v2(x) :=
M1(1 + b1)

1− λ

(
1 + ω(z) +

b1

1− λ

)
ω(x),

obviously we have v1(x), v2(x) ∈ Bω(X). Therefore Condition C follows from (4.9). 2

5. EXAMPLES

In this section, we will illustrate our results with two examples. One of the examples is
on applications of our results to an admission control problem of queueing systems, and
the other one is to show the difference between our conditions and those in the previous
literature. As is well known, admission control problems of queueing systems have been
widely studied in [12] and [14]. Here we are interested in the new average optimality
condition for the admission control problem of a queueing system (i. e. Example 2.2.1
in [14, pp. 16–18,145–148]).

Example 5.1. (The admission control problem in [14].) Consider a controlled queueing
system with the service policy being First Come First Served and the state equation:

Xn+1 = Xn + I{incoming customers acceptted}Yn − Zn, n = 0, 1, . . . ,

where Xn and Yn represent the number of waiting customers in the queue and the
number of incoming customers who ask for admissions into the queue at the beginning
of the nth period for all n ≥ 0 respectively, Zn denotes the number of service completions
during the nth period. When the batch of Yn customers arrive, the decision maker has
to choose one of two actions: to reject all of them, or to accept them into the queue. We
assume that the Yns are i.i.d with the common distribution P (Y0=y)=py for all integers
y ≥ 0. Moreover, suppose that the values of Zn takes either 0 or 1, that a service occurs
during period n according to a geometric distribution with a fixed rate µ ∈ (0, 1) when
there is at least one customer waiting in the queue (i. e. Xn > 0), and that no service
will be provided if Xn = 0).
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We now formulate this model as an MDP. The state space is X := {0, 1, 2, . . .},
and the set of available actions given x ∈ X is A(x):={0,1}, where a = 0 standards
“ to reject the incoming customers” and a = 1 standards “ to accept the incoming
customers”. According to the description of the model, we see that the transition kernel
can be given as follows:

Q(0|0, 0) = 1, Q(y|0, 1) = py, y ≥ 0; (5.1)
Q(x− 1|x, 0) = µ, Q(x|x, 0) = 1− µ, x ≥ 1; (5.2)

Q(x− 1|x, 1) = µp0, Q(x + y|x, 1) = µpy+1 + (1− µ)py, x ≥ 1, y ≥ 0. (5.3)

We denote the cost function for this example by c(x, a) for all x ∈ X and a ∈ A(x).
We aim to find conditions that ensure the existence of an average optimal stationary

policy for the admission control problem. To do so, we consider the following conditions.
D1: There exists some γ > 0 such that E[eγY0 ] < ∞ and E[Y0] < µ.
D2: |c(x, a)| ≤ L′(1 + xn) for all x ∈ X and a ∈ A(x), for some positive integer n and
a constant L′ > 0.

We next state and prove the main result about the admission control problem above.

Proposition 5.1. Suppose that the Conditions D1, D2 hold. Then Assumptions 1, 2
and Condition B are satisfied for the admission control problem. Hence (by Theorem
4.1), there exists an average optimal stationary policy for Example 5.1.

P r o o f . To verify the inequality (4.1) in Assumption 1 for Example 5.1, let

λ := (1− µ + µe−δ0)E
[
eδ0Y0

]
, (5.4)

where δ0 ∈ (0, γ] is a constant satisfying 0 < λ < 1. To prove that such a δ0 exists, we
define f(t) := (1 − µ + µe−t)E

[
etY0

]
, t ∈ [0, γ]. As a result of the Condition D1 and

Theorem 2.3.7 in [2] , the first moment of Y0, E[Y0], equals the value of the first derivative
of the moment generating function, E

[
etY0

]
, at t = 0, i. e. E[Y0] = {E[etY0 ]}′

∣∣∣
t=0

. Then

f
′
(0) = (1− µ + µe−t)|t=0 · {E[etY0 ]}′

∣∣∣
t=0

− µe−t|t=0 · E
[
etY0

]∣∣
t=0

= E[Y0]− µ. Since

E[Y0] < µ implied by Condition D1, we get f
′
(0) < 0. Thus we can choose a number

δ0 ∈ (0, γ] such that f(δ0) < f(0) = 1.
We aim to verify (4.1) with λ as in (5.4), ω(x) := eδ0x, z := 0, and b1 := E

[
eδ0Y0

]
.

So we can rewrite (4.1) as the following∑
y∈X

Q(y|x, a)eδ0y ≤ λeδ0x + E
[
eδ0Y0

]
I{0}(x) for all x ∈ X, a ∈ {0, 1}. (5.5)

We proceed to verify (5.5) in three steps.

Case 1. If x = 0, by (5.1) we have that
∑

y∈X Q(y|0, 0)eδ0y = 1 and
∑

y∈X Q(y|0, 1)eδ0y =∑∞
y=0 pyeδ0y = E

[
eδ0Y0

]
. So (5.5) holds for x = 0, a ∈ {0, 1}.
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Case 2. If x > 0 and the action 0 is taken, by (5.2), we have
∑

y∈X Q(y|x, 0)eδ0y =
µeδ0(x−1) + (1 − µ)eδ0x = (1 − µ + µe−δ0)eδ0x ≤ λω(x). So (5.5) holds for x > 0 and
a = 0.

Case 3. If x > 0 and the action 1 is taken, by (5.3), we have

∑
y∈X

Q(y|x, 1)eδ0y = µp0e
δ0(x−1) +

∞∑
y=0

(µpy+1 + (1− µ)py)eδ0(x+y)

=

(
µp0e

−δ0 +
∞∑

y=0

(µpy+1 + (1− µ)py)eδ0y

)
eδ0x

=
(
1− µ + µe−δ0

)
E
[
eδ0Y0

]
eδ0x

= λω(x).

From Cases 1–3, we obtain that (5.5) (i. e. (4.1)) holds for all x ∈ X and a ∈ {0, 1}.
Thus Assumption 1 is satisfied.

Moreover, for the n as in Condition D2 and the above δ0 > 0, there exists a constant
l > 0 such that 1 + xn ≤ leδ0x = lω(x) for all x ≥ 0. Hence by Condition D2, we see
Assumption 2 holds.

On the other hand, since A(x) = {0, 1} only has two elements for each x ∈ X,
Condition B holds naturally. Thus (by Theorem 4.1), Proposition 5.1 follows. �

As has been noted, our Example 5.1 is based on Example 2.2.1 in [14, pp. 16–18,145–
148]. So we would like to compare our conditions with those therein.

Remark 5.1. (a) The cost structure in [14, pp. 16–18,145–148] is assumed nonnegative
and defined explicitly as c(x, 1) = H(x) and c(x, 0) = H(x) + M , where the positive
constant M is interpreted as the rejection cost and H(x) as the cost for keeping x
customers waiting. H(x) is also assumed to be increasing in x with H(0) = 0. But in
our model, the cost function may have neither upper nor lower bounds.

(b) It is required in [14, pp. 16–18,145–148] that there is a positive probability of no
arrivals and a positive probability of at least one customer arriving, i. e. 0 < p0 < 1,
whereas in our model the distribution of Y0, p, needs not satisfy this condition. Instead,
we require that on one hand, the moment generating function of Y0 exists in some
interval (0, γ), a condition satisfied trivially if there are only finitely many arrivals each
time, and on the other hand, the expected arrivals in each period is less than µ, which
is interpreted as the probability of a successful service.

Example 5.1 illustrates one application of our results above. The next example is to
show the difference between our verifiable conditions and some existing ones in previous
literature. First, we give a model of MDP and show that it satisfies Assumptions 1,
2 and Condition B. Thus the problem has an average optimal stationary policy. Then
we proceed to prove that some of existing conditions in related literature such as the
stochastic monotonicity and minorant condition fail to hold for the model; see Example
5.2 and Remark 5.2 below.
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Example 5.2. Consider a controlled model with a state space X := [0,∞), the action
space A := (−∞,mθ,ρ], where θ and ρ are two positive constants satisfying mθ,ρ :=
θ/2 − 1/ρ + 1 > 0. Clearly we have 1 − x + θ < 0 for x ≥ θ + 2. The set of available
actions given state x, is defined by

A(x) :=

{
[1− x + θ, mθ,ρ], x ≥ θ + 2,

{0}, x ∈ [0, θ + 2),

and the transition kernel is defined by the following

Q(D|x, a) :=


ρ

θ
µL(D ∩ [x + a− θ, x + a]) + (1− ρ)ID(0), x ≥ θ + 2,

ID(0), x ∈ (0, θ + 2),
ID(θ + 2), x = 0,

where D is any set in B(X), and µL denotes the Lebesgue measure on the real line.
Obviously, the set of all state-action pairs, K, is a Borel subset of X ×A.

Denote the cost function of this control model by c(x, a).

For the existence of an average optimal stationary policy, consider the following as-
sumptions.
F1: 1/2 ≤ ρ < 1, and θ > 2;
F2: For each x ∈ X, c(x, a) is lower-semi continuous in a ∈ A(x), and |c(x, a)| ≤
L · (x + 1) for all a ∈ A(x), with some constant L > 0.

Note that the Condition F1 ensures that mθ,ρ > 0.
Under the Condition F1, we show that there exists a function ω(x) ≥ 1 on X such

that

Qω(x, a) :=
∫

X

Q(y|x, a)ω(y) ≤ ρω(x) + (θ + 4)I{0}(x) for each x ∈ X and a ∈ A(x),

(5.6)
which implies that Assumption 1 holds with λ := ρ, z := 0, b1 := θ + 4. Indeed, define
ω(x) := x + 2, when x > 0, and ω(0) := 1.

When x = 0, (5.6) clearly holds.
When 0 < x < θ + 2, Qω(x, a) = ω(0) = 1. By Condition F1, we have ρ ≥ 1/2,

which gives ρω(x) > 2ρ ≥ 1 together with the definition of ω(x). So that (5.6) holds for
0 < x < θ + 2.

When x ≥ θ + 2,

Qω(x, a) =
ρ

θ

∫ x+a

x+a−θ

ω(y)µL(dy) + (1− ρ)ω(0)

= 1− ρ + 2ρ +
ρ

2θ
[(x + a)2 − (x + a− θ)2]

= ρx + ρa− ρθ/2 + 1 + ρ,

(5.7)

which, together with the hypothesis that a ≤ mθ,ρ = θ/2− 1/ρ + 1, gives

Qω(x, a) ≤ ρx + θρ/2− 1 + ρ− ρθ/2 + 1 + ρ = ρ(x + 2) = ρω(x).
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Thus the proof of (5.6) is completed.
By Condition F2, we know that Assumption 2 holds since |c(x, a)|≤ L(x+1) ≤ Lω(x)

for all state-action pairs. Also, from the calculations in (5.7), we see that for every
bounded measurable function u on X, Qu(x, a) is continuous in a ∈ A(x) given x ∈ X

if and only if the integral
∫ x+a

x+a−θ
u(y)µL(dy) is continuous in a. And the latter fact

follows from the absolute continuity of the Lebesgue integral. The rest of the hypotheses
in Condition B are easy to verify. All of the above discussions lead to the following
proposition.

Proposition 5.2. Under the Conditions F1 and F2, there exists an average optimal
stationary policy for Example 5.2.

To state the difference between our verifiable conditions and some existing ones in
previous literature, we need to recall some concepts below.

Stochastic monotonicity (see [10], for instance): The transition kernel Qf (·|·) is said to
satisfy the stochastic monotonicity condition, if x < y implies P f

x (xn ≤ z) ≥ P f
y (xn ≤ z)

for every n ≥ 1 and z ∈ X, where {xn} is the Markov chain with the transition law
Qf (·|·).

The verifiable uniformly ω-exponentially ergodicity conditions (in [4], [8, p. 126], or
[6, Lemma 3.3(d)]: For each f ∈ F , there exist a measurable function, lf , 0 ≤ lf ≤ 1
(depending on f), on X, a probability measure, ϑ, on X, and constants, δ2 > 0, 0 <
β2 < 1, independent of f , such that

P1 : Q(C|x, f(x)) ≥ lf (x)ϑ(C) for all C ∈ B(X) and x ∈ X,

P2 :
∫

X
lf (y)ϑ(dy) ≥ δ2,

P3 : ϑ(ω) :=
∫

X
ω(y)ϑ(dy) < ∞,

P4 :
∫

X
ω(y)Q(dy|x, f(x)) ≤ β2ω(x) + lf (x)ϑ(ω) for all x ∈ X.

Remark 5.2. (a) For any f ∈ F the transition kernel Qf (·|·) in Example 5.2 is not
stochastic monotone, therefore, the conditions in [6, Lemma 3.3(b)] are not satisfied.

Indeed, by the construction of the transition function, we have P0(x1 ≤ 1/2) = 0,
and P1(x1 ≤ 1/2) = 1, so that P0(x1 ≤ 1/2) < P1(x1 ≤ 1/2), which contradicts with
the definition of stochastic monotonicity.

(b) The earlier conditions for the uniformly ω-exponentially ergodicity in [8, p. 126]
or [6, Lemma 3.3(d)] fail to hold.

We next prove the assertion in Remark 5.2 (b) by contradiction as follows. Let f∗(x):
X → A denotes such a decision rule: f∗(x) = 1 − x + θ, when x ≥ θ + 2; f∗(x) = 0,
when x < θ + 2. Suppose that lf∗(x) satisfies the Conditions P1–P4 above. Then, the
following facts hold:

(1) If lf∗(0) > 0, then, since Q({θ + 2}|0, 0) = 1, we get ϑ({θ + 2}c) = 0. For if not
so, replace C in Condition P1 with {θ +2}c, and it follows that Q({θ +2}c|0, 0) ≥
lf∗(0)ϑ({θ + 2}c) > 0 (contradictory).
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From Condition P2, lf∗(θ+2) ≥ δ2 > 0. Replacing C in Condition P1 with {θ+2},
and x with (θ +2), we have Q({θ +2}|θ +2, f∗(θ +2)) ≥ lf∗(θ +2)ϑ({θ +2}) > 0,
which contradicts with the fact that Q({θ + 2}|θ + 2, a) = 0 for all a ∈ A(θ + 2).
Therefore, lf∗(0) = 0.

(2) If lf∗(θ + 2) > 0, we know from the construction of Q that Q({0} ∪ [1, θ + 1]|θ +
2, f∗(θ +2)) = 1. As the arguments in part (1), we can prove that ϑ({{0}∪ [1, θ +
1]}c) = 0. By Condition P2 and lf∗(0) = 0, the following hold: ϑ([1, θ+1]) > 0 and
there exists at least an element x0 ∈ [1, θ +1] such that lf∗(x0) > 0. By Condition
P1, we have Q([1, θ + 1]|x0, f

∗(x0)) ≥ lf∗(x0)ϑ([1, θ + 1]) > 0 (contradictory).
Therefore, lf∗(θ + 2) = 0.

(3) If there exists one number (denoted by y) in (0, θ + 2) s.t. lf∗(y) > 0, following
the same route as in the previous proof, we get ϑ({0}c) = 0. Using lf∗(0) = 0,
we have

∫
X

lf∗(x)v(dx) = lf∗(0)v({0}) = 0, which contradicts with lf∗ satisfying
Condition P2.

Thus, it follows from (1) – (3) that lf∗(x) ≡ 0 for all x ∈ [0, θ + 2]. This fact together
with Condition P4 gives

∫
X

ω(y)Q(dy|x, f(x)) ≤ β2ω(x) for all 0 ≤ x ≤ θ + 2. Using
the definition of Q, we have

ω(θ + 2) ≤ β2ω(0), (5.8)
ω(0) ≤ β2ω(x) ∀ x ∈ (0, θ + 2), (5.9)

(1− ρ)ω(0) +
ρ

θ

∫ θ+1

1

ω(y)µL(dy) ≤ β2ω(θ + 2). (5.10)

Since (5.9) gives ω(x) > ω(0) for all x ∈ (0, θ + 2), replacing ω(y) in (5.10) with ω(0),
we get ω(0) < ω(θ + 2). By (5.8), it follows that ω(θ + 2) < ω(θ + 2) (contradictory).
So, it’s impossible to find a function lf∗(x) satisfying the Conditions P1–P4.

(c) The minorant condition in [3, p. 187] fails to hold.
Recall the definition of the minorant condition in [3, p. 187]: there exists a nontrivial

measure v such that Q(Γ|x, a) > v(Γ) for all x ∈ X, a ∈ A(x), Γ ∈ B(X). The proof of
the assertion in Remark 5.2 (c) is similar to that in Remark 5.2 (b).

(d) The condition in [6, Lemma 3.3(c)] fails to hold, either.

One of assumptions in [6, Lemma 3.3(c)] assumes that there exists a positive number
γ such that for each f ∈ F , there exists an atom, αf (depending on f), such that
Qf (αf |x) > γ for all x ∈ αf . We prove below that such an atom does not exist.
According to the construction of Q, there are three kinds of set that may be atoms: a
set made up of a single state, a subset of (0, θ + 2), and a subset of [θ + 2,∞).

Firstly, αf cannot be taken as any single state in X or any subset of (0, θ + 2), since
Qf ({x}|x) = 0 for each x ∈ X, f ∈ F and Qf ({0}|x) = 1 for each x ∈ (0, θ + 2), f ∈ F .

To prove that αf cannot be a subset of [θ + 2,∞), we consider the particular case
when f = f∗ defined in part (b). Then from the definition of the transition kernel we
have Qf∗ ({0} ∪ [1, θ + 1]|x) = 1 for every x ∈ [θ + 2,∞). That contradicts with the
requirement that Qf∗(αf∗ |x) > 0.
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Remark 5.3. From Remark 5.2(a) – (d), we conclude that our conditions are indeed
different from those in [3, 4, 6, 8].

(Received May 4, 2014)
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