Kybernetika 51 no. 4, 678-698, 2015

Cauchy-like functional equation based on a class uninorm

Feng QinDOI: 10.14736/kyb-2015-4-0678

Abstract:

Commuting is an important property in any two-step information merging procedure where the results should not depend on the order in which the single steps are performed. In the case of bisymmetric aggregation operators with the neutral elements, Saminger, Mesiar and Dubois, already reduced characterization of commuting $n$-ary operators to resolving the unary distributive functional equations. And then the full characterizations of these equations are obtained under the assumption that the unary function is non-decreasing and distributive over special aggregation operators, for examples, continuous t-norms, continuous t-conorms and two classes of uninorms. Along this way of thinking, in this paper, we will investigate and fully characterize the following unary distributive functional equation $f(U(x,y))=U(f(x),f(y))$, where $f\colon[0,1]\rightarrow[0,1]$ is an unknown function but unnecessarily non-decreasing, a uninorm $U\in{\mathcal U}_{\min}$ has a continuously underlying t-norm $T_U$ and a continuously underlying t-conorm $S_U$. Our investigation shows that the key point is a transformation from this functional equation to the several known ones. Moreover, this equation has also non-monotone solutions completely different with already obtained ones. Finally, our results extend the previous ones about the Cauchy-like equation $f(A(x,y))=B(f(x),f(y))$, where $A$ and $B$ are some continuous t-norm or t-conorm.

Keywords:

uninorms, fuzzy connectives, distributivity functional equations, T-norms, T-conorms

Classification:

03B52, 03E72

References:

  1. J. Aczél: Lectures on Functional Equations and Their Applications. Acad. Press, New York 1966.   DOI:10.1002/zamm.19670470321
  2. J. Aczél, G. Maksa and M. Taylor: Equations of generalized bisymmetry and of consistent aggregation: Weakly surjective solutions which may be discontinuous at places. J. Math. Anal. Appl. 214 (1997), 1, 22-35.   DOI:10.1006/jmaa.1997.5580
  3. M. Baczyński and B. Jayaram: On the distributivity of fuzzy implications over nilpotent or strict triangular conorms. IEEE Trans. Fuzzy Systems 17 (2009), 3, 590-603.   CrossRef
  4. G. Beliakov, T. Calvo and A. Pradera: Aggregation Functions: A Guide for Practitioners. Springer-Verlag, Berlin - Heidelberg 2007.   CrossRef
  5. P. Benvenuti and D. Vivona: General theory of the fuzzy integral. Mathware Soft Comput. 3 (1996), 199-209.   CrossRef
  6. W. E. Combs and J. E. Andrews: Combinatorial rule explosion eliminated by a fuzzy rule configuration. IEEE Trans. Fuzzy Systems 6 (1) (1998), 1, 1-11.   DOI:10.1109/91.660804
  7. B. De Baets, H. De Meyer and R. Mesiar: Binary survival aggregation functions. Fuzzy Sets and Systems 191 (2012), 82-102.   DOI:10.1016/j.fss.2011.09.013
  8. S. Díaz, S. Montes and B. De Baets: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems 15 (2007), 2, 275-286.   DOI:10.1109/tfuzz.2006.880004
  9. D. Dubois, J. Fodor, H. Prade and M. Roubens: Aggregation of decomposable measures with application to utility theory. Theory Decision 41 (1996), 59-95.   DOI:10.1007/bf00134116
  10. J. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht 1994.   DOI:10.1007/978-94-017-1648-2
  11. J. Fodor, R. R. Yager and A. Rybalov: Structure of uninorms. Int. J. Uncertainly and Knowledge-Based Systems 5 (1997), 411-427.   DOI:10.1142/s0218488597000312
  12. S. Gottwald: A Treatise on Many-Valued Logics. Research Studies Press, Hertfordshire 2001.   CrossRef
  13. M. Grabisch, J. L. Marichal, R. Mesiar and E. Pap: Aggregation Functions. Cambridge University Press, 2009.   DOI:10.1017/cbo9781139644150
  14. E. P. Klement, R. Mesiar and E. Pap: Triangular Norms. Kluwer, Dordrecht 2000.   DOI:10.1007/978-94-015-9540-7
  15. K. J. McConway: Marginalization and linear opinion pools. J. Amer. Stat. Assoc. 76 (1981), 410-414.   DOI:10.1080/01621459.1981.10477661
  16. F. Qin: Cauchy like functional equation based on continuous t-conorms and representable uninorms. IEEE Trans. Fuzzy Systems 20 (2013), 126-132.   DOI:10.1109/fuzz-ieee.2014.6891537
  17. F. Qin and M. Baczyński: Distributivity equations of implications based on continuous triangular norms (I). IEEE Trans. Fuzzy Syst. 21 (2012), 1, 153-167.   CrossRef
  18. F. Qin and M. Baczyński: Distributivity equations of implications based on continuous triangular conorms (II). Fuzzy Sets and Systems 240 (2014), 86-102.   DOI:10.1016/j.fss.2013.07.020
  19. F. Qin and P. C. Yang: On the distributive equation of implication based on a continuous t-norm and a continuous Archimedean t-conorm. In: BMEI, 4th International Conference 4, 2011, pp. 2290-2294.   CrossRef
  20. F. Qin and L. Yang: Distributivity equations of implications based on nilpotent triangular norms. Int. J. Approx. Reason. 51 (2010), 984-992.   DOI:10.1016/j.ijar.2010.07.005
  21. I. J. Rudas, E. Pap and J. Fodor: Information aggregation in intelligent systems: An application oriented approach. Knowledge-Based Systems 38 (2013), 3-13.   DOI:10.1016/j.knosys.2012.07.025
  22. D. Ruiz and J. Torrens: Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38.   CrossRef
  23. S. Saminger, R. Mesiar and U. Bodenhofer: Domination of aggregation operators and preservation of transitivity. Int. J. Uncertainty Fuzziness Knowledge-Based Systems 10/s (2002), 11-35.   CrossRef
  24. S. Saminger-Platz, R. Mesiar and D. Dubois: Aggregation Operators and Commuting. IEEE Trans. Fuzzy Syst. 15 (2007), 6, 1032-1045.   CrossRef
  25. Y. Su, Z. Wang and K. Tang: Left and right semi-uninorms on a complete lattice. Kybernetika 49 (2013), 6, 948-961.   CrossRef
  26. R. R. Yager and A. Rybalov: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111-120.   CrossRef