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NECESSARY CONDITIONS FOR VECTOR OPTIMIZATION
IN INFINITE DIMENSION

Marie Dvorská and Karel Pastor

In the paper we present second-order necessary conditions for constrained vector optimiza-
tion problems in infinite–dimensional spaces. In this way we generalize some corresponding
results obtained earlier.

Keywords: C1,1–function, `–stable function, generalized second-order directional deriva-
tive, Dini derivative, vector optimization

Classification: 49K10, 49J52, 49J50, 90C29, 90C30

1. INTRODUCTION

The research of second-order optimality conditions is very important from both theo-
retical and practical point of view. Let us recall the following monographs containing
a lot of information on generalized second-order derivatives and their applications in
optimization: [25, 31, 35].

In this paper, we will study a certain vector constrained optimization problem. Let
X,Y, Z be normed linear spaces, f : X → Y , g : X → Z be functions, and let C ⊂ Y and
K ⊂ Z be closed convex pointed cones with intC 6= ∅ and intK 6= ∅. For the definitions
and properties of such cones, see e. g. [23, 34, 35].

We will consider the problem

min f(x), subject to g(x) ∈ −K. (1)

A feasible point x0 (i. e. g(x0) ∈ −K) is said to be a local weakly efficient point of
problem (1) if there exists a neighbourhood U of x0 such that

(f(U ∩ g−1(−K))− f(x0)) ∩ (− intC) = ∅.

The problem (1) was studied e. g. in [16, 17, 18, 19, 20, 26, 27, 32]. The obtained
results were surpassed in 2011, when I. Ginchev [14] and D. Bednař́ık with K. Pastor
[8] published indepedently the following equivalent result (Theorem 1.1). We recall that
the equivalence was shown in [11].

We will need some next notions around problem (1) to remind Theorem 1.1.
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First, for a cone C ⊂ X, we define

C∗ = {c∗ ∈ X∗; 〈c∗, c〉 ≥ 0, ∀c ∈ C}

and by SX∗ we denote the unit sphere in X∗, i. e. the set {x∗ ∈ X∗; ‖x∗‖ = 1}.

Further, we recall that a function f : X → Y , where X and Y are normed linear
spaces, is strictly differentiable at x ∈ X if it has Fréchet derivative f ′(x) ∈ L(X,Y ) at
x such that it holds

lim
y→x,t↓0

sup
h∈SX

‖1
t
(f(y + th)− f(y))− f ′(x)h‖ = 0.

Supposing that a function f : X → Y is Fréchet differentiable at x ∈ X, we define
the second-order Hadamard directional derivative D2f(x;u) of f at x in the direction
u ∈ X in the following way:

D2f(x;u) = Limsupt↓0,v→u

f(x+ tv)− f(x)− tf ′(x)u
t2/2

=
{
y ∈ Y ; ∃(tn, un)→ (0+, u),

y = lim
n→∞

f(x+ tnun)− f(x)− tnf ′(x)u
t2n/2

}
.

Finally, for problem (1) we denote

K(g(x0)) = {γ(z + g(x0)) : γ ≥ 0, z ∈ K}.

Theorem 1.1. Let f : Rn → Rm and g : Rn → Rp be strictly differentiable at x0 ∈ Rn.
If x0 is a local weakly efficient point of problem (1), then

(i) there exists (c∗, k∗) ∈ ((C∗ ×K(g(x0))∗) \ {(0, 0)}) such that

c∗ ◦ f ′(x0) + k∗ ◦ g′(x0) = 0 (2)

(ii) for u ∈ Rn if (f, g)′(x0)u ∈ −(C ×K(g(x0)) \ int(C ×K(g(x0)))), then for every
(y0, z0) ∈ D2(f, g)(x0;u) there exists (c∗, k∗) ∈ ((C∗ ×K(g(x0))∗) \ {(0, 0)}) such
that (2) is true and

〈c∗, y0〉+ 〈k∗, z0〉 ≥ 0. (3)

2. `–STABILITY

In some previous papers, the second-order optimality conditions were stated for C1,1

functions, see e. g. [2, 9, 10, 16, 17, 19, 20, 21, 22] and references therein. We recall that
a C1,1 function is a function which is differentiable with a locally Lipschitz derivative.
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In 2007, the concept of `−stability was introduced to diminish the C1,1 property
in solving some second-order scalar optimization problems [3]. A function f : X → R,
where X is a normed linear space, is `–stable at x ∈ X if there exist a neighborhood U
of x and a K > 0 such that

|f `(y;h)− f `(x;h)| ≤ K‖y − x‖, ∀y ∈ U , ∀h ∈ SX ,

where

f `(y;h) = lim inf
t↓0

f(y + th)− f(y)
t

.

The properties of `−stable at some point functions were studied e. g. in [1, 4, 5, 6, 7,
8, 11, 12, 14, 15, 28, 29, 30] for both scalar and vector functions. Among the others, the
sufficient second-order optimality condition for problem (1) was stated indepedently in
[14] and [8] in terms of `−stable at some point functions.

Now, we recall the definition of `−stability for vector functions possibly for infinite
dimension. We say that a function f : X → Y , where X and Y are normed linear spaces,
is `–stable at x ∈ X provided that there are a neighborhood U of x and a constant K > 0
such that

|f `(y;h)(γ)− f `(x;h)(γ)| ≤ K‖y − x‖,

for every y ∈ U , for every h ∈ SX and for every γ ∈ SY ∗ .
The symbol f `(x;h)(γ) denotes the lower Dini directional derivative of f at x in the

direction h ∈ X with respect to the linear functional γ ∈ Y ∗. It is defined by the formula:

f `(x;h)(γ) := lim inf
t↓0

〈γ, f(x+ th)− f(x)〉
t

.

Of course, f `(x;h) = f `(x;h)(1) for scalar functions.

3. INFINITE DIMENSION

The following differentiable property of `−stable at a point functions was obtained in
[33, Theorem 3.1], consult also [12].

Theorem 3.1. Let X be a normed linear space, Y a Banach space, and f : X → Y be
a continuous function near x ∈ X. If f is an `–stable function at x, then f is strictly
differentiable at x.

In the sequel, we will need a certain mean value theorem.

Lemma 3.2. (Pastor [33, Lemma 3.2]) Let X and Y be normed linear spaces, f : X →
Y be a continuous function, γ ∈ Y ∗ and let a, b ∈ X. Then there are points ξ1, ξ2 ∈ (a, b)
such that

f `(ξ1; b− a)(γ) ≤ 〈γ, f(b)− f(a)〉 ≤ f `(ξ2; b− a)(γ).
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The following lemma generalizes the analogous result from [7, Lemma 6], where we
supposed that X was a finite-dimensional space and that Y was a Banach space having
the Radon–Nikodým property.

Lemma 3.3. Let X be a normed linear space, Y a Banach space, and f : X → Y be a
continuous function near x ∈ X. If f is an `–stable function at x, then there exists an
α > 0 such that

∀R > 0 ∃δ > 0 ∀u,w ∈ X : ‖u‖ ≤ R, ‖w‖ ≤ R,∀t ∈ (0, δ) :∥∥∥∥ 2
t2

(f(x+ tu)− f(x)− tf ′(x)u)− 2
t2

(f(x+ tw)− f(x)− tf ′(x)w)
∥∥∥∥

≤ α(‖u‖+ ‖w‖)‖u− w‖. (4)

P r o o f . Note that by Theorem 3.1 f is strictly differentiable at x. Suppose that U
denotes a neighborhood of x on which f is continuous and a constant K > 0 is such that

|f `(y;h)(ξ)− f `(x;h)(ξ)| ≤ K‖y − x‖, ∀y ∈ U ,∀h ∈ SX ,∀ξ ∈ SY ∗ .

Let us consider an auxiliary function g : X → Y defined by g(z) :=f(z)−f ′(x)z, z∈X.
There is an η > 0 such that B(x, η) ⊂ U . Further, we fix R > 0 and consider δ > 0

such that δR < η. Then for arbitrary u ∈ X and w ∈ X satisfying ‖u‖ ≤ R, ‖w‖ ≤ R,
and for every t ∈ (0, δ) we have x + tu ∈ B(x, η), x + tw ∈ B(x, η). We fix u,w with
the previous properties. Then for certain yt ∈ (x+ tu, x+ tw), ξt ∈ SY ∗ , it holds due to
Lemma 3.2, the Hahn–Banach theorem and `–stability:

‖ 2
t2

(f(x+ tu)− f(x)− tf ′(x)u)− 2
t2

(f(x+ tw)− f(x)− tf ′(x)w)‖

=
2
t2
‖g(x+ tu)− g(x+ tw)‖ =

2
t2
|〈ξt, g(x+ tu)− g(x+ tw)〉|

≤ 2
t
|g`(yt;u− w)(ξt)| =

2
t
|f `(yt;u− w)(ξt)− 〈ξt, f ′(x)(u− w)〉|

≤ 2
t
K‖yt − x‖‖u− w‖.

Since for some µ ∈ (0, 1) we have yt = µ(x+ tu)+(1−µ)(x+ tw), then we can derive:

‖yt − x‖ = ‖µ(x+ tu) + (1− µ)(x+ tw)− x‖
= t‖µu+ (1− µ)w‖
≤ t(µ‖u‖+ (1− µ)‖w‖)
≤ t(‖u‖+ ‖w‖).

Now, letting α := 2K > 0 we get our inequality (4). �
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Theorem 3.4. Let X be a normed linear space, Y, Z be Banach spaces, f : X → Y ,
g : X → Z be continuous functions near x ∈ X which are `–stable at x. Let x be a local
weakly efficient point for problem (1). Then the following two conditions are satisfied
for each u ∈ SX :

(i) (f, g)′(x)u 6∈ − int(C ×K),

(ii) if (f, g)′(x)u ∈ −((C×K)\ int(C×K)), then for all (y, z) ∈ D2(f, g)(x;u) it holds

conv{(y, z), Im(f, g)′(x)} ∩ (− int(C ×K)) = ∅.

P r o o f . In order to prove (i) fix u ∈ X arbitrarily. Suppose that x ∈ X is a local
weakly efficient point for problem (1) and g′(x)u ∈ − intK. Then there exists a sequence
{x+ tku}+∞k=1 ⊂ X, tk ↓ 0, such that

(g(x+ tku)− g(x))/tk ∈ − intK

g(x+ tku) ∈ g(x)− intK ⊂ −K −K = −K.

Hence, every point x+ tku, k ∈ N, is feasible and we obtain

f(x+ tku)− f(x) 6∈ − intC

(f(x+ tku)− f(x))/tk 6∈ − intC

for all k large enough. Now letting k → +∞ we get that f ′(x)u 6∈ − intC. Note that
Theorem 3.1 guarantees the existence of f ′(x) and g′(x).

In order to prove the second condition we will assume on the contrary that there
is a u ∈ SX such that (f, g)′(x)u ∈ −((C × K) \ int(C × K)), and for some (y, z) ∈
D2(f, g)(x;u) it holds:

conv{(y, z), Im(f, g)′(x)} ∩ (− int(C ×K)) 6= ∅.

In other words, there exist a λ ∈ [0, 1] and a w ∈ X so that

(1− λ)(y, z)(u) + λ(f, g)′(x)w ∈ − int(C ×K). (5)

Since (− int(C × K)) is open, the above formula gives the existence of an ε > 0 such
that

(1− λ)(y, z)(u) + λ(f, g)′(x)w ∈ − int(C ×K), ∀λ ∈ (λ− ε, λ+ ε).

Thus, we can suppose, without loss of generality, that λ ∈ (0, 1) in formula (5).
Let sequences {tk}∞k=1, tk ↓ 0, and {uk}∞k=1, uk → u satisfy

{(2/t2k)(f(x+ tkuk)− f(x)− tkf ′(x)u)} −→ y

{(2/t2k)(g(x+ tkuk)− g(x)− tkg′(x)u)} −→ z

as k → +∞. We put

vk := uk + {λtkw/2(1− λ)}.
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Observe that vk → u as k → +∞, and w = (2(1 − λ)(vk − uk))/(λtk). We claim that
(2/t2k)(g(x + tkvk) − g(x + tkuk)) → λg′(x)w/(1 − λ) as k → +∞. Indeed, by the
Hahn–Banach Theorem, Lemma 3.2 and the definition of `–stability, there are ξk ∈ SZ∗ ,
yk ∈ (x+ tkuk, x+ tkvk) and L > 0 such that for almost all k ∈ N it holds

‖(2/t2k)(g(x+ tkvk)− g(x+ tkuk))− λg′(x)w/(1− λ)‖

= 〈ξk, (2/t2k)(g(x+ tkvk)− g(x+ tkuk))− λg′(x)w/(1− λ)〉

≤ λg`(yk;w)(ξk)/(1− λ)− λg`(x;w)(ξk)/(1− λ)

≤ Lλ‖yk − x‖‖w‖/(1− λ)→ 0 as k → +∞.

Since

lim
k→+∞

(2/t2k)(g(x+ tkvk)− g(x)− tkg′(x)u)

= lim
k→+∞

(2/t2k)(g(x+ tkuk)− g(x)− tkg′(x)u)

+ lim
k→+∞

(2/t2k)(g(x+ tkvk)− g(x+ tkuk)) = z + λg′(x)w/(1− λ) ∈ − intK

we derive

g(x+ tkvk) ∈ g(x) + tkg
′(x)u− intK ⊂ −K −K − intK ⊂ − intK

for almost all k ∈ N.
Hence, every point x+ tkvk is feasible if k is large enough. We can proceed analogously
for f – we get

f(x+ tkvk)− f(x) ∈ tkf ′(x)u− intC ⊂ −C − intC ⊂ − intC

for almost all k ∈ N, a contradiction. �

Theorem 3.5. Let X be a normed linear space, Y,Z be Banach spaces, f : X → Y and
g : X → Z be continuous functions near x ∈ X which are `–stable at x. If x is a local
weakly efficient point of problem (1), then

(i) there exists a (c∗, k∗) ∈ ((C∗ ×K∗) \ {(0, 0)}) such that

c∗ ◦ f ′(x0) + k∗ ◦ g′(x0) = 0 (6)

(ii) for any u ∈ X, if (f, g)′(x)u ∈ −((C ×K) \ int(C ×K)), then for every (y0, z0) ∈
D2(f, g)(x;u) there exists a (c∗, k∗) ∈ ((C∗ ×K∗) \ {(0, 0)}) such that (6) is true
and

〈c∗, y0〉+ 〈k∗, z0〉 ≥ 0. (7)
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P r o o f .

(i) By Theorem 3.4 (i) and the separation theorem (see e. g. [13, Corollary 2.13])
there are (c∗, k∗) ∈ ((Y ∗ × Z∗) \ {(0, 0)}) and α ∈ R such that for every u ∈ X
and for every (c, k) ∈ −(C ×K) we have

〈c∗, f ′(x)u〉+ 〈k∗, g′(x)u〉 ≥ α, (8)

〈c∗, c〉+ 〈k∗, k〉 ≤ α. (9)

Since (f, g)′(x)X and C ×K are cones, it holds α = 0. Then, the inequality (8)
becomes the equality (6). Setting k = 0 in (9), we obtain c∗ ∈ C∗, and setting
c = 0 in (9), we obtain k∗ ∈ K∗.

(ii) Using Theorem 3.4 (ii) and the separation theorem, one has (8), (9), and in addition

〈c∗, y0〉+ 〈k∗, z0〉 ≥ α.

Similarly as in (i), α = 0, c∗ ∈ C∗, k∗ ∈ K∗, and thus formulas (6) and (7) hold.

�

4. COMPARISON OF THEOREMS

Remark 4.1. Comparing Theorem 1.1 and Theorem 3.5, we can say that in finite–
dimensional setting the optimality condition from Theorem 1.1 is tighter in general.
Indeed, for an arbitrary z0 ∈ K we can write

z0 = 1(z0 − g(x0) + g(x0)),

and because g(x0) ∈ −K and K is a cone, we have z0 − g(x0) ∈ K. Therefore z0 ∈
K(g(x0)), and thus K ⊂ K(g(x0)). Then K(g(x0))∗ ⊂ K∗.

Now, it is an open question whether or not we can replace K∗ by K(g(x0))∗ in
Theorem 3.5.

Remark 4.2. Further, in finite–dimensional setting, Theorem 1.1 requires only strict
differentiability at the considered point. Having in mind Theorem 3.1, it is another
open question whether or not we can replace `–stability by strict differentiability in
Theorem 3.5.

On the other hand, Theorem 3.5 can help to find a local weakly efficient point of
problem (1) in infinite dimension in contrast to Theorem 1.1. We will demonstrate this
fact by the following example which was inspired by Example 1 in [7].
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Example 4.3. Consider the sequence an = 1/n, n = 1, 2, . . . Then

lim
n→∞

an+1 + a2
n

an+1 + an
=

1
2
> 0.

Let us define a function ϕ : [0,+∞)→ R as follows.

ϕ(u) =


a1, if u > a1,

a2
n−an+1

an−an+1
(u− an+1) + an+1, if u ∈ (an+1, an],

0, if u = 0.

Next, we will define a function f : R→ R via the Riemann integral:

r(x) :=
∫ |x|

0

ϕ(u) du, x ∈ R.

xa1a2a30

y

a1

a2

a3

 
Fig. 1. Function ϕ.

It is easy to see r is not of class C1,1 on any neighborhood of x = 0. Furthermore
r′(0) = 0, r is `–stable at x = 0, and lim inft↓0 r(t)/(2/t2) > ε for some ε > 0 (for details
see [BP2, Example 2]). By definition of ϕ, we can show that for any x > 0, we have
r(x) ≤ x2/2. Now we consider a function f : R→ `2 defined as follows

f(t) :=
{
r(t)
2n

}+∞

n=1

∈ `2,
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where `2 = {{an}+∞n=1 :
∑+∞

n=1 |an|2 < +∞} with the norm

‖{an}‖ :=

√√√√+∞∑
n=1

|an|2.

It is well known that (`2, ‖ · ‖) is a Banach space and that `∗2 = `2. We will define

C =

{
x = {xn}+∞n=1 ∈ `2 :

+∞∑
n=1

xn

(
√

2)n
≥ 1

2
‖{xn}‖

}
.

Then

C∗ =

{
a = {an}+∞n=1 ∈ `2 :

+∞∑
n=1

anxn ≥ 0, ∀x = {xn}+∞n=1 ∈ C

}
.

We note that the considered cone C is a special case of a more general type of cones
satisfying intC 6= ∅ and intC∗ 6= ∅, for details see [24].

For any t ∈ R and ξ = {an}+∞n=1 ∈ S`∗2
we have:

f `(t;±1)(ξ) = lim inf
s↓0

〈ξ, f(t± s)− f(t)〉
s

= lim inf
s↓0

〈
ξ,
{

r(t±s)
2n

}+∞

n=1
−
{

r(t)
2n

}+∞

n=1

〉
s

= lim inf
s↓0

1
s

+∞∑
n=1

an

{
r(t± s)

2n
− r(t)

2n

}

= lim inf
s↓0

r(t± s)− r(t)
s

+∞∑
n=1

an

2n
= r`(t;±1)

+∞∑
n=1

an

2n
.

From the properties of r we deduce that f ′(0) = 0 and that f is `–stable at t = 0. It
can be easily shown that it holds

D2f(0; 1) = D2f(0,−1) ⊂
{
{yn}+∞n=1 ∈ `2 : yn >

ε

2n
, ∀n ∈ N

}
.

Further, we define g : R→ R : g(t) = t, and

K = {s; s ≥ 0} = K∗.

We have g′(0) = 1, D2g(0; 1) = D2g(0,−1) = {0}.
Now, we can see that Theorem 3.5 admits for 0 to be a local weakly efficient point.

Indeed, condition (i) of Theorem 3.5 is satisfied if we take

c∗ =
{

1
(
√

2)n

}+∞

n=1

, k∗ = 0.
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Condition (ii) from Theorem 3.5 is also satisfied for the previous choice of c∗ and k∗,
because

〈c∗, y0〉+ 〈k∗, z0〉 = 〈c∗, y0〉 =
+∞∑
n=1

yn

(
√

2)n
>

+∞∑
n=1

ε

(2
3
2 )n

=
ε

2
3
2 − 1

> 0

for every y0 ∈ D2f(0; 1) = D2f(0,−1) and z0 = 0.
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1034 M. DVORSKÁ AND K. PASTOR

[31] B. S. Mordukhovich: Variational Analysis and Generalized Differentiation, I: Basic The-
ory, II: Applications. Springer–Verlag, Berlin 2006.

[32] B. S. Mordukhovich, J. S. Treiman, and Q. J. Zhu: An extended extremal principal
with applications to multiobjective optimization. SIAM J. Optim. 14 (2003), 359–379.
DOI:10.1137/s1052623402414701

[33] K. Pastor: Differentiability properties of `–stable vector functions in infinite-dimensional
normed spaces. Taiwan. J. Math. 18 (2014), 187–197. DOI:10.11650/tjm.18.2014.2605

[34] R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton 1970.
DOI:10.1515/9781400873173

[35] R. T. Rockafellar and J. B. Wets: Variational Analysis. Springer–Verlag, New York 1998.
DOI:10.1007/978-3-642-02431-3
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