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K Y B E R N E T I K A — V O L U M E 5 2 ( 2 0 1 6 ) , N U M B E R 3 , P A G E S 4 0 3 – 4 2 6

DISCRETE-TIME MARKOV CONTROL PROCESSES
WITH RECURSIVE DISCOUNT RATES

Yofre H. Garćıa and Juan González-Hernández

This work analyzes a discrete-time Markov Control Model (MCM) on Borel spaces when
the performance index is the expected total discounted cost. This criterion admits unbounded
costs. It is assumed that the discount rate in any period is obtained by using recursive functions
and a known initial discount rate. The classic dynamic programming method for finite-horizon
case is verified. Under slight conditions, the existence of deterministic non-stationary optimal
policies for infinite-horizon case is proven. Also, to find deterministic non-stationary ε−optimal
policies, the value-iteration method is used. To illustrate an example of recursive functions
that generate discount rates, we consider the expected values of stochastic processes, which
are solutions of certain class of Stochastic Differential Equations (SDE) between consecutive
periods, when the initial condition is the previous discount rate. Finally, the consumption-
investment problem and the discount linear-quadratic problem are presented as examples; in
both cases, the discount rates are obtained using a SDE, similar to the Vasicek short-rate model.

Keywords: dynamic programming method, optimal stochastic control

Classification: 49L20, 93E20

1. INTRODUCTION

This work deals with a discrete-time MCM with non-stationary discount rate and pos-
sibly unbounded cost on Borel spaces. The performance index considered is

J = E
[∑
n<T

e−Snc(xn, an)
]
, (1)

where Sn = r0 + · · ·+ rn−1 is the sum of the discount rates applied in previous periods,
and the control an depends on the state xn and the discount rate rn. The discount rates
satisfy the recursive relations

rn := Rn(rn−1),

where, Rn is a measurable function, and r0 is the initial discount rate, n = 1, 2, . . .
This class of MCMs can be used to build models for small investors, businessmen

or entrepreneurs, where it is assumed that the discount rates are exogenous variables,
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changing in each period depending on financial market conditions and the previous dis-
count rate. Hence, non-stationary discount rates turn out to be a better modelling
option in these cases, and deterministic non-stationary policies are the solution for this
type of Markov control problem. To the best of our knowledge, this is the first work
on discounted MCMs, where the discount rates satisfies a type of recursive relation. An
example of these recursive relations for the discount rates, can be obtained with a certain
type of interest rate models, best known in financial literature as Short-Rate Models,
where the interest rate evolution follows a Stochastic Differential Equation (SDE) (see
[20] and Remark 3.9, part 3), and the recursive functions are obtained as the expected
value of the solution of the SDEs defined between consecutive periods.

Among the discounted MCMs in discrete-time with non-constant rates are the fol-
lowing:

Feinberg and Shwartz [11] consider an MCM with a finite number of discount rates.
The performance index criterion is defined by

J(π, x) =
k∑
i=1

Eπx

[ ∞∑
t=0

(βi)tci(xt, at)

]
, x ∈ X, π ∈ Π.

They establish conditions for the existence of ε−optimal strategies. Subsequently, Car-
mon and Shwartz [7] proposed a discount function h(t)

J(π, x) = Eπx

[ ∞∑
t=0

h(t)c(xt, at)

]
, x ∈ X, π ∈ Π,

where h satisfies the condition |h(t)| ≤ kβt, for some 0 < β < 1. They prove the existence
of ε−optimal strategies under stationary optimal control tools.

Della Vecchia et al. [8] proposed a similar non-stationary MCM with non-constant
deterministic bounded discount factor λt ≤ ρt+1, 0 < ρ < 1, with the performance index
criterion

J(π, x) = Eπx

[ ∞∑
t=0

λtc(xt, at)

]
, x ∈ X, π ∈ Π. (2)

As this MCM is time-dependent and under the hypothesis that the cost are uniformly
bounded, they transform this model to a stationary MCM. Also, they define an appropri-
ate dynamic operator on this new model, and prove, by means of fixed-point of particular
contraction operator, the existence of deterministic stationary optimal policies. These
stationary optimal policies, obtained for the stationary MCM, generate Markov optimal
policies in the original one.

Hinderer [18] and Schäl [25] consider the case when the cost function is bounded and
the discount factors depend on states and controls:

J(π, x) = Eπx

[
c(x0, a0) +

∞∑
t=0

t∏
i=0

β(xi, ai, xi+1)c(xt, at, xt+1)
]
, x ∈ X, π ∈ Π.
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They give conditions to guarantee the existence of an optimal policy. In this sense, Wei
and Guo [27] propose a similar case when the cost can be unbounded and the discount
rates depend only on the current state

J(π, x) = Eπx

[
c(x0, a0) +

∞∑
t=1

t−1∏
i=0

β(xi)c(xt, at)

]
, x ∈ X, π ∈ Π,

and they give conditions for guaranteeing the existence of an optimal solution. Guo et
al. [15] consider a non-stationary dynamic where the performance index is a first passage
type. Ye and Guo [28] consider the continuous-time case. A similar model using convex
programming is proposed by Zhang [29]. Minjarez-Sosa [17] works on discrete-time
Markov control models with non-constant discount factors of the form

Γn =
n−1∏
k=0

α(xk, ak, ξk+1), n ∈ N, and Γ0 = 1,

where xk, ak, and ξk+1 are the state, the action, and a random disturbance at time n,

V (π, x) = Eπx

[ ∞∑
n=0

Γnc(xn, an)

]
, x ∈ X, π ∈ Π.

It is assumed that the random disturbance process {ξk} is formed by observable indepen-
dent and identically distributed random variables and the distributions are unknown.
Minjarez-Sosa introduces an estimation and control procedure to find asymptotically
optimal policies. Also he studies the minimax control problems when the random dis-
turbance process is non-observable.

The assumptions in the last four discounted MCMs can be used to optimize systems
where the controls and previous states affect the current discount rates. For example,
can be used to model the actions of very big economic agents such as central banks or
monopolies, but are not appropriate to model the actions of small economic agents.

González-Hernández et al. [12] assume MCMs where the discount factor has an
exponential form and the discount rate is modelled as a non-negative Markov chain
{rn : n ∈ N} over (0,∞) :

J(π, x, r) = Eπ(x,r)

[ ∞∑
t=0

e−Stc(xt, at)

]
, x ∈ X, π ∈ Π, (3)

St =
∑t−1
i=0 rt and S0 = 0. They give conditions for the existence of optimal policies and

establish the dynamic programming algorithm. In González-Hernández et al. [13] they
use the empirical distributions to prove the existence of asymptotically optimal polices
and in González-Hernández et al. [14] they introduce three approximation algorithms.
These MCMs correspond to stationary case.

The rest of the paper is organized as follows: In Section 2, the MCM is presented and
the dynamical programming method is verified, hence, the existence of non-stationary
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optimal policies for finite-horizon case is proved; moreover, the measurable selector con-
dition is verified as well. In Section 3, slight conditions for MCMs in order to guarantee
the existence of non-stationary optimal polices for the infinite-horizon case are provided.
Finally, in Section 4, the consumption-investment problem and the linear-quadratic ex-
ample are presented, where recursive discount rates are obtained by means of expected
value of solution of SDEs associated to scalar Short-Rate Models, which are defined
between the periods of the MCM.

2. MARKOV CONTROL MODEL (MCM)

Let us consider the discrete-time Markov Control Model(
X ′, A, {A(x, r) : (x, r) ∈ X ′}, r0, { Rn}n∈N, Q, c

)
, (4)

where,

1. X ′ = X × (0,∞) is the state space, where X is a Borel space and (0,∞) is the
discount rate space.

2. A is the action space and is a Borel space.

3. {A(x, r) : (x, r) ∈ X ′} is a family of non-empty measurable subsets of A. Each
A(x, r) is the set of all admissible controls at state (x, r) ∈ X ′. The set of all
admissible state-action pairs

K := {(x, r, a) : a ∈ A(x, r), (x, r) ∈ X ′} (5)

is supposed to be a measurable set.

4. r0 > 0 is the initial discount rate.

5. {Rn}n∈N is a sequence of measurable functions Rn : (0,∞) → (0,∞), where
rn+1 := Rn(rn), n = 1, 2, . . .

6. Q is a stochastic kernel on X given K and let us define

Qn(E × F | xn, an, rn) := Q(E | xn, an, rn)IF (Rn(rn)),

E ∈ B(X), F ∈ B
(
(0,∞)

)
, n = 0, 1, . . . where IF (·) is the indicator function of

the set F. The stochastic kernel Qn represents the transition law.

7. c : X ×A −→ R is a non-negative measurable function.

Note that the discount rates are given by construction.

More details on MCMs, stochastic kernels and measurable selectors can be found in
[4] and [16].
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Assumption 1. The set K contains the graph of a measurable function from X ′ to A.

Histories and policies

The space of admissible histories up to time n is given by

Hn := Kn ×X ′, for n = 1, 2, . . . (6)

and H0 := X ′. A generic element in Hn is of the form

hn := (x0, r0, a0, . . . , xn−1, rn−1, an−1, xn, rn), (7)

where (xi, ri, ai) ∈ K for i = 0, . . . , n− 1, (xn, rn) ∈ X ′.

Definition 2.1.

1. A policy π := {πn}n∈N is a sequence of stochastic kernels on A given Hn such that
for all hn ∈ Hn,

πn(A(xn, rn) | hn) = 1,

where hn = (x0, r0, a0, . . . , xn−1, rn−1, an−1, xn, rn). The set all policies is denoted
by Π.

2. A policy π is a Markov policy if there exists a sequence of stochastic kernels
{φn}n∈N on A given X ′ such that

πn(D | hn) = φn(D | xn, rn),

for all hn ∈ Hn, D ∈ B(A) and n ∈ N. The set of all Markov policies is denoted
by M.

3. A Markov policy π is a deterministic non-stationary policy if there exists a
sequence {gn}n∈N of measurable functions (or selectors) gn : X ′ → A such that

φn(D | xn, rn) = ID[gn(xn, rn)], ∀(xn, rn) ∈ X ′, D ∈ B(A) and n ∈ N.

The set of all deterministic policies is denoted by D.

The relation among these sets is D ⊂ M ⊂ Π, and, by Assumption 1, they are
non-empty sets.

The canonical construction of the process

Let us consider (Ω,F) as the product space where Ω := (X ′ × A)∞ and F is the cor-
responding product σ-algebra on Ω. The subset H∞ := K∞ is the set of all admissible
trajectories.
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For a given policy π = {πn} and (x0, r0) ∈ X ′ the Ionescu Tulcea Theorem [4, Prop.
7.28] guarantees the existence of a probability measure Pπ(x0,r0) on (Ω,F) such that

Pπ(x0,r0)(dx0dr0da0dx1dr1da1 . . .) := π0(da0 | x0, r0)Q0(d(x1, r1) | x0, r0, a0) · · ·

This probability measure satisfies for all B ∈ B(X ′), C ∈ B(A), hn ∈ Hn, and for
n = 0, 1, . . .

1. Pπ(x0,r0)(H∞) = 1;

2. Pπ(x0,r0)

(
(x0, r0) ∈ B

)
= IB(x0, r0);

3. Pπ(x0,r0)

(
an ∈ C | hn

)
= πn(C | hn);

4. Pπ(x0,r0)

(
(xn+1, rn+1) ∈ B | hn, an

)
= Qn(B | xn, rn, an).

The stochastic process
(Ω,F, Pπ(x0,r0), {xn, rn}n∈N)

is called the discrete-time Markov control process. The expectation operator associated
with Pπ(x0,r0) is denoted by Eπ(x0,r0).

Interpretation. Let r0 ∈ (0,∞) the initial discount rate and x0 the initial state.
Next, an action a0 with distribution π0(· | x0, r0) is applied. The process moves to
(x1, r1), where r1 = R0(r0) and x1 has the distribution Q(· | x0, r0, a0). The process
continues in this way.

2.1. Finite-horizon problem

Consider now a MCM as given in (4) operating in N periods and cN : X → R which
represents the non-negative terminal cost in the period N.

Definition 2.2. For any π ∈ Π and any (x, r) ∈ X ′, the measurable function J :
Π×X ′ −→ R given by

J(π, x, r) :=Eπ(x,r)

[
N−1∑
n=0

e−Snc(xn, an) + e−SN cN (xN )

]
, (8)

where S0 := 0 and Sn is defined as

Sn :=
n−1∑
i=0

ri, n = 1, 2, . . . (9)

J is called the expected total discounted cost when the horizon is finite. The expected
value is conditioned with respect to (x, r) = (x0, r0) and under the policy π ∈ Π.
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The expression
J∗(x, r) := inf

Π
J(π, x, r), x ∈ X, (10)

is the value function.
The control problem is to find a policy π∗ ∈ Π such that

J(π∗, x, r) = J∗(x, r) for all x ∈ X, and r = r0.

The next theorem is known as the Dynamic Programming Theorem. The backward
induction method is used in the proof.

Theorem 2.3. Let us define

JN (x, rN ) := cN (x), x ∈ X (11)

and for n = 0, 1, . . . , N − 1,

Jn(x, rn) := min
A(x,rn)

[
c(x, a) + e−rn

∫
X

Jn+1(y, rn+1)Q(dy | x, rn, a)
]
, x ∈ X. (12)

Let us suppose that the functions Jn are measurable for any n = 0, . . . , N, and there
exist measurable selectors fn ∈ F such that

Jn(x, rn) = c(x, fn) + e−rn

∫
X

Jn+1(y, rn+1)Q(dy | x, rn, fn),

for n = 0, 1, . . . , N − 1.
Then, the policy π∗ = {f0, f1. . . . , fN−1} is optimal and the optimal value J∗ coincides

with J0, that is, if r = r0,

J∗(x, r) = J0(x, r) = J(π∗, x, r), ∀x ∈ X. (13)

P r o o f . It is similar to the proof of Theorem 3.2.1 of [16] with obvious changes. �

The measurable selector condition

The existence of a sequence of measurable selectors in the previous Theorem is supposed.
Now we give conditions on MCM (4) in order to guarantee the existence of such selectors.

Definition 2.4. A function ν : K→ R is called inf-compact on K, if for each (x, r) ∈ X ′
and z ∈ R, the set

{a ∈ A(x, r) : ν(x, r, a) ≤ z}

is compact.
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Condition 2.5. Measurable Selector Condition.
For each measurable function u : X ′ → R, the function u∗ of X ′ to R

u∗(x, rn) = inf
a∈A(x,rn)

[
c(x, a) + e−rn

∫
X

u(y, rn+1)Q(dy | x, rn, a)
]
, (14)

is measurable for each n, and there exists a measurable selector fn : X ′ → A such
that the right side in Equation (14) attains the minimum at fn(x, rn) ∈ A(x, rn) for all
x ∈ X, rn ∈ (0,∞) and n = 1, 2, . . . , that is,

u∗(x, rn) := c(x, fn(x, rn)) + e−rn

∫
X

u(y, rn+1)Q(dy | x, rn, fn(x, rn)), n = 1, 2, . . .

(15)

Condition 2.6.

1. The cost functions c and cN are l.s.c., and inf-compact on K for all (x, r) ∈ X ′.

2. The transition kernel Q is strongly continuous, that is, the function

ū(x, rn, a) :=
∫
X

u(y, rn+1)Q(dy | x, rn, a) (16)

is continuous and bounded on K, for all bounded measurable function u on X ′,
n = 0, 1, 2, . . .

Theorem 2.7. Let us suppose that an MCM (4) satisfies the Conditions 2.6 for any
measurable function u on X ′. Then, the Condition 2.5 is valid.

P r o o f . It is similar to Theorem 3.3.5 of [16]. �

3. THE INFINITE-HORIZON PROBLEM

In this case, the MCM of (4), has the performance index as

V (π, x, r) := Eπ(x,r)

[ ∞∑
n=0

e−Snc(xn, an)

]
, (17)

where π ∈ Π, x ∈ X, r = r0 ∈ (0,∞) and Sn are defined in Equation (9).

For r = r0, the value function for the infinite-horizon is defined by

V ∗(x, r) = inf
Π

V (π, x, r) ∀x ∈ X. (18)

The optimal control problem with infinite-horizon consists in finding π∗ ∈ Π such that

V (π∗, x, r) = V ∗(x, r) ∀x ∈ X, and r = r0.
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The existence and measurability of value function V ∗ is neither a consequence of
fixed-point theorems nor an interchange of limits and minima in a particular discounted
cost optimality equation, as occurs for stationary discount case. The existence and
measurability of V ∗ is guaranteed by approximating with a sequence of finite horizon
control problems. Then, we shall suppose that all conditions for the finite-horizon case
hold and we need to introduce some additional notation.

Definition 3.1. Let m and n be non-negative numbers, such that m ≤ n. The expected
total cost from time m up to time n conditioned by initial pair (x0, r0) is defined by

V nm(π, x, r) = Eπ(x0,r0)

[
n∑

t=m

e−(St−Sm)c(xt, at) | xm = x, rm

]
, (19)

for any π ∈ Π and x ∈ X. The value function from time m up to time n is

V n∗m (x, r) := inf
Π

V nm(π, x, r), ∀x ∈ X, r = rm. (20)

The control problem from time m up to time n is to find a policy π(m,n)∗ ∈ Π such that

V n∗m (π(m,n)∗, x, r) = V n∗m (x, r), ∀x ∈ X, r = rm. (21)

If m = 0, V n0 (π, x, r) := V n(π, x, r). If n → ∞, V nm(π, x, r) := Vm(π, x, r) for m fixed
and π ∈ Π.

Condition 3.2.

1. The cost function c is l.s.c. and inf-compact on K for all (x, r) ∈ X ′.

2. The transition kernel Q is strongly continuous.

3. There exists a policy π in Π such that limk→∞ Vk(π, x, rk) = 0 for any x ∈ X. The
set of policies that satisfy this condition is denoted by Π1.

Definition 3.3. Given ε > 0. A policy π ∈ Π1 is ε−optimal if

V (π, x, r)− V ∗(x, r) < ε, ∀x ∈ X, r = r0.

Lemma 3.4. For any x ∈ X, r = rk and k = 0, 1, 2, . . . ,

V n∗k (x, rk)→ V ∗k (x, rk) (22)

as n→∞.

P r o o f . Let us define for each k = 0, 1, 2, . . . the measurable functions on X ′

u0(x, rk) := inf
a∈A(x,rk)

[
c(x, a)

]
, (23)
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and

un(x, rk) := inf
a∈A(x,rk)

[
c(x, a) + e−rk

∫
X

u(n−1)(y, rk+1)Q(dy | x, rk, a)
]
, n = 1, 2, . . .

(24)

We shall show that for all n, un(x, rk) generates the optimal value of the next n steps
when the initial step is k, i. e., un(x, rk) = V

(k+n)∗
k (x, rk) for all k = 0, 1, 2, . . . , x ∈ X.

It is proved by induction over n.
For n = 0, note that

u0(x, rk) ≤ V kk (π, x, rk), ∀π ∈ Π, x ∈ X, k = 0, 1, 2, . . .

Taking the infimum over Π,

u0(x, rk) ≤ V k∗k (x, rk), k = 0, 1, 2, . . . (25)

On the other hand, by Measurable Selector Condition, there exists for each k = 0, 1, 2, . . . ,
the selector f (0)

k such that

u0(x, rk) = c(x, f (0)
k (x, rk))

= V kk (π(k,k), x, rk)

≥ V k∗k (x, rk), (26)

where π(k,k) represents the policy π(k,k) = {π0, . . . , πk−1, f
(0)
k , πk+1, . . . }, and π =

{π0, . . . , πk, . . . } ∈ Π1. Then, by (25) and (26), V k∗k = u0 for all x ∈ X and any
k = 0, 1, 2, . . . , is concluded.

Now, let us assume that for each k = 0, 1, 2, . . . , the induction hypothesis holds for
n, i. e.,

un(x, rk) = V
(k+n)∗
k (x, rk),

which implies that there exists a measurable selector f (n)
k such that

un(x, rk) = c(x, f (n)
k ) + e−rk

∫
X

u(n−1)(y, rk+1)Q(dy | x, rk, f (n)
k ), (27)

and there exists a policy π(k,k+n) = {π0, . . . , πk−1, f
(n)
k , f

(n−1)
k+1 , . . . , f

(0)
k+n, πk+n+1, . . . },

that satisfies
V nk (π(k,k+n), x, rk) = V n∗k (x, rk).

For n+ 1, by induction hyphotesis, note that for any k = 0, 1, 2, . . .

u(n+1)(x, rk) ≤ V (n+1)
k (π, x, rk), ∀π ∈ Π, x ∈ X,

and taking the infimum over Π, is obtained that

un+1(x, rk) ≤ V (n+1)∗
k (x, rk). (28)
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As un(x, rk) is the optimal value in n steps for any initial step k, in particular is valid for
the initial step k + 1, that is, un(x, rk+1) = V

(k+1+n)∗
k+1 (x, rk+1). Again, by Measurable

Selector Condition there exists for each k = 0, 1, 2, . . . , a measurable selector f (n+1)
k such

that

un+1(x, rk) = c(x, f (n+1)
k ) + e−rk

∫
X

un(y, rk+1)Q(dy | x, rk, f (n+1)
k ),

= c(x, f (n+1)
k ) + e−rk

∫
X

V
(k+1+n)∗
k+1 (y, rk+1)Q(dy | x, rk, f (n+1)

k ),

= V
(k+n+1)
k (π(k,n+1), x, rk),

≥ V (n+1)∗
k (x, rk),

where π(k,n+1) is the policy

π(k,k+n+1) = {π0, . . . , πk−1, f
(n+1)
k , f

(n)
k+1, . . . , f

(1)
k+n, f

(0)
k+n+1, πk+n+2, . . . }.

Hence, it is concluded that V
(k+n+1)∗
k (x, rk) = u(n+1)(x, rk) for any x ∈ X, k =

0, 1, 2, . . . and n = 0, 1, 2, . . .
Moreover, by construction of un

0 ≤ un(x, rk) = V n∗k (x, rk) ≤ u(n+1)(x, rk) ≤ V ∗k (x, rk), for k, n = 0, 1, 2, . . .

then, there exists the measurable function Uk over X ′ such that Uk(x, rk) ≤ V ∗k (x, rk),
k = 0, 1, 2, . . . and un ↑ Uk. Hence, as the functions V ∗m tends to 0, if m→∞, therefore,
by the part (3) in the Condition 3.2, there exist measurable selectors fk, fk+1, . . . such
that, the policy π(k,∞) = {π0, . . . , πk−1, fk, fk+1, . . . } ∈ Π1 satisfies the inequality

Uk(x, rk) ≥ Vk(π(k,∞)
k , x, rk)

for all x ∈ X, k = 0, 1, 2, . . .
Moreover by definition of V ∗k is obtained that

V ∗k (x, rk) ≤ Vk(π(k,∞)
k , x, rk) ≤ Uk(x, rk),

for all k = 0, 1, 2, . . . and all x ∈ X. Hence, Uk(x, rk) = V ∗k (x, rk), for all k = 0, 1, 2, . . .
and x ∈ X. �

Note that, by former lemma, the solution of the infinite-horizon optimal Markov
control problem is obtained if k = 0.

Theorem 3.5. Suppose valid the conditions 3.2, then, there exists a deterministic non-
stationary policy π ∈ Π1, such that,

V (π, x, r) = V ∗(x, r), for all (x, r) ∈ X.
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P r o o f . For any natural n, and (x, r) ∈ X ′, by lemma 3.4 the functions V ∗n are mea-
surable.

We shall prove that

V ∗n (x, rn) = inf
a∈A(x,rn)

[
c(x, a) + e−rn

∫
X

V ∗n+1(y, rn+1)Q(dy | x, rn, a)
]
, (29)

for all n = 0, 1, 2, . . . Let us define

ν(x, rn) := inf
a∈A(x,rn)

[
c(x, a) + e−rn

∫
X

V ∗n+1(y, rn+1)Q(dy | x, rn, a)
]
, n = 0, 1, 2, . . .

For any policy π ∈ Π is valid that

Vn(π, x, rn) ≥ V ∗n (x, rn), Vn(π, x, rn) ≥ ν(x, rn), ∀n,

therefore

Vn(π, x, rn) = Eπ(x0,r0)

c(x, a) + e−rn

∫
X

Vn+1(y, rn+1)Q(dy | x, rn, a)


≥ Eπ(x,rn)

c(x, a) + e−rn

∫
X

V ∗n+1(y, rn+1)Q(dy | x, rn, a)


≥ inf
a∈A(x,rn)

[
c(x, a) + e−rn

∫
X

V ∗n+1(y, rn+1)Q(dy | x, rn, a)
]
,

and taking the infimum over Π,

V ∗n (x, rn) ≥ ν(x, rn). (30)

Let π̄ ∈ Π1. Note that

V ∗n (x, rn) ≤ Vn(π̄, x, rn) ↓ 0, when n→∞.

On the other hand, by Measurable Selector Condition, there exists a measurable
selector fk such that

ν(x, rk) = c(x, fk) + e−rk

∫
X

V ∗k+1(y, rk+1)Q(dy | x, rk, fk), ∀k ≥ n.

Consider now the policy π̄(n,∞) = {π̄0, . . . , π̄n−1, fn, fn+1, . . . }. By last lemma, for
any ε > 0, there exists m0 such that, if m > m0

Vn(π̄(n,∞), x, rn) < V mn (π̄(n,∞), x, rn) + ε

= V m∗n (x, rn) + ε.
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for all n. Then, if m → ∞, Vn(π̄(n,∞), x, rn) ≤ V ∗n (x, rn) for all n. By definition of V ∗n ,
Vn(π̄(n,∞), x, rn) ≥ V ∗n (x, rn), therefore

Vn(π̄(n,∞), x, rn) = V ∗n (x, rn), for all n.

Moreover

ν(x, rn) = c(x, fn) + e−rn

∫
X

V ∗n+1(xn+1, rn+1)Q(dxn+1 | x, rn, fn)

= c(x, fn) + e−rn

∫
X

Vn+1(π̄(n,∞), xn+1, rn+1)Q(dxn+1 | x, rn, fn)

≥ V ∗n (x, rn),

and by inequality (30), the equality (29) holds. Hence, the deterministic non-stationary
policy

π(0,∞) := {f0, f1, f2, . . . }

satisfies for n = 0 in (29) that

V ∗(x, r) = V ∗0 (x, r0) = c(x, f0) + e−r0
∫
V ∗1 (x1, r1)Q(dx1 | x, r0, f0) = V (π(0,∞), x, r0).

�

Theorem 3.6. Suppose valid the conditions 3.2. If there exists a policy π such that

Vk(π, x, rk) = inf
a∈A(x,rk)

[
c(x, a) + e−rk

∫
X

Vk+1(π, y, rk+1)Q(dy | x, rk, a)
]
, (31)

for all x ∈ X, k = 0, 1, 2, . . . , and satisfies

lim
k→∞

e−SkEπ(x,r)Vk(π, xk, rk) = 0, ∀π ∈ Π1 and (x, r) ∈ X ′, (32)

then, V (π, x, r) = V ∗(x, r) for all (x, r) ∈ X ′.

P r o o f . If Equation (31) holds, by definition of V ∗, V (π, x, r) ≥ V ∗(x, r) for all (x, r) ∈
X ′. For reverse inequality, from any π ∈ Π, (x, r) ∈ X ′ and by Markov Property,

Eπ(x,r)[e
−Sk+1Vk+1(π, xk+1, rk+1) | hk, ak]

= e−Sk+1

∫
X

Vk+1(π, y, rk+1)Q(dy | xk, rk, ak)

= e−Sk

[
c(xk, ak) + e−rk

∫
X

Vk+1(π, y, rk+1)Q(dy | xk, rk, ak)− c(xk, ak)
]

≥ e−Sk [Vk(π, xk, rk)− c(xk, ak)] ,
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therefore,

e−Skc(xk, ak) ≥ −Eπ(x,r)
[
e−Sk+1Vk+1(π, xk+1, rk+1)− e−SkVk(π, xk, rk) | hk, ak)

]
.

Thus, applying expectations Eπ(x,r) and adding over i = 0, 1, . . . , n− 1,

Eπ(x,r)

n−1∑
i=0

e−Sic(xi, ai) = V0(π, x, r)− e−SkEπ(x,r)Vn(π, xn, rn),

for all n. Taking n → ∞ and using the Equation (32), it follows that V (π, x, r) ≥
V (π, x, r) for all (x, r) ∈ X ′, and V ∗(x, r) ≥ V (π, x, r) holds (x, r) ∈ X ′. In consequence,
V ∗(x, r) = V (π, x, r) holds for (x, r) ∈ X ′. �

Proposition 3.7. For the affirmations:

(i) The cost function c is bounded, i. e., there exists constant m, such that 0 ≤
c(x, a) ≤ m for all (x, r, a) ∈ K.

(ii) Suppose that the discount rate space is reduced to [d1, z) for some z positive
number, 1 ≤ z ≤ er, there exist m > 0 and a non-negative measurable function w
on X ′ such that

c(x, a) ≤ mw(x, rk), and
∫
w(y, rk+1)Q(dy | x, rk, a) ≤ zw(x, rk),

for (x, rk, a) ∈ K, k = 0, 1, 2, . . .

(iii) C(x, rj) :=
∞∑
k=0

e−(Sj+k−Sj)ck(x, rk+j) <∞, for all (x, rj) ∈ X ′, where c0(x, rk) :=

sup
A(x,rk)

c(x, a), k = 0, 1, 2, . . . and

ck(x, rj) = sup
A(x,rj)

∫
X

ck−1(y, rj+1)Q(dy | x, rj , a), k > 1, j = 0, 1, 2, . . .

(iv) lim
n→∞

e−SnEπ(x,r)Vn(π, xn, rn) = 0, for all π, π ∈ Π1 and (x, r) ∈ X ′.

Are valid the relations:

(i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (32), (33)

and
(i) =⇒ (ii) =⇒ (iii) =⇒ Π1 = Π. (34)

Moreover, if any of the conditions (i) to (iv) holds, then a policy π∗ is optimal if and
only if V (π∗, x, r) satisfies the Equation (31).
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P r o o f . To prove (i) =⇒ (ii), use w ≡ 1 for example.
(ii) implies (iii). By induction on k ck(x, rk) ≤ mzkw(x, rk) is obtained for all (x, rk) ∈
X ′ and k = 0, 1, 2, . . . Therefore,

C(x, rj) ≤ mw(x, rj)/(1− ze−d1) <∞,

for each (x, rj) ∈ X ′.

(iii) implies (iv). Suppose that (iii) holds. First, we shall prove the following in-
equalities

Vn(π, x, rn) ≤ C(x, rn), ∀(x, rn) ∈ X ′, π ∈ Π, (35)

n = 0, 1, 2, . . . and

Eπ(x,r)C(xn, rn) ≤
∞∑
k=n

e−(Sk−Sn)ck(x, r) ∀(x, r) ∈ X ′, π ∈ Π, n = 0, 1, . . . (36)

To prove (35), by the Markov property

Eπ(x,r)[c0(xk+1, rk+1) | hk, ak] =
∫
c0(y, rk+1)Q(dy | xk, rk, ak) ≤ c1(xk, rk),

for all k ≥ 0, then Eπ(x,r)
c0(xk+1, rk+1) ≤ Eπ(x,r)

c1(xk, rk) holds. Iterating the last
argument, the inequalities

Eπ(x,r)c0(xk, rk) ≤ Eπ(x,r)
c1(xk−1, rk−1) ≤ · · · ≤ Eπ(x,r)ck(x0, r0) = ck(x, r), (37)

holds. Since c(xk, ak) ≤ c0(xk, rk), then

Eπ(x,r)c(xk, ak) ≤ Eπ(x,r)
c0(xk, rk) ≤ ck(x, r) for all k,

and if for each k = 0, 1, 2, . . . , the inequality Eπ(x,r)
c(xk, ak) ≤ ck(x, r) is multiplied by

e−Sk and these inequalities are summed beginning from k = n, Vn(π, x, rn) and C(x, rn)
are obtained, implying the validity of (35).

To prove (36), if n = 0, this equation follows from the definition of C. Now for n ≥ 1,
using the Markov property

Eπ(x,r)
[C(xn, rn) | hn−1, an−1] =

∫
C(y, rn)Q(dy | xn−1, rn−1, an−1)

=
∞∑
k=0

e−Sk

∫
ck(y, rn)Q(dy | xn−1, rn−1, an−1)

≤
∞∑
k=0

e−Skck(xn−1, rn−1),

and applying Eπ(x,r), the inequality Eπ(x,r)
C(xn, rn) ≤

∞∑
k=0

e−Skck+1(xn−1, rn−1) holds.
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Now, similar to (37), we can see

Eπ(x,r)ck+1(xn−1, rn−1) ≤ Eπ(x,r)
ck+2(xn−2, rn−2) ≤ · · · ≤ Eπ(x,r)ck+n(x0, r0) = ck+n(x, r),

therefore Eπ(x,r)C(xn, rn) ≤
∞∑
k=0

e−Skck+n(x, r), and (36) is concluded.

To prove (iv), consider π and π arbitrary policies. By (35) V (π, xn, rn) ≤ C(xn, rn)
for all n, and using (36)

Eπ(x,r)V (π, xn, rn) ≤ Eπ(x,r)C(xn, rn) ≤
∞∑
k=n

e−(Sk−Sn)ck(x, r).

Finally, as C(x, r) <∞ and if n→∞,

e−SnEπ(x,r)
V (π, xn, rn) ≤

∞∑
k=n

e−Skck(x, r)→ 0,

then, it follows (iv).
Former paragraph shows that (iv) implies (32). The affirmation (34) follows of (33)

and the inequality V ≤ C. Finally, Π1 = Π follows of (33) and Theorem 3.6. �

Proposition 3.8. There can be found deterministic non-stationary ε−optimal policies
(Definition 3.3).

P r o o f . Let π ∈ Π1 be an initial policy, ε > 0 and x ∈ X. For any (x, r) ∈ X ′, consider
the measurable functions

u0(x, r0) = inf
a∈A(x,r0)

c(x, a) (38)

and

un(x, r) = inf
a∈A(x,r)

[
c(x, a) + e−r

∫
X

un−1(y, r1)Q(dy | x, r, a)

]
, (39)

for n = 1, 2, . . . Using these functions, by Condition (3.2) and Lemma 3.4, the sequence
of measurable functions a0, a1, . . . , an, . . . , is obtained. Additionally, if we suppose that

un(x, r)− un−1(x, r1) <
ε

2n
, (x, r) ∈ X ′,

then

un(x, r)− V ∗(x, rn−1) < ε
[1− (1/2)n+1

1− 1/2

]
,

and if n is great enough, the policy

π = {a0, a1, . . . , an, πn+1, πn+2, . . . }

is a deterministic non-stationary ε−optimal. �
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Remark 3.9.

1. By former lemma, as V n∗(x, r) is measurable for each n, (x, r) ∈ X ′, and the
limit V ∗(x, r) is measurable for (x, r) ∈ X ′. It is also measurable for all m ∈
N and x ∈ X, V nm(x, rm), where rm is obtained using the recursive functions
Rm, Rm−1, . . . , R0 from any initial discount rate r ∈ (0,∞).

2. Observe that for π ∈ Π1 and any natural number n

lim
k→∞

[
exp

{
−

k∑
i=n

ri

}
V n+k(π, xn+k, rn+k)

]
= 0. (40)

3. The most common models for discount rate used in finance, economics and admin-
istration are generally considered as stochastic processes whose dynamics follow a
stochastic differential equation, as the Vasicek short-rate Model [26], for example.
A case of recursive discount rate relation {Rn}n∈N can be obtained when in each
period the applied discount rate is the expected value rn of a solution of

dzn = κn[θn − zn] dt+ σn dWn, t ∈ [n− 1, n] (41)

under the initial condition rn−1, where for all n there exist ε > 0 and γ > 0 such
that θn ∈ [θmin, θmax], κn ∈ [κmin, κmax], and

ε < θmin, θmax < 1− ε, γ < κmin κmax < 1− γ. (42)

By classical Itô conditions (see [1]), the solution for each SDE, n = 1, 2 . . . , is

zt = rn−1e
−(t−(n−1))κn + θn[1− e−(t−(n−1))κn ] + σne

−tκn

t∫
n−1

euκndWu. (43)

Its expected value is

rt := rn−1e
−(t−(n−1))κn + θn[1− e−(t−(n−1))κn ] (44)

and evaluated in t = n, it generates the recursive discount rate relation

Rn(rn−1, θn, κn) = Ern = rn−1e
−κn + θn[1− e−κn ]. (45)

Using the restrictions for κn and θn given by the equations (42) it is easy to see
that the sums Sn in (9) diverge. Moreover, when n→∞

lim
n→∞

e−Sn = 0. (46)

This limit guarantees that for π ∈ Π1,

lim
n→∞

e−SnEπ(x,r0)[V
(n+1)∗(xn+1, rn+1)] = 0.
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Note that the drift in the SDE defined in the equation (41), satisfies the reversion
property to θn, with t ∈ [n− 1, n], n = 1, 2, . . . This property is present in many
short-rate models as [6, 9, 21, 26], for example. In a short-rate model, an SDE
has a mean reverting property if the process tends to drift towards its long-term
mean. This means that if any time t ∈ [n − 1, n], n = 1, 2, . . . , the rate satisfies
rn > θn, then the drift of the SDE is negative and causes that the rate decrease.
Similarly, if the rate rn < θn, the drift causes the rate to increase. The expression
θn is the mean value or tendency of the rate, when t ∈ [n − 1, n], n = 1, 2, . . .
This tendency of mean reversion in the SDE is real because of regulation policies
in financial markets related with credits and investments, where the interest rate
revolves around the ideal value θn > 0.

Other short rate models used in finance are

dzt = µzt dt+ σzt dWt, t ∈ [n− 1, n], (47)

with µ real constant, σ non-negative constant and initial condition rn−1. It cor-
responds to Dothan and Rendleman Bartter models (see Dothan [10], Brigo and
Mercurio [5] and Rendleman and Bartter [23]). The expected value of the solution
evaluated in t = n defines the recursive relation

Rn(rn−1) = rn = rn−1e
µ = r0e

nµ, n = 1, 2, . . . , (48)

and it is clear that for µ > 0,

lim
n→∞

r0e
nµ =∞.

See Equation (46). Hence, we can use these discount rates to find ε−optimal non-
stationary policies.

Similar results can be obtained with Ho-Lee and Hull-White models (see [19] and
[21]). They consider the SDE

dzt = θ(t) dt+ σdWt, (49)

where θ is a function of t, σ is constant and t ∈ [n − 1, n], n = 1, 2, . . . The
expected value of the solution evaluated at t = n generates the recursive relation

R(rn−1) = rn = rn−1 +

n∫
n−1

θ(u) du = r0 +

n∫
0

θ(u) du, n = 1, 2, . . . (50)

and, if we suppose that θ(·) is such that

lim
n→∞

r0 +

n∫
0

θ(u) du = r0 +

∞∫
0

θ(u) du =∞,

then lim
n→∞

Sn =∞.
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4. EXAMPLES

Consumption-investment model

Let us suppose the consumption-investment problem (see [16], section 3.6). The vari-
able xn represents the capital accumulated for investment at time n, an represents the
quantity of capital invested at time n, and xn − an the capital used for consumption at
time n, with n = 0, . . . , N.

Then, X = [0,∞), and A(x, r) = [0, x]. Additionally, let us suppose for any n > 0,
the capital grows according to

xn+1 = an + ξn, n = 0, 1, . . . ,

where the random variables ξn are i.i.d. and independent from x0. Let m := Eξ0 <∞.
The problem is to find the optimal quantity that can be invested for maximizing the
utility of consumption u, defined by

u(x− a) = b(x− a),

where b is a non-negative constant. The terminal consumption is the quantity d > 0
and is considered fixed. The dynamic of the discount rate follows the SDE in Equation
(45) and satisfies the restrictions given in the Equation (42), n = 1, 2, . . . Therefore for
the initial discount rate r := r0 ∈ [d1, d2], ri = Ri−1(ri−1, κi, θi), i = 1, . . . , N − 1

J(π, x, r) = Eπ(x,r)

[
N−1∑
t=0

e−Snu(xn − an)

]
, r = r0.

where Sn is defined in Equation (9).
The optimality Equation for this problem is

JN (x, r) = u(xN ) = e−rNd, ∀(x, r) ∈ X × (0,∞).

Jn(x, r) = max
A(x,r)

[
b(x− a) + e−rnEJn+1(a+ ξn, r)

]
,

n = N − 1, . . . , 0, and rn = Rn(rn−1, κn, θn) can be represented in terms of r0 as in the
Equation (45). For t = N − 1, we have

JN−1(x, r) = max
A(x,rN−1)

[
b(x− a) + e−rN−1EJN (a+ ξN−1, r)

]
= bx+ de−(rN−1+rN ),

with a = 0 = fN−1(x, r). If t = N − 2,

JN−2(x, r) = max
A(x,rN−2)

[
b(x− a) + e−rN−2EJN−1(a+ ξ0, r)

]
= max
A(x,rN−2)

[
b(x− a) + e−rN−2 [b(a+m) + de−(rN−1+rN )]

]
= max
A(x,rN−2)

[
ab(e−rN−2 − 1) + b(x+me−rN−2) + de−rN−1

]
= b(x+me−rN−2) + de−rN−1
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for a = 0 = fN−2(x, r). In a similar way, the policy is f0 = f1 = · · · = fN−1 = 0, for the
next periods and we have

J0(x, r) = b

(
x+m

N−1∑
i=1

e−Si

)
+ de−SN .

The linear-quadratic model

(see [16], section 3.7). Let us suppose an MCM with X = A = R, where the evolution
of states is given by the linear equation

xn+1 = bxn + can + ξn, n = 0, 1, 2, . . . ,

b and c are real constants. The random variables ξn are supposed i.i.d. and independent
from x0, with

Eξ0 = 0, 0 < Eξ2
0 = σ2 <∞.

The cost function is given by

c(x, a) = dx2 + ga2, d ≥ 0, g > 0.

The finite-horizon problem in this case consists of finding the discounted optimal
policy until period time N when the dynamic of the discount rate rn is given by Equation
(41), the expected solution is given by Equation (44), κn and θn are positive constants
such that the restrictions in Equation (42) n = 1, 2, . . . , are satisfied. For any initial
discount rate r = r0 ∈ [d1, d2], the objective is to maximize

J̄(π, x, r) = Eπ(x,r)

[
N−1∑
n=0

e−Sn(dx2 + ga2) + dNx
2
N

]

where the constant dN > 0, dNx2
N is the terminal cost, and Sn is presented in Equa-

tion (9).
The dynamic programming equations are

J̄N (x, r) = dNe
−rNx2

N ,

J̄n(x, r) = min
A(x,r)

[
(dx2 + ga2) + e−rnEJ̄n+1(bxn + can + ξn, r)

]
x ∈ X, n = N − 1, . . . , 0. For n = N − 1, we have that

J̄N−1(x, r) = min
A(x,r)

[
(dx2 + ga2) + e−(rN−1+rN )dNE[bx+ ca+ ξN−1]2

]
= min
A(x,r)

[
a2(c2dNe−(rN−1+rN ) + g) + a(2bcdNxe−(rN−1+rN ))

+ x2(d+ b2dNe
−(rN−1+rN )) + σ2dNe

−(rN−1+rN )

]
.
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The optimal policy fN−1(x, r) is obtained using the first and second derivative criterion
for J̄N−1,

aN−1 = − bcdNe
−(rN−1+rN )x

c2dNe−(rN−1+rN ) + g
.

To replace the last value in J̄N−1(x, r), we have that

J̄N−1(x, r) =
[
d+ b2e−rN−1HN −

b2c2e−2rN−1H2
N

c2e−rN−1HN + g

]
x2 + σ2e−rN−1HN

x ∈ X, r = r0 where Hn = dNe
−rN . For n = N − 1, . . . , 0, define

Hn := d+ b2e−rnHn+1 −
b2c2e−2rnH2

n+1

c2e−rnHn+1 + g
,

and

Pn :=
bcHn+1e

−rn

c2Hn+1e−rn + g
.

These terms allow to rewrite the optimal value in each period as

J̄n(x, r) = Hnx
2 + σ2e−rnHn+1 n = 0, . . . , N − 1

and the optimal policy as
fn(x, r) = −Pnx.

The optimal value is J̄0(x, r).
The discounted cost criterion for the infinite-horizon case is

V̄ (π, x, r) = Eπ(x,r)

[ ∞∑
n=0

e−Sn(dx2 + ga2)

]
, r ∈ [d1, d2].

To obtain a non-stationary ε−optimal policy we consider the non-stationary policy
π′ = {f ′0, f ′1, f ′2, . . . } defined by the measurable selectors

f ′i(x, r) =

√
d

g
x, i = 0, 1, 2, . . .

which satisfy

V̄ (π′, x, r) = Eπ
′

(x,r)

[ ∞∑
n=0

e−Sn(dx2 + ga2)

]
= 2dx2Eπ

′

(x,r)

[ ∞∑
n=0

e−Sn

]
<∞.

By finite-horizon case, the finite non-stationary policy π = {f0, f1, . . . , fn}, where

fi(x, r) = −Pnx, i = 1, 2 . . . , n,

is optimal in the first n periods. Now, we consider the policy

π = {f0, f1, . . . , fn, f
′
n+1, f

′
n+2, f

′
n+3, . . . }.

Given ε > 0, it is possible to find a natural number n0 such that if n > n0

V̄ (n)(π, x, rn)− V̄ (n+1)(π, x, rne−κn + θn[1− e−κn ]) < ε/2n,

i. e., V (n)(π, x, rn) approximate to V ∗(x, r) and π is a non-stationary ε− optimal.
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CONCLUSION

For discounted MCMs, with discount rates independent of controls and generated by a
different recursive function in each period, the dynamic programming algorithm is valid
when the horizon is finite. In the infinite-horizon case, using the Measurable Selector
Condition, we prove the existence of deterministic non-stationary optimal policies by
finite approximation to the value function. Hence, deterministic ε−optimal policies can
be constructed. Additionally, we give sufficient conditions (Proposition 3.7) to guarantee
the existence of deterministic non-stationary optimal policies. A particular case of the
discount rate recursive functions is obtained from the expected value of solution of scalar
SDEs, defined between the periods of MCM.

An open problem is extend the discounted MCM with recursive discount rates, to
semi-Markov control case. This work is in process.

(Received May 12, 2015)
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