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Abstract

We consider the approximation of the performance of random walks in the quarter-plane.

The approximation is in terms of a random walk with a product-form stationary distribution,

which is obtained by perturbing the transition probabilities along the boundaries of the state

space. A Markov reward approach is used to bound the approximation error. The main con-

tribution of the work is the formulation of a linear program that provides the approximation

error.

1 Introduction

We consider random walks in the quarter-plane, i.e., discrete-time Markov processes on state space
S = {0, 1, . . .}2. The random walks are homogeneous in the sense that within the interior of the
state space, {1, 2, . . .}2, the transition probabilities are translation invariant. In both axes and in
the origin of the state space — i.e., in {1, 2, . . .}×{0}, {0}×{1, 2, . . .} and {(0, 0)}— the transition
probabilities are possibly distinct, but again translation invariant. Our interest is in steady-state
behavior. More precisely, for a random walk R with stationary distribution π : S → [0,∞), our
interest is in F =

∑

n∈S F (n)π(n), for some performance measure F : S → [0,∞). In particular,
our interest is in characterizing the performance of the random walk by finding upper and lower
bounds on F .

Our approach to bounding the performance is based on two observations. The first observation
is that closed form results for F are readily obtained for the case that the stationary distribution π
is known to have a geometric product form. The second observation is that by carefully perturbing
the transition probabilities of R one obtains a random walk R̄ for which the stationary distribution
π̄ has a geometric product form. Hence, the performance F̄ of R̄ is known in closed form. The
basic idea of our approach is to bound the performance of R in terms of F̄ . The main contribution
of the current work is to show that |F − F̄| can be bounded by the solution of a linear program.
In particular, we construct such a linear program in which the transition probabilities of R and
R̄, the stationary distribution π̄, and the performance measure F are the only input parameters.
Hence, this linear program is universal, in the sense that it can be used to obtain a bound on
|F − F̄| without any additional preprocessing.

The current work builds on the Markov reward approach to error bounds as introduced by van
Dijk and Puterman [19]. The method has since been further developed by van Dijk [24, 20] and has
been applied to, for instance, Erlang loss networks [3], to tandem networks with finite buffers [22],
to networks with breakdowns [19], to queueing networks with non-exponential service [23] and to
wireless communication networks with network coding [11]. An extensive description and overview
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of various applications of this method can be found in [21]. The error bounding method provides
a framework for establishing bounds on |F − F̄|. Starting from the observation that F can be
interpreted as the average reward over an infinite time horizon in a Markov reward process, van
Dijk formulates a bound on |F − F̄| in terms of bounds of the bias terms (a.k.a. relative gains)
of this Markov reward process. In addition to bounding the bias terms, the method is based on
allowing a different reward function F̄ on the perturbed process.

A major disadvantage of the error bound method is that the verification steps that are required
in application of the method can be technically quite complicated. Indeed, no generic verification
procedure is available in the literature and existing results depend on case by case verification by
means of cumbersome induction proofs. The main contribution of the current work consists of
developing such a verification technique for random walks in the quarter-plane. The verification
technique is based on formulating the application of the error bound method as a linear program.
In doing so, it avoids the induction proofs completely. Moreover, if error bounds exist, the opti-
mization framework will inherently lead to the best possible error bounds. Finally, the method
uses piecewise linear functions to obtain bounds. It will be illustrated that the error bounds that
are obtained based on piecewise linear functions would most likely not have been found with the
approaches to error bounds that have so far been used in the literature.

Our method depends on perturbing some of transition rates in order to get a product-form
stationary distribution. It was shown in [1] that for continuous-time Markov processes in the
quarter plane, such perturbations can always be found. A related result was presented in [14, 12]
for a (discrete-time) QBD processes that satisfy a technical condition. In [4] the existence of such
perturbations is demonstrated for all random walks in the quarter-plane. In the current work our
concern is not with constructing the perturbed process. We assume that two processes are given
and establish a bound on the difference in performance.

Another means of establising a relation between F and the performance of the perturbed
random walk R̄ is through stochastic comparison [17]. The advantage of the error bound method
over stochastic comparison is that it not only provides a comparison result on two systems, but also
quantifies the performance difference between the two. In addition, the error bound method is able
to provide results in cases that stochastic comparison results do not exist, see, for instance, [18].

While it is possible to obtain closed form expressions for F in special cases, e.g., for random
walks with a product-form stationary distribution, no methods exist that provide such results for
arbitrary random walks. There are some methods to find expressions for the generating functions
of π, cf. [9, 5]. However, these expressions can, in general, not be used for a straightforward
calculation of F . In addition, these methods can not be straightforwardly applied. More precisely,
they require a careful analysis of the the model and an adjustment of the method based on, e.g.,
the transition probabilities.

Linear programming has been introduced by Kumar and Kumar [13] for bounding the perfor-
mance of multiclass queueing networks. The goal is to establish performance bounds that hold for
any stable scheduling policy. The method, which was generalized by Bertsimas et al. in [2] and by
Morrison and Kumar in [16] relies on approximating the underlying average-cost Markov decision
process. It was shown by de Farias and Van Roy [6, 7] how this method fits into a general linear
programming approach to approximate dynamic programming. Another means of approximating
the behavior of a random walk is to analyze the tail asymptotics. An overview of such methods
is given in [15]. The most important difference between [13, 2, 16, 15] is that in the current work
we provide a bound on the performance difference of two processes with fixed policies.

The remainder of this paper is organized as follows. In Section 2 we provide an exact statement
of our model and the problem formulation. In Section 3 we provide an introduction to the Markov
reward approach to error bounds as well as an example that motivates our goal of developing a
linear programming framework for obtaining error bounds. The linear programming approach to
the error bound method is developed in Section 4 for the case that the transition probabilities
of R and R̄ differ only for transitions along the unit directions. An extension of the method to
the general case, as well as some variations of the method are presented in Section 5. Examples
that illustrate application of the method are given in Section 6. Finally, in Section 7 we provide
a discussion of the current work and an outlook on future work.
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Figure 1: Partition of state space S into components C1, . . . , C4.
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Figure 2: Transition probabilities for random walk R.
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2 Preliminaries

2.1 Model

We consider two random walks R and R̄, the state space of which is the quarter plane, denoted by
S, i.e., S = {0, 1, . . .} × {0, 1, . . .}. A state is represented by a pair of coordinates, i.e., for n ∈ S,
n = (n1, n2).

We consider a partition of S into four components: C1 = {1, 2, . . .}×{0}, C2 = {0}×{1, 2, . . .},
C3 = {(0, 0)} and C4 = {1, 2, . . .} × {1, 2, . . .}. We refer to these components as the horizontal
axis, the vertical axis, the origin and the interior respectively. Let k(n) denote the index of the
component of state n ∈ S, i.e., n ∈ Ck(n).

We denote by Nk the neighbors of a state in Ck. More precisely N1 = {−1, 0, 1} × {0, 1},
N2 = {0, 1}× {−1, 0, 1}, N3 = {0, 1}× {0, 1} and N4 = {−1, 0, 1}× {−1, 0, 1}. Also, let N = N4.
For notational convenience we let e1 = (1, 0), e2 = (0, 1), d1 = (1, 1) and d2 = (1,−1).

The random walks are discrete-time Markov processes, the transition probabilities of which
are homogeneous in the sense that they are translation invariant in each of the components.
Transitions are to neighbors only. Let pk,u denote the probability of R jumping from any state n
in component Ck to n + u, where u ∈ Nk. Let p̄k,u denote the corresponding probabillity for R̄.
For notational convenience let

qk,u = p̄k,u − pk,u. (1)

The partition into components and notation for transition probabilities are illustrated in Figures 1
and 2, respectively.

The stationary distributions of R and R̄, denoted by π and π̄, are the probability distributions
that satisfy for all n ∈ S,

π(n) =
∑

u∈Nk(n)

pk(n+u),-uπ(n+ u) and π̄(n) =
∑

u∈Nk(n)

p̄k(n+u),-uπ̄(n+ u),

respectively. We assume that π̄ is a product-form geometric distribution, i.e., that

π̄(n) =
∏

i=1,2

(1− ri)r
ni

i , (2)

for some r ∈ (0, 1)×(0, 1) that is known. The stationary distribution π is assumed to be unknown.

2.2 Problem statement

Our goal is to establish upper and lower bounds on the steady-state performance of R in terms of
R̄ and π̄. The performance measure of interest is

F =
∑

n∈S

π(n)F (n), (3)

where F : S → [0,∞) is a function that is linear in each of the components of the state space, i.e.,

F (n) =



















f1,0 + f1,1n1, if n ∈ C1,

f2,0 + f2,2n2, if n ∈ C2,

f3,0, if n ∈ C3,

f4,0 + f4,1n1 + f4,2n2, if n ∈ C4,

(4)

where fk,i are the constants that define the function. We refer to functions that are linear in each
of the components of the state space as componentwise linear or as C-linear. Let C denote the
class of all C-linear functions, C+ is the set of all non-negative C-linear functions.

Finally, for V ⊂ N and u ∈ N let V + u = {w| w − u ∈ V }.
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Figure 3: Random walk with joint departures.

2.3 Markov reward approach to error bounds

Our framework builds on the Markov reward approach for error bounds, an introduction to which
is provided in [21]. The gist of the approach is to interpret f as a reward function, where f(n) is the
one-step reward if the random walk is in state n. We denote by F t(n) the expected cummulative
reward at time t if the random walk starts from state n at time 0, i.e.,

F t(n) =

{

0, if t = 0,

F (n) +
∑

u∈Nk(n)
pk(n),uF

t−1(n+ u), if t > 0.
(5)

We will have particular interest terms of the form Dt
u(n) = F t(n+ u)− F t(n), which we refer to

as bias terms. For the unit vectors, let Dt
1(n) = Dt

e1(n) and Dt
2(n) = Dt

e2(n).
The next results appears in, e.g., [21], and provides a bound on the approximation error on

F . We provide a presentation of the result for random walks in the quarter plane. A more general
formulation of the result, applicable to arbitrary Markov chains, appears in [21].

Theorem 1 ([21]). Let F̄ : S → [0,∞) and G : S → [0,∞) satisfy
∣

∣

∣
F̄ (n)− F (n) +

∑

u∈Nk(n)

qk(n),uD
t
u(n)

∣

∣

∣
≤ G(n) (6)

for all n ∈ S and t ≥ 0. Then
∑

n∈S

[

F̄ (n)−G(n)
]

π̄(n) ≤ F ≤
∑

n∈S

[

F̄ (n) +G(n)
]

π̄(n).

The crucial element in the above theorem are the bias terms Dt
u(n). It is in general not

possible to find closed form expressions for the bias terms. Therefore, the usual means of applying
the theorem is to find bounds on these bias terms. These bounds then lead to a function G
satisfying (6). The difficulty in practice is that even finding suitable bounds on the bias terms is a
challenging task. The only means that is available in the literature for tightly bounding the bias
terms is to carefully inspect the structure of the process at hand and meticulously craft suitable
bounds. The main contribution of the current work is a means of establishing error bounds for
random walk that do not require manual construction of bounds on the bias terms.

We illustrate in the next section an application of Theorem 1 to an example. The purpose is to
illustrate the difficulties mentioned above, but more importantly to introduce some of techniques
that will be developed in Section 4.

3 Motivating example

We consider a random walk arising from a queueing application in communication networks. The
application is network coding in a two-way relay as recently studied in [11]. For details on the
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application we refer the reader to [11] and the references therein. The model corresponds to
two queues with simultaneous departures from both queues. In case one of the queues is empty
the other queue services packets at a lower rate. The non-zero transition probabilities in the
corresponding random walk, obtained by uniformization of the continuous-time queueing model
with Poisson arrivals and exponential service, are

pk,e1 = λ1, pk,e2 = λ2, (7)

for k = 1, . . . , 4,
p1,-e1 = µ1, p2,-e2 = µ2, p4,-d2 = µ, (8)

and
p1,0 = µ− µ1, p2,0 = µ− µ2, p3,0 = µ, (9)

where λ1 + λ2 + µ = 1 and µi ≤ µ, i = 1, 2. The normalization λ1 + λ2 + µ = 1 arises naturally
from the uniformization of the continuous-time model and does not impose a restriction on the
models that can be analyzed. The transition diagram is depicted in Figure 3. We will refer to this
process as the random walk with joint departures.

No closed form expression for the stationary distribution π of this random walk is known in
general. Therefore, we consider the perturbed random walk R̄, with

p̄1,-e1 = µ̄1, p̄2,-e2 = µ̄2, (10)

and p̄k,u = pk,u for other values of k and u. In particular, we consider µ̄1 + µ̄2 = µ, since in that
case it is known [11] that if 0 < r1 < 1 and 0 < r2 < 1 are the unique solution of

µ̄1r1 + µ̄2r1r2 = λ1, µ̄2r2 + µ̄1r1r2 = λ2, (11)

then the stationary distribution of R̄ is a geometric product-form, π̄(n) = (1− r1)r
n1
1 (1 − r2)r

n2
2 .

The performance measure that we consider is the probability that both queues are empty, i.e.,
we consider

F (n) =

{

1, if n = (0, 0),

0, otherwise
(12)

and we are interested in F =
∑

n∈S F (n)π(n). The reason that we consider this performance
measure is that with the techniques that are used in this section we have been unsuccessful in
establishing results for other performance meaures like the expected number of customers in the
first queue. The difficulty in establishing results for other performance measures is an important
motivation for the current paper.

The challenge is to apply Theorem 1 and obtain bounds on F in terms of π̄. As indicated in
the discussion below the statement of Theorem 1 we need to establish bounds on the bias terms
Dt

u(n). A first inspection of R̄ and R reveils that qk,u = p̄k,u − pk,u are zero if u 6∈ {−e1,−e2, 0}.
Therefore, we need to establish only bounds on Dt

-e1(n), Dt
-e2(n) and Dt

0(n) in order to find
functions F̄ and G satisfying (6). Since, furthermore, Dt

0(n) = 0 and −Dt
−ei(n) = −Dt

i(n − ei),
we will only consider Dt

1(n) and Dt
2(n). We provide in the next proposition an expression for the

bias terms at time t+ 1 in terms of the bias terms at time t. The result has been obtained by a
careful examination of the particular structure of the random walk with joint departures and the
performance measure at hand. We will use this recursive result on the bias terms to derive upper
and lower bounds on these bias terms.

Proposition 1. Let R be a random walk with joint departures and F (n) = 1n=(0,0). Then

Dt+1
1 (n) =



















∑2
i=1 λiD

t
1(n+ ei) + µ1D

t
1(n− e1) + (µ− µ1)D

t
1(n), if n ∈ C1,

∑2
i=1 λiD

t
1(n+ ei)− (µ− µ2)D

t
2(n− e2), if n ∈ C2,

−1 +
∑2

i=1 λiD
t
1(n+ ei) + (µ− µ1)D

t
1(n), if n ∈ C3,

∑2
i=1 λiD

t
1(n+ ei) + µDt

1(n− d1), if n ∈ C4

(13)
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and

Dt+1
2 (n) =



















∑2
i=1 λiD

t
2(n+ ei)− (µ− µ1)D

t
1(n− e1), if n ∈ C1,

∑2
i=1 λiD

t
2(n+ ei) + µ2D

t
2(n− e2) + (µ− µ2)D

t
2(n), if n ∈ C2,

−1 +
∑2

i=1 λiD
t
2(n+ ei) + (µ− µ2)D

t
2(n), if n ∈ C3,

∑2
i=1 λiD

t
2(n+ ei) + µDt

2(n− d1), if n ∈ C4,

(14)

for all n ∈ S and t > 0.

Proof. Proof: We prove (13) for the case that n ∈ C2. The proofs for the other cases and for (14)
follow in similar fashion. Note that for n ∈ C2, n+ e1 ∈ C4. We have

Dt+1
1 (n) = F (n+ e1)− F (n) +

∑

u∈N4

p4,uF
t(n+ e1 + u)−

∑

v∈N2

p2,vF
t(n+ v) (15)

=
2

∑

i=1

λiF
t(n+ e1 + ei) + µF t(n+ e1 − d1)

−
2

∑

i=1

λiF
t(n+ ei)− µ2F

t(n− e2)− (µ− µ2)F
t(n) (16)

=
2

∑

i=1

λiD
t
1(n+ ei) + (µ− µ2)F

t(n− e2)− (µ− µ2)F
t(n− e2 + e2) (17)

=
2

∑

i=1

λiD
t
1(n+ ei)− (µ− µ2)D

t
2(n− e2), (18)

where the first equality follows from (5) and the second equality from n ∈ C2 and the structure of
the random walk with joint departures.

The general method as presented in Section 4 is also based on first establishing such a recursive
relation on the bias terms. It is a priori not clear that such a relation can always be found. One of
the results presented in this paper is that for random walks this is indeed possible. Moreover, we
provide a structured means of finding such relation. This leverages the need for manual derivations
as performed in development of Proposition 1.

The next proposition provides the actual bounds on the bias terms. For clarity of exposition
we consider the symmetrical case that λ1 = λ2 = λ and µ1 = µ2 = µ∗.

Proposition 2. Let R be a random walk with joint departures and F (n) = 1n=(0,0). If λ1 = λ2

and µ1 = µ2 = µ∗ then

−
1

µ∗
≤ Dt

i(n) ≤
µ− µ∗

µµ∗
(19)

for i ∈ {1, 2}, n ∈ S and t ≥ 0.

Proof. Proof: For t = 0 (19) holds since F 0(n) = 0 for all n ∈ S and u∗ ≤ µ. The proof now
follows from a simple induction on t by verifying all eight cases in (13) and (14).

Recall that λ1 + λ2 + µ = 1. Therefore, even though the value of λ influences the bounds that
can be given on the bias terms, the presentation of the above result could be given in terms of µ
and µ∗ only. The difficulty in establishing the equivalent

The main result of this subsection is provided in the next proposition. It provides upper and
lower bounds on the probability that the random walk with joint departures is in the origin.

Proposition 3. Let R and R̄ be random walks with joint departures, λ1 = λ2 = λ. Let R have
µ1 = µ2 = µ∗, where µ∗ < µ/2. Let R̄ have µ̄1 = µ̄2 = µ/2. Finally, let F (n) = 1n=(0,0). Then

(1− r)2 − g ≤ F ≤ (1− r)2 + g, (20)
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where

r =
−1 +

√

1 + 8λ/µ

2
, g = 2r(1 − r)

(µ/2 − µ∗)(µ− µ∗)

µµ∗
. (21)

Proof. Proof: For this particular R and R̄ we have

qk,u =











µ/2− µ∗, if k = i, u = −ei, i ∈ {1, 2},

µ∗ − µ/2, if k ∈ {1, 2}, u = 0,

0, otherwise.

(22)

From (22) and the discussion leading to Proposition 1 it follows that if F̄ and G satisfy
∣

∣

∣
F̄ (n)− F (n) +

∑

i=1,2

qk(n),-eiD
t
i(n− ei)

∣

∣

∣
≤ G(n), (23)

then they satisfy (6). Let F̄ (n) = F (n) and

G(n) =







µ/2− µ∗

µ∗
, if n ∈ C1 or n ∈ C2,

0, otherwise.
(24)

Using the fact that µ/2−µ∗ > 0 it is readily verified that these F̄ and G satisfy (23). By observing
that r = r1 = r2 is the unique positive solution of (11) and that

∑

n∈C1

π̄(n) =
∑

n∈C2

π̄(n) = r(1 − r), (25)

the result follows from Theorem 1.

For the case that µ∗ > µ/2 a similar result can easily be obtained. The assymetrical case
λ1 6= λ2 and/or µ1 6= µ2 is significantly more challenging in the sense that without the tools that
are developed in Section 4 of the current paper, generalizing Proposition 2 is mostly a matter of
guessing the correct form of the bounds and verifying valididity. One of the contributions of this
paper is to generate the bounds on the bias terms and the functions F̄ and G by solving a linear
program.

An added benefit of formulating the construction of error bounds in an optimization framework
is that we can use as an objective the minimization of the upper bound on F . This will produce,
within the class of functions F̄ and G that are under consideration, the tightest possible error
bound. In this subsection we obtained constant bounds on the bias terms and piecewise constant
functions F̄ and G. A natural question is to ask whether better bounds could have been obtained
by allowing, for instance, piecewise constant functions for the bounds on the bias terms. The
answer is affirmative. The improved bounds will be presented in Section 6. In Section 6 we will
also give performance bounds for other performance measures, for instance, the marginal first
moments.

4 A linear programming approach to error bounds

In this section we will present our approach to the error bound method. We develop a linear
program that provides an upper bound to the performance approach to finding the approximation
error. We restrict our attention to the case that R and R̄ differ only for transitions that are along
the unit directions, i.e., throughout this section we assume that

qk,u = p̄k,u − pk,u = 0 for u 6= {e1, e2,−e1,−e2, 0}. (26)

The reason for this restriction is that it significantly simplifies the presentation of the result. A
generalization of the result to arbitrary R and R̄ is given in Section 5. In Section 5 we also present
the corresponding result that provides a lower bound on the performance.
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The outline of this section is as follows. In Subsection 4.1 we formulate a first minimization
problem that provides an upper bound on F . This problem can not be solved efficiently, since
it depends on the unkown bias terms. Therefore, we develop a framework for bounding the bias
terms in Subsection 4.2. The main result of this section, the error bound result itself, is given
in Subsection 4.3. In Subsection 4.4 it is shown that the corresponding optimization problem is
linear with a finite number of variables and a finite number of constraints.

4.1 An optimized error bound

To start, consider the following optimization problem.

Problem 1.

minimize
∑

n∈S

[

F̄ (n) +G(n)
]

π̄(n), (27)

subject to
∣

∣

∣
F̄ (n)− F (n) +

∑

i=1,2

(

qk(n),eiD
t
i(n) + qk(n),-eiD

t
i(n− ei)

)

∣

∣

∣
≤ G(n), for n ∈ S, t ≥ 0,

(28)

F̄ (n) ≥ 0, G(n) ≥ 0, for n ∈ S, (29)

The variables in Problem 1 are the functions F̄ and G; the functions F , π̄ and Dt
u are param-

eters. Alternatively we can interpret Problem 1 as an optimization over variables F̄ (n) and G(n),
with two such variables for each n ∈ S. This directly leads to a linear optimization problem. In-
deed the objective function in Problem 1 is linear and the modulus in constraint (28) induces two
linear inequalities for each n ∈ S and t ≥ 0. This linear program has a countably infinite number
of variables and constraints. Our main result, to be presented later in this section, is a reduction
of the above problem to a linear program with a finite number of variables and constraints.

Before proceeding, we show that the optimal value of Problem 1 provides an upper bound on
F . From Dt

0(n) = 0 and Dt
-ei(n) = −Dt

ei(n − ei) it follows directly that if qk,u = p̄k,u − pk,u = 0
for u 6= {e1, e2,−e1,−e2, 0} then (6) is equivalent to (28). Therefore, it follows from Theorem 1
that the optimal value of Problem 1 provides an upper bound on F . The problem of maximizing
∑

n∈S

[

F̄ (n)−G(n)
]

π̄(n) subject to the same constraints leads to a lower bound on F . Since the
optimization problems providing the upper and the lower bound are closely related, we illustrate
the development of our main result by means of Problem 1. The corresponding result for the lower
bound will be given at the end of the section.

The most important difficulty in handling Problem 1 is that constraint (28) is expressed in
terms of the bias terms, i.e., the unknown functions Dt

u(n). As a first step in developing our linear
program we introduce pairs of functions Ai : S → [0,∞) and Bi : S → [0,∞), i = 1, 2. In the next
subsection we will formulate a finite number of constraints on these functions that guarantee that

−Ai(n) ≤ Dt
i(n) ≤ Bi(n), (30)

for all t ≥ 0, i.e., these functions provide bounds on the bias terms uniformly over all t ≥ 0. For
the moment we assume that constraints providing (30) can be constructed and replace occurences
of Dt

u(n) with its bounds −Ai(n) and Bi(n). The advantage of doing so is that the new problem
does not involve the unkown terms Dt

i(n). In addition it reduces countably many constraints (one
constraint for each t ≥ 0) to a single constraint. By replacing in Problem 1 occurences of Dt

i(n)
with its bounds −Ai(n) and Bi(n) we make the constraints more stringent, i.e., the optimal value
of an optimization problem based on these bounds still provides an upper bound on F .

We are now ready to formulate an optimization problem in terms of the functions Ai and Bi.
For clarity of exposition, we do not replace Dt

u with Ai or Bi directly, but instead make use of
auxiliary functions Ei : S → R, i = 1, 2. Replacing in Problem 1 Dt

i(n) with its bound leads to
the following optimization problem.

9



Problem 2.

minimize
∑

n∈S

[

F̄ (n) +G(n)
]

π̄(n), (31)

subject to
∣

∣

∣
F̄ (n)− F (n) +

∑

i=1,2

(

qk(n),eiEi(n) + qk(n),-eiEi(n− ei)
)

∣

∣

∣
≤ G(n), for n ∈ S, (32)

−Ai(n) ≤ Ei(n) ≤ Bi(n), for n ∈ S, i ∈ {1, 2}, (33)

−Ai(n) ≤ Dt
i(n) ≤ Bi(n), for n ∈ S, i ∈ {1, 2}, t ≥ 0, (34)

F̄ (n) ≥ 0, G(n) ≥ 0, for n ∈ S, (35)

In the above problem F̄ , G, Ai, Bi and Ei are the variables. Obviously we did not really solve
any of the underlying problems by reworking Problem 1 into Problem 2. It remains to replace (34)
with constraints that do not involve the bias terms Dt

i(n) themselves. Therefore, the aim of the
next subsection is to provide such bounds on the bias terms.

4.2 Bounding the bias terms

The goal of this subsection is to obtain constraints on Ai : S → [0,∞) and Bi : S → [0,∞) that
ensure (34). These constraints are developed in an inductive framework, i.e., based on an induction
in t. Therefore, the first goal of this subsection is to provide a generalization of Proposition 1, by
expressing Dt+1

i as a linear combination of Dt
1 and Dt

2. Next, we will use this relation to develop
the desired constraints.

Our first contribution is to show that we can always express Dt+1
i as a linear combination of Dt

1

and Dt
2. More precisely, we introduce the constants ci,k,j,u, i ∈ {1, 2}, k ∈ {1, . . . , 4}, j ∈ {1, 2},

u ∈ Nk, and provide a set of sufficient conditions under which these constants satisfy

Dt+1
i (n) = F (n+ ei)− F (n) +

∑

j=1,2

∑

u∈Nk(n)

ci,k(n),j,uD
t
j(n+ u). (36)

One can think of ci,k,j,u as the contribution of Dt
j(n + u) to Dt+1

i (n) if n ∈ Nk. In addition
to the sufficient conditions we prove that there always exist values for ci,k,j,u that satisfy these
conditions. In particular, we show that there exist a ‘universal’ set of constants that can be used,
i.e., constants that are given by a fixed function of the transition probabilities.

First, sufficient conditions for (36) are given. The result is expressed using k[i]. For i = 1, 2
we define k[i] as k(n + ei), for n ∈ Ck. Recall from Section 2 that Nk + ei = {u| u − ei ∈ Nk}.
We formulate our conditions in the following assumption.

Assumption 1. The constants ci,k,j,u, i, j = 1, 2, k = 1, . . . , 4, u ∈ Nk, satisfy

1Nk
(w − e1)ci,k,1,w−e1 − 1Nk

(w)ci,k,1,w + 1Nk
(w − e2)ci,k,2,w−e2

− 1Nk
(w)ci,k,2,w = 1Nk[i]

(w − ei)pk[i],w−ei − 1Nk
(w)pk,w (37)

for all i ∈ {1, 2}, k ∈ {1, . . . , 4} and w ∈ Nk ∪ (Nk[1] + e1) ∪ (Nk[2] + e2).

We will show below that we can always find coefficients ci,k,j,u that satisfy the above as-
sumption. Therefore, we will assume in the remainder of this paper that coefficients that satisfy
Assumption 1 have been given. Before, proving that such coefficients exist we will first provide a
technical result that motivates the conditions in Assumption 1. The reason is that these conditions
provide sufficient conditions for (36), a result that we formulate more precisely here.

Lemma 1. If Assumption 1 holds then

Dt+1
i (n) = F (n+ ei)− F (n) +

∑

j=1,2

∑

u∈Nk(n)

ci,k(n),j,uD
t
j(n+ u), (38)

for i = 1, 2, n ∈ S and t > 0.
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Proof. Proof Consider arbitrary i ∈ {1, 2}, n ∈ S and t > 0. For notational convenience, let
k = k(n).

From (5) it follows directly that

Dt+1
i (n) = F (n+ ei)− F (n) +

∑

u∈Nk[i]

pk[i],uF
t(n+ ei + u)−

∑

v∈Nk

pk,vF
t(n+ v). (39)

Therefore, we need to show that

∑

u∈Nk[i]

pk[i],uF
t(n+ ei + u)−

∑

v∈Nk

pk,vF
t(n+ v) =

∑

j=1,2

∑

u∈Nk

ci,k,j,uD
t
j(n+ u). (40)

The result follows by

∑

u∈Nk[i]

pk[i],uF
t(n+ei + u)−

∑

v∈Nk

pk,vF
t(n+ v)

=
∑

w∈Nk∪(Nk[i]+ei)

[

1Nk[i]+ei(w)pk[i],w−ei − 1Nk
(w)pk,w

]

F t(n+ w) (41)

=
∑

w∈Nk∪(Nk[1]+e1)

∪(Nk[2]+e2)

[

1Nk[i]+ei(w)pk[i],w−ei − 1Nk
(w)pk,w

]

F t(n+ w) (42)

=
∑

w∈Nk∪(Nk[1]+e1)

∪(Nk[2]+e2)

[

1Nk
(w − e1)ci,k,1,w−e1 − 1Nk

(w)ci,k,1,w

+ 1Nk
(w − e2)ci,k,2,w−e2 − 1Nk

(w)ci,k,2,w
]

F t(n+ w) (43)

=
∑

j=1,2

∑

u∈Nk

ci,k,j,u
[

F t(n+ u+ ej)− F t(n+ u)
]

(44)

=
∑

j=1,2

∑

u∈Nk

ci,k,j,uD
t
j(n+ u), (45)

where: — (42) holds because we extend the summation over w for which 1Nk[i]+ei(w) = 1Nk
(w) =

0, — (43) follows directly from Assumption 1, — (44) is an immediate consequence of (43) and
finally, — (45) follows by definition of Dt

j .

Next, we show how to find coefficients ci,k,j,u that satisfy Assumption 1. Note that the con-
straints given in (37) of Assumption 1 can be interpreted as a flow problem in which the variable
ci,k,j,u is the amount of flow assigned to the ‘edge’ from n+ u to n+ u+ ej and the RHS of (37)
is the demand at ‘vertex’ w. It is not necessary to solve this problem for each random walk at
hand. Instead, we formulate below a solution by giving values of the constants ci,k,j,u in terms
of the transition probabilities of the random walk. The result, which states that it is possible to
satisfy Assumption 1 is readily verified and, therefore, stated without proof.

Theorem 2. If ci,k,j,u are chosen according to Table 1 then Assumption 1 holds.

Note, that the values of ci,k,j,u as given in Table 1 are not the only values for which (38)
is satisfied. We have chosen to present Theorem 3 in terms of constants that can be stated
concisely and that are universal in the sense that they are a simple function of the transition
probabilities that define the random walk. It would be of interest to include an optimization
over these constants in the optimization problems that will be stated below. However, while
the constraints (38) themselves are linear, the overall optimization problem would be non-linear.
Therefore, it is outside the scope of the current work.

Next, we present a set of linear constraints on the functions Ai and Bi that ensure (30).
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k j u c1,k,j,u
1 1 N1 p1,u
2 1 {d1,e1,d2} p4,u
2 1 e2 p4,e2 − p2,d1 + c1,2,1,d1

2 1 0 p4,0 − p2,e1 + c1,2,1,e1
2 1 −e2 p4,-e2 − p2,d2 + c1,2,1,d2

2 2 0 p4,-d2 − p2,e2 + c1,2,1,e2
2 2 −e2 p4,-e1 − p2,0 + c1,2,2,0 + c1,2,1,0
3 1 {e1,d1} p1,u
3 1 e2 p1,e2 − p3,d1 + c1,3,1,d1

3 1 0 p1,0 − p3,e1 + c1,3,1,e1
3 2 0 p1,-d2 − p3,e2 + c1,3,1,e2
4 1 N4 p4,u

k j u c2,k,j,u
1 2 {d1,e2,-d2} p4,u
1 2 e1 p4,e1 − p1,d1 + c2,1,2,d1

1 2 0 p4,0 − p1,e2 + c2,1,2,e2
1 2 −e1 p4,-e1 − p1,-d2 + c2,1,2,-d2

1 1 0 p4,d2 − p1,e1 + c2,1,2,e1
1 1 −e1 p4,-e2 − p1,0 + c2,1,1,0 + c2,1,2,0
2 2 N2 p2,u
3 2 {d1,e2} p2,u
3 2 e1 p2,e1 − p3,d1 + c2,3,2,d1

3 2 0 p2,0 − p3,e2 + c2,3,2,e2
3 1 0 p2,d2 − p3,e1 + c2,3,2,e1
4 2 N4 p4,u

Table 1: Values for constants ci,k,j,u.
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Lemma 2. If Ai : S → [0,∞) and Bi : S → [0,∞), i = 1, 2 satisfy

F (n+ ei)− F (n) +
∑

j=1,2

∑

u∈Nk

max{−ci,k,j,uAi(n+ u), ci,k,j,uBi(n+ u)} ≤ Bi(n), (46)

F (n)− F (n+ ei) +
∑

j=1,2

∑

u∈Nk

max{−ci,j,k,uBi(n+ u), ci,j,k,uAi(n+ u)} ≤ Ai(n), (47)

for all n ∈ S and k = k(n). Then

−Ai(n) ≤ Dt
i(n) ≤ Bi(n), (48)

for i = 1, 2, n ∈ S and t ≥ 0.

Proof. Proof We use induction over t. Since Ai(n) and Bi(n) are non-negative and D0
i (n) = 0 the

bounds hold at t = 0. Next, assume that Ai(n) ≤ Dt
i(n) ≤ Bi(n) for both i = 1 and i = 2 at

t ≥ 0. Then

Dt+1
i (n) = F (n+ ei)− F (n) +

∑

j=1,2

∑

u∈Nk

ci,k,j,uD
t
j(n+ u)

≤ F (n+ ei)− F (n) +
∑

j=1,2

∑

u∈Nk(n)

max{−ci,k,j,uAi(n+ u), ci,k,j,uBi(n+ u)}

≤ Bi(n), (49)

where the first equality follows from Lemma 1, the first inequality from the induction hypothesis
and the last inequality from (46). In the other direction we have

Dt+1
i (n) ≥ F (n+ ei)− F (n) +

∑

j=1,2

∑

u∈Nk(n)

min{−ci,j,k,uAi(n+ u), ci,j,k,uBi(n+ u)}

≥ −Ai(n), (50)

which follows from Lemma 1, the induction hypothesis and (47).

4.3 Main result: An error bound without bias terms

Combining the results from the previous subsections leads to the following optimization problem.
Like Problem 2, this problem provides an upper bound on F . A precise formulation of this result
is given below.

Problem 3.

minimize
∑

n∈S

[

F̄ (n) +G(n)
]

π̄(n), (51)

subject to

∣

∣

∣

∣

F̄ (n)− F (n) +
∑

i=1,2

(

qk(n),eiEi(n) + qk(n),-eiEi(n− ei)
)

∣

∣

∣

∣

≤ G(n), (52)

−Ai(n) ≤ Ei(n) ≤ Bi(n), (53)

F (n+ ei)− F (n) +
∑

j=1,2

∑

u∈Nk(n)

max{−ci,k(n),j,uAi(n+ u), ci,k(n),j,uBi(n+ u)} ≤ Bi(n),

(54)

F (n)− F (n+ ei) +
∑

j=1,2

∑

u∈Nk(n)

max{−ci,j,k(n),uBi(n+ u), ci,j,k(n),uAi(n+ u)} ≤ Ai(n),

(55)

F̄ (n) ≥ 0, G(n) ≥ 0, Ai(n) ≥ 0, Bi(n) ≥ 0, for n ∈ S, i ∈ {1, 2}. (56)
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T1 T2 T3

T4 T5 T6

T7 T8 T9

Figure 4: The T partition of S.

The next theorem provides the main contribution of the current paper. As indicated at the
start of this section, we will give the generalized result for the case that R and R̄ can have non-equal
transition probabilities for transitions in arbitrary directions in Section 5.

Theorem 3. Let qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0}. Finally, let F∗ denote the optimal value of
Problem 3. Then F ≤ F∗.

Proof. Proof: By Lemmas 1 and 2 and constraints (66) and (67) it follows that

−Ai(n) ≤ Di(n) ≤ Bi(n). (57)

Now it follows from constraints (52) and (65) and from the fact that qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0}
that

∣

∣

∣
F̄ (n)− F (n) +

∑

u∈Nk(n)

qk(n),uD
t
u(n)

∣

∣

∣
≤ G(n). (58)

Finally, the result follows from Theorem 1.

4.4 A finite linear program

The final step is to reduce Problem 3 to a linear program with a finite number of variables
and a finite number of constraints. In the remainder, we will refer to such a linear program as
a finite linear program. So far, besides constraints (52)–(56) we have not put any restrictions
on the functions F̄ , G,A1, A2, B1 and B2. In the most general case, each of these functions is
specificied by one variable for each element in the state space, i.e., we have a linear program
with countably many variables. Next, we put additional constraints on these functions, such that
the total number of variables is finite. Recall from Section 2 that the performance measures
that we consider are induced by componentwise linear functions, i.e., F is C-linear. Moreover,
the transition probabilities of R and R̄ are homogeneous within each component. Therefore, we
restrict our attention to functions F̄ , G,A1, A2, B1 and B2 that are C-linear.

A C-linear function can be specified by means of 8 coefficients, see (4). We will demonstrate
below that constraints (52)–(56) are equivalent to a finite number of linear constraints in the
coefficients that define the C-linear functions F̄ , G,A1, A2, B1 and B2. In addition we show that
objective function (63) is linear in these coefficients.

Before giving a complete description of the reduction to a finite number of constraint we give an
overview of the main ideas. The key idea that enables reduction to a finite number of constraints
is that each of the constraints (52)–(56) can be reformulated as a sign constraint on a function
from a class that will be specified below. We will see that in this class of functions, sign constraints
are equivalent to a finite number of linear constraints. To illustrate the idea, we give an example
for linear function h : S → R, h(n) = h0 + h1n1 + h2n2, for which the condition h(n) ≥ 0 for all
n ∈ S is obviously equivalent to the three constraints h0 ≥ 0, h1 ≥ 0 and h2 ≥ 0.

The linear function from the previous examples captures most of the characteristics from the
general case. However, the class of linear functions is not rich enough for our purposes. Since we
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start with functions that are componentwise linear over the C partition, it is obvious that we need
to consider at least componentwise linear functions. The C partition is, however, not fine enough.
Indeed, if Ai(n) is C-linear, then Ai(n+ u), as occuring in, e.g., (66), is not C-linear. Therefore,
we introduce a finer partition of the state space on which Ai(n+ u) is componentwise linear. We
will show below that all functions that we need to consider are componentwise linear over this
finer partition. Let

T1 = {(0, 0)}, T4 = {(0, 1)}, T7 = {0}×{2, 3, . . .},
T2 = {(1, 0)}, T5 = {(1, 1)}, T8 = {1}×{2, 3, . . .},
T3 = {2, 3, . . .}×{0}, T6 = {2, 3, . . .}×{1}, T9 = {2, 3, . . .}×{2, 3, . . .},

(59)

as illustrated in Figure 4. In accordance with the definition for the C partition, let t : S →
{1, . . . , 9} be defined through n ∈ Tt(n). We refer to functions that are linear in each of the sets
T1, . . . , T9 as T -linear. A T -linear function h : S → R is defined through a set of coefficients ht,i,
1 ≤ t ≤ 9, i = 0, 1, 2, i.e.,

h(n) = ht(n),0 + ht(n),1n1 + ht(n),2n2. (60)

Next, we present three simple results, the proofs of which are straightforward and omitted.

Lemma 3. Let H : S → R be C-linear and let u ∈ N . Define Ĥ : S → R as Ĥ(n) = H(n+ u), if
n+ u ∈ S, and Ĥ(n) = 0 otherwise. Then Ĥ is a T -linear function.

Lemma 4. Let H : S → R be T -linear, H(n) = ht(n),0 + ht(n),1n1 + ht(n),2n2. Then H(n) ≥ 0
for all n ∈ S if and only if the coefficients ht,i satisfy the linear constraints

h1,0 ≥ 0, h2,0 + h2,1 ≥ 0,

h3,0 + 2h3,1 ≥ 0, h3,1 ≥ 0, h4,0 + h4,2 ≥ 0,

h5,0 + h5,1 + h5,2 ≥ 0, h6,0 + 2h6,1 + h6,2 ≥ 0, h6,1 ≥ 0,

h7,0 + 2h7,2 ≥ 0, h7,2 ≥ 0, h8,0 + h8,1 + 2h8,2 ≥ 0, h8,2 ≥ 0,

and
h9,0 + 2h9,1 + 2h9,2 ≥ 0, h9,1 ≥ 0, h9,2 ≥ 0.

Lemma 5. If H : S → R is C-linear, with H(n) = ht(n),0 + ht(n),1n1 + ht(n),2n2, and π̄(n) =
∏

i=1,2(1− ri)r
ni

i , then

∑

n∈S

H(n)π̄(n) = h3,0(1− r1)(1− r2) + r1(1− r2)

(

h1,0 +
h1,1

1− r1

)

+ (1− r1)r2

(

h2,0 +
h2,2

1− r2

)

+ r1r2

(

h4,0 +
h4,1

1− r1
+

h4,2

1− r2

)

. (61)

i.e.,
∑

n∈S H(n)π̄(n) is a linear function in the variables ht,i.

From Lemmas 3–5 it is clear that Problem 3 can be reduced to a finite linear program by
imposing the additional constraint that the functions F̄ , G,A1, A2, B1 and B2 are C-linear. The
formal result is presented below for completeness.

Theorem 4. Problem 3, with the additional constraint that F̄ , G,A1, A2, B1 and B2 are C-linear,
is a finite linear program.

Proof. Proof: First observe that even though constraints (52)–(56) themselves are not linear, they
can readily be replaced by constraints that are linear in the functionsF̄ , G,A1, A2, B1 and B2.
Next, it follows from Lemma 3 that these constraints can be reduced to non-negativity of T -linear
functions. Note that the technical condition in Lemma 3, Ĥ(n) = H(n+u) = 0 if n+u 6= S, does
not come into play, since all expressions involve only u ∈ Nk(n). From Lemma 4 it follows that
non-negativity is equivalent to a finite number of constraints in the coefficients that constitute
these functions. Finally, it follows from Lemma 5 that the objective function (63) is linear.
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It is possible to craft the linear constraints in the coefficients of the functions F̄ , G,A1, A2, B1

and B2 for the finite linear program by hand. This is, however, a tedious and error-prone process.
A more convenient method of generating the finite linear program is by making use of a mathe-
matical programming language like AMPL [10]. Indeed, the representation of Problem 3 together
with Lemmas 3–5 straightforwardly leads to an implementation in a mathematical programming
language.

5 Generalization and variations

In this section we present three additional results. First we present a method to establish a
comparison result, i.e., an ordering, on R and R̄. After that we generalize Theorem 3 from
Section 4 to include the case that the transition rates of R and R̄ are different for transitions
that are not along the unit directions. Finally, we present results on establishing lower bounds on
performance.

5.1 Comparison result

The results that have been presented in Section 4 are based on the error bound result by van
Dijk Theorem 1. The next result by van Dijk, as found in, for instance [21], provides a direct
comparison between two random walks.

Theorem 5 ([21]). Let F̄ : S → [0,∞) satisfy

F̄ (n)− F (n) +
∑

u∈Nk(n)

qk(n),uD
t
u(n) ≥ 0, (62)

for all n ∈ S and t ≥ 0. Then

F ≤
∑

n∈S

F̄ (n)π̄(n).

The relevance of the above result is twofold. First, there are cases in which Theorem 5 results
in a better upper bound on F than Theorem 1. In Section 6 we will provide some examples. It
should also be noted that Theorem 5 is not universally better than Theorem 5. In fact there are
examples in which there are no solutions to Theorem 5, but for which Theorem 1 is valid.

The second use of Theorem 5 stems from the fact that useful results can be deducted without
explicit knowledge of π̄, the invariant measure of the perturbed random walk. Indeed a comparison
can be made between two systems directly. This can be useful, for instance, in analyzing the effect
of changing certain parameters, like specific transition probabilities.

The first variation of Problem 3 that we consider is a straighforward application of Theorem 5.
The variables in the optimization problem below are the functions F̄ , A1, A2, B1 and B2. Since
the aim is no longer to obtain a bound on the modulus of the LHS of (62), there is no function G.
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Problem 4.

minimize
∑

n∈S

F̄ (n)π̄(n), (63)

subject to F̄ (n)− F (n) +
∑

i=1,2

(

qk(n),eiEi(n) + qk(n),-eiEi(n− ei)
)

≥ 0, (64)

−Ai(n) ≤ Ei(n) ≤ Bi(n), (65)

F (n+ ei)− F (n) +
∑

j=1,2

∑

u∈Nk(n)

max{−ci,k(n),j,uAi(n+ u), ci,k(n),j,uBi(n+ u)} ≤ Bi(n),

(66)

F (n)− F (n+ ei) +
∑

j=1,2

∑

u∈Nk(n)

max{−ci,j,k(n),uBi(n+ u), ci,j,k(n),uAi(n+ u)} ≤ Ai(n),

(67)

F̄ (n) ≥ 0, Ai(n) ≥ 0, Bi(n) ≥ 0, for n ∈ S, i ∈ {1, 2}. (68)

The next corollary is an immediate consequence of Theorems 3 and 5.

Corollary 1. Let qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0} and let F∗ denote the optimal value of
Problem 4. Then F ≤ F∗.

The difference between Problems 3 and 4 is small in the sense that both problems require
upper and lower bounds on Dt

i(n). There are cases it is not possible to find such upper and lower
bounds in which case neither Problem 3 nor Problem 4 has a feasible solution. However, in some
of these cases it might still be possible to obtain a result on the sign of Dt

i(n). Together with the
sign of qk,ei and qk,-ei this could be used to establish (62) and obtain a comparison result.

5.2 Arbitrary perturbations

In Section 4 we derived an error bound result for the case that the perturbations from R to R̄
were along the unit directions only, i.e., qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0}. In this subsection
we extend this result to arbitary perturbations, i.e., arbitary qk,u. The method we use for this
generalization is to use the bounds on the bias terms Dt

e1 = Dt
1 and Dt

e2 = Dt
2 that are obtained

from Constraints (66) and (67) to construct bounds on the bias terms Dt
u in the other directions

,i.e., for u 6= {e1, e2}. In order to prevent confusion, in this section we will refrain from using the
notation Dt

i , Ai and Bi. Instead we will use the full forms Dt
ei , Aei and Bei .

For the purpose of bounding Dt
u we introduce functions Au and Bu for each u ∈ N . In similar

spirit to previous considerations the aim is to achieve

−Au(n) ≤ Dt
u(n) ≤ Bu(n). (69)

In Section 4 we have obtained bounds on Aei and Bei , for i = 1, 2. We present a construction to
reuse these bounds and obtain the desired result on Au and Bu for all u ∈ N.

Before giving the general construction of the functions Au, Bu, we provide an example for the
case that u = −d2. First note that Dt

-d2
(n) is only defined if n− d2 ∈ S. Now, using the fact that

−d2 = −e1 + e2 we have

Dt
-d2

(n) = F t(n− d2)− F t(n) (70)

=
(

F t(n− e1 + e2)− F t(n− e1)
)

−
(

F t(n− e1 + e1)− F t(n− e1)
)

(71)

= Dt
e2(n− e1)−Dt

e1(n− e1). (72)

By constructing A-d2 and B-d2 on domain S ∩ (S + d2) as

A-d2(n) = Ae2 (n) +Be1(n− e1), (73)

B-d2(n) = Be2(n) +Ae1(n− e1), (74)
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we achieve −A-d2(n) ≤ Dt
-d2

(n) ≤ B-d2(n) as required. The general construction for arbitrary
u ∈ N is given in the next result. Since Dt

u(n) = F t(n+ u)−F t(n) is not defined if n+ u 6∈ S we
need to take some care in defining the domain of the functions Au and Bu.

Lemma 6. Consider for u ∈ N \ {e1, e2} the functions Au : S ∩ (S − u) → [0,∞) and Bu :
S ∩ (S − u) → [0,∞) defined as

Au(n) = 1u1=1Ae1 (n) + 1u1=−1Be1(n− e1) + 1u2=1Ae2(n+ u1e1)

+1u2=−1Be2(n+ u1e1 + u2e2),

Bu(n) = 1u1=1Be1(n) + 1u1=−1Ae1(n− e1) + 1u2=1Be2(n+ u1e1)

+1u2=−1Ae2(n+ u1e1 + u2e2),

where, for i = 1, 2, Aei : S → [0,∞) and Bei : S → [0,∞). If −Aei(n) ≤ Dt
ei(n) ≤ Bei(n),

i = 1, 2, t ≥ 0, then
−Au(n) ≤ Dt

u(n) ≤ Bu(n), (75)

for all u ∈ N , n ∈ S and all t ≥ 0.

Proof. Proof The results follows directly from the observation that we can write

D-e1(n) = −De1(n− e1), D-e2(n) = −De2(n− e2),

Dd1(n) = De1(n) +De2(n+ e1), D-d1(n) = −De1(n− e1)−De2(n− e1 − e2),

Dd2(n) = De1(n)−De2(n+ e1 − e2), D-d2(n) = −De1(n− e1) +De2(n− e1),

i.e., that

Du(n) = 1u1=1De1(n)− 1u1=−1De1(n− e1) + 1u2=1De2(n+ u1e1)

− 1u2=−1De2(n+ u1e1 − e2).

Next, we provide the natural extension of Problem 3 that includes the bounds on the bias
terms in all directions. Like Problem 3 the optimal value of the problem provides an upper bound
on F . A formal statement of this result is given below.
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Problem 5.

minimize
∑

n∈S

[

F̄ (n) +G(n)
]

π̄(n), (76)

subject to

∣

∣

∣

∣

F̄ (n)− F (n) +
∑

u∈Nk(n)

qk(n),uEu(n)

∣

∣

∣

∣

≤ G(n), for n ∈ S, (77)

−Au(n) ≤ Eu(n) ≤ Bu(n), for n ∈ S ∩ (S − u), u ∈ N, (78)

Au(n) = 1u1=1Ae1 (n) + 1u1=−1Be1(n− e1) + 1u2=1Ae2(n+ u1e1)

+ 1u2=−1Be2(n+ u1e1 + u2e2), for n ∈ S ∩ (S − u), u ∈ N, (79)

Bu(n) = 1u1=1Be1(n) + 1u1=−1Ae1 (n− e1) + 1u2=1Be2(n+ u1e1)

+ 1u2=−1Ae2 (n+ u1e1 + u2e2), for n ∈ S ∩ (S − u), u ∈ N, (80)

F (n+ ei)− F (n) +
∑

j=1,2

∑

u∈Nk(n)

max{−ci,k(n),j,uAej (n+ u), ci,k(n),j,uBej (n+ u)}

≤ Bei(n), for n ∈ S, i ∈ {1, 2},
(81)

F (n)− F (n+ ei) +
∑

j=1,2

∑

u∈Nk(n)

max{−ci,j,k(n),uBej (n+ u), ci,j,k(n),uAej (n+ u)}

≤ Aei(n), for n ∈ S, i ∈ {1, 2},
(82)

F̄ (n) ≥ 0, G(n) ≥ 0, Au(n) ≥ 0, Bu(n) ≥ 0, for n ∈ S ∩ (S − u), u ∈ N. (83)

Theorem 6. Let F∗ denote the optimal value of Problem 5. Then F ≤ F∗.

Proof. Proof: Directly from Lemmas 1, 2 and 6 and Theorem 1.

Lemma 6 and Problem 5 provide one means of establishing a linear programming based error
bound. An alternative approach is to directly extend Lemma 1 to the case of bias terms in arbitrary
directions. More precisely, this approach would involve finding constants gu,k,v,w for u, v, w ∈ N ,
k = 1, . . . , 4 such that

Dt+1
u (n) = F (n+ u)− F (n) +

∑

v∈N

∑

w∈Nk(n)

gu,k(n),v,wD
t
v(n+ w), (84)

for u ∈ N , n ∈ S and t > 0. From (84) we could then develop a generalization of Lemma 2
and an alternative to Problem 5. Such an approach would not be hampered by any technical
difficulties. However, it would also not provide any additional insights over Problem 5. Therefore,
this approach is not pursued in the current paper.

5.3 Lower bounds

All results that have been presented in this paper so far deal with upper bounds on F . Corre-
sponding lower bounds can trivially be obtained. We have for instance the following maximization
problem and corollary to Theorems 1 and 3.

Problem 6.

maximize
∑

n∈S

[

F̄ (n)−G(n)
]

π̄(n), (85)

subject to Constraints (52)–(56) of Problem 3. (86)

Corollary 2. Let qk,u = 0 if u 6∈ {−e1, e1,−e2, e2, 0}. Finally, let F
∗ denote the optimal value of

Problem 6. Then F ≥ F∗.
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Figure 5: Probability that the symmetric random walk with joint departures is empty, i.e., F (n) =
1n=0. Upper bounds in solid lines, lower bounds in dashed lines.(µ∗ = 0.4µ)

In similar spirit a variation of Problem 4 and Corollary 1 can be obtained from the following
corollary to Theorem 5.

Corollary 3. Let F̄ : S → [0,∞) satisfy

F̄ (n)− F (n) +
∑

u∈Nk(n)

qk(n),uD
t
u(n) ≤ 0, (87)

for all n ∈ S and t ≥ 0. Then

F ≥
∑

n∈S

F̄ (n)π̄(n).

6 Examples

In this section we provide a number of examples that illustrate the use of the linear programming
approach to obtaining error bounds. First we revisit the example from Section 3. Subsequently
we will consider the case of coupled processors.

6.1 Joint departures

We continue with the example of a random walk with joint departures that was discussed in
Section 3. In this section we will provide more extensive results on the performance of this
random walk. We restrict our attention to the symmetric case that λ1 = λ2 = λ, 2λ+ µ = 1 and
µ1 = µ2 = µ∗, with 0 < µ∗ ≤ µ. The purpose of this section is to demonstrate the following: i)
The performance bounds given in Proposition 3 can be improved, ii) The use of componentwise
linear functions Ai, Bi can significantly improve performance, iii) There are values of λ, µ and µ∗

for which bounds cannot be obtained since the corresponding linear program does not have any
feasible solutions, and finally iv) There are cases in which error bounds exist, but a comparison
result cannot be obtained.

We first provide results for the performance measure that was considered in Section 3, the
probability that the system is empty, i.e., F (n) = 1n=0. Moreover we consider the perturbed
random walk with µ̄1 = µ̄2 = µ/2, again as in Section 3. Let F1 and F2 denote the values of
the upper and lower bound, respectively, as given in Proposition 3 in Section 3. Moreover, let F3

and F4 denote the optimal values of Problems 3 and 6, respectively. Finally, let F5 denote the
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Figure 6: Marginal first moment, i.e., F (n) = n1, of the symmetric random walk with joint
departures. Upper bounds in solid lines, lower bounds in dashed lines.(µ∗ = 0.4µ)

optimal value of Problem 4, i.e., the comparison result. The values of these bounds are illustrated
in Figure 5 as a function of the system load λ/µ. Recall from above that µ = 1− 2λ.

In Figure 5 we observe that the optimized bounds F3 and F4 are tighter than the bounds
F1 and F2 that were manually derived in Section 3. Next, note that the comparison result of
Problem 4 provides an even better upper bound. Observe, moreover, that the value of F5 as given
by Problem 4 consists of two piecewise smooth parts. The reason is the following. A more careful
inspection of the optimal values of F̄ , A1, A2, B1 and B2 for Problem 4 reveils that the structure
of the optimal F̄ can have two forms depending on the value of λ/µ. The final remark with respect
to Figure 5 is that Problem 6 does not always provide a meaningful lower bound, i.e., in our case
it provides for some values of λ/µ a negative lower bound on a probability.

Next, we consider the performance measure F (n) = n1, i.e., F is the first marginal moment in
dimension 1. Since we consider a completely symmetrical system this is equal to the first marginal
moment in dimension 2. Hence, we will simply refer to F as the first marginal moment. In
Figure 6 we have depicted various bounds on F as a function of λ/µ for the case that µ∗ = 0.4µ.
More precisely, the bounds in Figure 6 correspond to two different perturbed system. The first
perturbed system that we consider is µ̄1 = µ − µ∗ and µ̄2 = µ∗, leading to bounds F1 and F2.
The second perturbed system has µ̄1 = µ∗ and µ̄2 = µ−µ∗, leading to bounds F3 and F4. Upper
bounds F1 and F3 are given by Problem 4, lower bounds F2 and F4 by Problem 6. The first
thing to observe from Figure 6 is that the perturbed system that is considered can have significant
impact on the tightness of the bounds that are derived. The second thing to note is that for
larger values of λ/µ the bounds diverge. Inspection of the relevant linear programs reveals that,
for λ/µ > 0.5 the Problems 3–6 are infeasible. It was shown in [11] that the symmetric random
walk with joint departures is ergodic as long as λ/µ < 1 and µ∗ > 0. Therefore, non-ergodicity of
one of the random walks at hand is not the reason for infeasibility of the linear programs. A more
careful examination reveals that in this case the bias terms cannot be bounded by componentwise
linear functions.

In addition to results as a function of λ/µ, we provide in Figure 7 the behavior of the bounds
as a function of µ∗ for a fixed value of λ/µ. Upper bounds F1 and F2 are given by Problems 3
and 4 for the case that µ̄1 = µ−µ∗ and µ̄1 = µ∗, respectively. Lower bounds F3 and F4 are given
by problem 6 for the case that µ̄1 = µ∗ and µ̄1 = µ − µ∗, respectively. It is clearly reflected in
the figure that larger perturbations of the transition rates lead to looser bounds. Note also, that
for µ∗ = 1/2 the original random walk has a product form distribution and the uppper and lower
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Figure 8: Random walk with coupled processors.

bounds coincide. The results in the figure demonstrate that the comparison result might lead
to useful bounds in cases that the error bound result does not. Indeed for µ∗/µ < 0.5, F1 does
not provide much insight, but F2 does. In relation to Figure 7 finally note that a lower bound
following from a comparison result does not exist. More precisely, the lower bound equivalent of
Problem 4 is infeasible.

6.2 Coupled processors

The next example that we consider is the random walk with coupled processors [8]. This model
arises from a queueing network with two queues, each with a single server. The coupling of the
processors is such that in the interior of the state space the processors operate at rates µ1 and µ2

respectively. If one of the processors is idle, the other processor adjusts its rates. The transition

22



0 0.1 0.2 0.3 0.4 0.5

10−2

10−1

100

101

102

µ/ρ

F

F1

F2

F3

F4

Figure 9: Marginal first moment, i.e., F (n) = n1, of the symmetric random walk with coupled
processors. Upper bounds in solid lines, lower bounds in dashed lines.

probabilities are as follows:

p1,e1 = λ1, p1,e2 = λ2, p1,-e1 = µh, p1,0 = µ1 + µ2 − µh,

p2,e1 = λ1, p2,e2 = λ2, p2,-e2 = µv, p2,0 = µ1 + µ2 − µv,

p3,e1 = λ1, p3,e2 = λ2, p3,0 = µ1 + µ2,

p4,e1 = λ1, p4,e2 = λ2, p4,-e1 = µ1, p4,-e2 = µ2,

where λ1 + λ2 + µ1 + µ2 = 1. The transition diagram is depicted in Figure 8.
It is known [8] that this random walk has product-form stationary distribution if and only if

µh + µv = µ1 + µ2. In that case the parameters r1, r2, of the geometric distribution can be found
as the unique solution of r1, r2 in [0, 1]2 of the following system of equations:

r−1
1 λ1 + r1µh + r2µ2 = λ1 + λ2 + µh,

r−1
2 λ2 + r1µ1 + r2µv = λ1 + λ2 + µh,

r1µh + r2µv = λ1 + λ2,

r−1
1 λ1 + r−1

2 λ2 + r1µ1 + r2µ2 = 1,

that represent the balance equations in each of the components of the state space.
Even though an expression for the generating function of π(n) is given in [8] also for the case

that µh +µv 6= µ1 +µ2, it is not trivial to use the results from [8] to evaluate various performance
measures. Therefore, the bounds that are given in this paper provide a convenient means of
evaluating the performance of a random walk with coupled processors.

In Figure 9 we have presented numerical results for the case that λ1 = λ2 = λ, µ1 = µ2 = µ,
µh = µv = µ∗. The figure presents bounds on the first marginal moment, i.e., F (n) = n1, as
a function of the system load λ/µ for µ∗ = 0.4µ. The perturbed system that we use for all
bounds has transition probabilities µ̄h = µ∗ and µ̄v = 2µ − µ∗. The upper bound F2 and lower
bound F3 result from Problems 3 and 6, respectively. In addition we have presented upper bound
F1 and lower bound F4 that arise from putting the additional constraints to Problems 3 and 6,
respectively. These constraints require the functions Au, Bu, u ∈ N , to be linear. Note that this
is a stronger constraint than the componentwise linear condition that is imposed in Problems 3
and 6. It is clearly reflected in Figure 9 that bounding the bias terms with componentwise linear
functions significantly improves performance over bounding with (completely) linear functions.
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7 Discussion

In this paper we have presented a linear programming approach to establishing error bounds for
random walks in the quarter-plane. Thereby we obtain the first generic method of establishing
such bounds for a large class of processes. The current work can be extended in a multitude
of directions, some of which include extensions to higher dimensional random walks and random
walks on bounded state spaces. Another extension of interest is to include an optimization over
the perturbed system into the optimization problem that used to establish the error bound.
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