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THE COVERING SEMIGROUP OF INVARIANT CONTROL
SYSTEMS ON LIE GROUPS

V́ıctor Ayala and Eyup Kizil

It is well known that the class of invariant control systems is really relevant both from
theoretical and practical point of view. This work was an attempt to connect an invariant
systems on a Lie group G with its covering space. Furthermore, to obtain algebraic properties
of this set. Let G be a Lie group with identity e and Σ ⊂ g a cone in the Lie algebra g of
G that satisfies the Lie algebra rank condition. We use a formalism developed by Sussmann,
to obtain an algebraic structure on the covering space Γ(Σ, x), x ∈ G introduced by Colonius,

Kizil and San Martin. This formalism provides a group bG(X) of exponential of Lie series and

a subsemigroup bS(X) ⊂ bG(X) that parametrizes the space of controls by means of a map due
to Chen, which assigns to each control a noncommutative formal power series. Then we prove
that Γ(Σ, e) is the intersection of bS(X) with the congruence classes determined by the kernel

of a homomorphism of bS(X).
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1. INTRODUCTION

An invariant control system Σ on a finite dimensional Lie group G is determined by a
family D of differential equations given by

D =

X0 +
m∑

j=1

ujXj : u ∈ U

 .

The drift vector field X0 and the control vectors X1, . . . , Xm are elements of the Lie
algebra g of G which we think of the set of right invariant vector fields here. We
consider U as the set of the admissible class of control that later will be formalized.

It is well known that this class of control systems is really relevant both from theoret-
ical and practical point of view. In fact, since the beginning of the 1970s many people
has been working in this kind of systems. We mention the first work in the subject by
Brockett, R. [4]. Then, several mathematician started to study this system on different
classes of Lie groups: Abelian, compact, nilpotent, solvable, semisimple, etc. We men-
tion some of them [1, 3, 8, 12, 13, 14, 16, 17, 19], see also [2]. As appointed by Professor

DOI: 10.14736/kyb-2016-6-0837

http://doi.org/10.14736/kyb-2016-6-0837


838 V. AYALA AND E. KIZIL

V. Jurdjevic, optimal control on Lie groups is a natural setting for geometry and me-
chanics, see [10, 11] and [18]. As a consequence, differential systems on Lie groups and
their homogeneous spaces deserves to be developed. For instance, the Dubins problem
[7], the brachistochrona problem [22], the control of the altitude of a satellite in orbit [9],
etc., are described by invariant control systems on some particular classes of Lie groups.

Due to the importance of Σ, any information about this class of system is important.
In particular, this paper deal with the connection between Σ and its covering space
Γ(Σ, x) for any x ∈ G. It is a preliminary theoretical work trying to establish some
algebraic properties of this set in order to obtain information on Σ in return. Certainly
new works in the subject will allow to show the importance of this natural connection
and in particular to get relevant consequences on Σ from this construction.

Given a state x ∈ G, the covering space Γ(Σ, x) for monotonic homotopy of trajec-
tories of conic control systems has been studied in [6] and topologically determined.
Actually, it has a smooth manifold structure. In this paper we show an algebraic con-
struction on this space to explore its properties with more details. Throughout the
article we consider a connected Lie group G with identity e as a state space and a cone
Σ ⊂ g in the Lie algebra g of G. In this case, we let E ⊂ g be the subspace spanned by Σ
in the space of right invariant vector fields in G. It follows that the standard concatena-
tion between trajectories of Σ defines a semigroup structure on the space of trajectories,
which is compatible with the topology of uniform convergence on trajectories (and hence
with the C1-topology). Thus for each x ∈ G, the space of regular trajectories R(Σ, x)
as well as its quotient Γ(Σ, x) turns out to be a topological semigroup. However, due to
the invariance of our vector fields we constrain our attention only to R(Σ, e) and Γ(Σ, e),
respectively.

We follow a general formalism based on exponential Lie series developed by Sussmann
[20]. The idea of this formalism consists of solving the differential equation of the
system formally by using indeterminate rather than the vector fields that describe Σ. To
each control there corresponds a noncommutative formal power series involving iterated
integrals. Actually, these series has been also considered in the literature as Chen series.
This formalism gives rise a ‘Lie group’ of exponential Lie series and a subsemigroup that
parametrizes control space. Then, the control system Σ may be regarded as an action
of this group together with the specification of its subsemigroup. The main goal of the
paper is to obtain Γ(Σ, e) as an appropriate quotients of the semigroup of formal power
series. More precisely, we prove that the covering semigroup Γ(Σ, e) may be viewed
as the intersection of the semigroup Ŝ(X) of formal power series with the congruence
classes determined by the kernel of the semigroup homomorphism

τ : Ŝ(X)→ Γ(Σ, e)

that assigns to each control u(·) -for which the corresponding formal series S belongs to
Ŝ(X)- the monotonic homotopy class of the induced Σ-trajectory.

2. PRELIMINARIES

This section is devoted to a general formalism of noncommuting formal power series of
control functions, which will be useful for our purposes. For further details we refer
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the reader to the papers [20, 21] by Sussmann. The purpose of the paper is to obtain
possible algebraic properties of the covering space Γ(Σ, x) recently introduced in [6]. The
relation is given through invariant control systems on Lie groups but we find convenient
to mention first some definitions and statements from our earlier paper.

In [6] we have considered on a Riemannian manifold M the following class of differ-
ential systems

dα

dt
∈ Σ(α(t))

where Σ is a convex cone in a finite dimensional linear space E. Let us denote by L(Σ)
the smallest Lie algebra containing Σ. The main assumptions are

i) E is endowed with an inner product 〈·, ·〉

ii) Σ is generating in the sense that it is not contained in a proper subspace of E, and

iii) Σ satisfies the Lie algebra rank condition which means that

L(Σ)(x) = TxM, for any x in M.

We denote by E the Banach space of essentially bounded and measurable controls
u : [0, 1] → E endowed with the ess sup-norm ||.||∞, and by U ⊂ E the convex cone
formed by the controls assuming their values strictly in Σ.

Given a control u : [0, 1] → Σ and an initial condition x ∈ M, the corresponding
trajectory trjx(u) : [0, 1] → M is the solution of the differential equation ẋ = u(t)(x).
That is, α = trjx(u) is an absolutely continuous curve in M such that α′ (t) ∈ Σ (α (t)).
Note that the domain of α can be taken as the unit interval [0, 1] due to the fact that
Σ is a cone which implies that the spaces of trajectories are similar for all finite T > 0
and hence we reparametrize them and define in [0, 1] rather than [0, T ].

We denote the end point of a trajectory α by ex(u) = trjx(u)(1) = α(1) so that we
have a well defined differentiable map ex : U → M . We use the notations T (Σ) for
the set of trajectories of Σ and T (Σ, x, y) for the space of trajectories starting at x and
ending at y.

In [6] a special attention is given on a subspace of trajectories of Σ called regular.
Roughly speaking, by a regular trajectory we understand a trajectory of Σ generated by
a regular control u which means that u ∈ int(U) and the differential d(ex)u of ex at u
is onto. We will use R(Σ), R(Σ, x) and R(Σ, x, y) to stand for the sets of the respective
regular trajectories.

An appropriate homotopy between regular trajectories has been defined in [6], as
follows:

Definition 2.1. Let α and β be two regular trajectories in R(Σ, x, y) for some x, y in
M . We say that α and β are monotonically homotopic (and write α 'm β), if there
exists a continuous map

ht : [0, 1]→ R(Σ, x, y), 0 ≤ t ≤ 1

such that h0 = α, h1 = β.
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Of course, a monotonic homotopy is a homotopy but the converse is not true in
general. Since monotonic homotopic defines an equivalence relation one may define a
covering of Σ as follows

Definition 2.2. Let Σ be a control system on M as above. Given an initial condition
x ∈M we define the control covering of Σ to be the set Γ(Σ, x) of equivalence classes of
monotonically homotopic trajectories in R(Σ, x), that is, Γ(Σ, x) = R(Σ, x)/ 'm.

It is known [6] that for a fixed x0 ∈M the set Γ(Σ, x0) is a differentiable manifold of
dimension n = dimM and that the projection εx0 : Γ(Σ, x0) → M which associates to
each homotopy class [α]m the end-point of its representative is a local diffeomorphism.
Actually the image of εx0 is the set of points in M accessible exclusively by regular
controls and hence contained in the interior intA (x0) of the accessible set from x0.

As is said before, we are going to relate the control covering space with the exponential
Lie series formalism through invariant control systems on Lie groups.

An invariant control system Σ on a Lie group G is determined by a family D of
differential equations given by

D =

X0 +
m∑

j=1

ujXj : u ∈ U

 .

The drift vector field X0 and the control vectors X1, . . . , Xm are elements of the Lie
algebra g of G which we think of the set of right invariant vector fields here.

We take Σ to be the cone in the Lie algebra g generated by X0, X1, . . . , Xm. By the
invariance of our vector fields it is enough to consider only Σ-trajectories starting at
the identity element e ∈ G and hence the sets R(Σ, e), Γ(Σ, e), etc. Note that the set
R(Σ, e) (and hence Γ(Σ, e)) becomes a topological semigroup by standard concatenation
between trajectories.

We quote below a brief exposition on a general formalism of power series. Given a
control function u ∈ U we use u1, . . . , um to denote its components. Let us denote by
X = (X0, X1, . . . , Xm) a finite sequence of indeterminates, by A(X) the free associative
algebra in X0, . . . , Xm and by Â(X) the power series algebra. In addition to the formal
power series in Â(X) one may consider truncated series. Hence, we also denote by An(X)
the free nilpotent associative algebra of step n+ 1, which is generated by monomials XI

for |I| ≤ n where |I| means the length of I. The canonical projection A(X) → An(X)
(resp. Â(X) → An(X)) is the truncation map denoted by t̂n (the same notation for
both). The kernel ker(t̂0) = Â0(X) of t̂0 is of particular importance and the exponential
map exp : Â0(X) → 1 + Â0(X) is a well defined bijection with inverse log. For the set
An

0 (X) determined by all elements of An(X) that are linear combinations of monomials
of degree greater than 0, the restricted exponential map expn : An

0 (X)→ 1 + An
0 (X) is

a bijection with inverse logn.
It is clear that each of the algebras A(X), An(X) and Â(X) becomes a Lie algebra

with the usual commutator rule [P,Q] = PQ − QP . In particular, we obtain the Lie
subalgebras L(X) ⊂ A(X) and Ln(X) ⊂ An(X) generated by X0, X1, . . . , Xm, and the
Lie algebra L̂(X) ⊂ Â(X) of Lie series in X0, X1, . . . , Xm.
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Let us consider P ∈ Â(X) and u ∈ Um. Denote by t(u) the terminal time of u. One
may formally consider the following differential equation in Â(X)

.

S(t) =

(
X0 +

m∑
i=1

uiXi

)
S

with the initial condition S(0) = P . A solution of the former equation is a Â(X)-valued
function t → S(t) such that S(0) = P . In particular, if P = 1 the solution contains
iterated integrals, see Sussmann’s paper, [20]. By a formal series Ser(u) of u we mean
the solution S(t(u)) with initial condition S(0) = 1. Without loss of generality, in the
sequel we consider formal series associated to regular controls rather than general control
functions since our previous results in [6] were obtained in this framework.

The space of controls is regarded as a semigroup under concatenation of controls and
the mapping Ser : Um → Â(X) that associates to a control the corresponding power
series is a one-to-one homomorphism of semigroups (see, Lemma 3.1, [20]). We denote
by Ŝ(X) the image Ser(Um) which is the semigroup of noncommuting formal power
series.

2.1. The group Ĝ(X) of exponential Lie series

The elements of Â(X) that are of the form exp(P ) for some P ∈ L̂(X) are called the
exponential Lie series in X0, X1, . . . , Xm, and form the set denoted by Ĝ(X). It follows
from the Campbell–Hasdorff formula that Ĝ(X) receives a group structure. However, the
group Ĝ(X) is an infinite dimensional Lie group while its truncated versions Gn(X) =
T̂n(Ĝ(X)) are connected simply connected and nilpotent Lie groups with Lie algebras
Ln(X) = t̂n(L(X)) = t̂n(L̂(X)). Hence, for any natural number n the exponential map
expn : Ln(X) → Gn(X) is a global diffeomorphism. We fix, once and for all, the
notations T̂n and t̂n for truncation maps on the group and algebra level, respectively.
Also, we denote by Tn : Gn(X)→ Gn−1(X) the corresponding truncation map between
truncated versions of Ĝ(X).

Since the group Ĝ(X) is not a finite dimensional Lie group it would be interesting
to focus on it at least as a topological group. Hence, we remind here the inverse limit
sequences which are frequently used in topology, and define this limiting process for
nilpotent approximations of Ĝ(X), as follows.

Definition 2.3. An inverse sequence of the groups Gn(X) and the mappings Tn is a
pair (Gn(X), Tn), which can be represented by means of the diagram

· · · Tn−1←− Gn−1(X) Tn←− Gn(X)
Tn+1←− · · · .

The projective limit

G∞(X) = {(g0, g1, . . .) : Tn(gn) = gn−1, for each n ∈ N}

of the inverse sequence (Gn(X), Tn) is a topological subgroup of the product group
ΠnGn(X). Furthermore, let (Hn, fn) be another inverse sequence of topological groups
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and continuous mappings. By a mapping Φ of (Hn, fn) to (Gn(X), Tn) we understand
a collection {ϕn} of continuous mappings ϕn : Hn → Gn(X) such that

ϕn−1 ◦ fn = Tn ◦ ϕn, for each n ∈ N.

We denote by P∞ the product topology on G∞(X) called the projective topology.
As we said before, the semigroup Ŝ(X) may be viewed as the control semigroup Um

embedded in Ĝ(X) since Ser(u) always belongs to Ĝ(X). It should be noted that we do
not assume here that the component u0 of u(·) to be identically 1 as it was in [20]. This
means that we take into account systems of the form

ẋ = ±X0(x) +
m∑

j=1

ujXj(x), x ∈ G

for which the mapping Ser is actually an injection of Ŝ(X) onto Ĝ(X).

2.2. Projective topology on Ĝ(X)

Let us first prove the following result

Proposition 2.4. The group Ĝ(X) of exponential of Lie series is topologically iso-
morphic to the projective limit of its nilpotent approximations. Hence, is a connected
topological group.

P r o o f . One may think of the group Ĝ(X) itself together with its identity map, say 1̂,
as an inverse system (Ĝ(X), 1̂) over a one element index set, and consider the mapping

Φ = {T̂n}n∈N : (Ĝ(X), 1̂)→ (Gn(X), Tn).

It follows that such a mapping induces an unique continuous mapping ϕ∞ : Ĝ(X) →
G∞(X) of the limits as follows. For each exp(P ) in Ĝ(X) the map ϕ∞ is defined by

ϕ∞(exp(P )) = (T̂1(exp(P ))), T̂2(exp(P )), . . .).

Clearly, ϕ∞ is indeed a topological isomorphism. Connectedness assertion should follow
from the fact that any connected topological group is generated by a neighborhood of
its identity element. �

Inverse sequences can be defined in general for sets with binary operations. Let Sern

be the finite version of the mapping Ser. Denote by Sn(X) = Sern(Um), the nilpotent
versions of the semigroup Ŝ(X). Hence, one can define in a similar way a projective
topology on the semigroup Ŝ(X) that actually coincides with the subspace topology of
Ĝ(X).
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3. QUOTIENT SEMIGROUPS OF Ŝ(X)

In this section we present the main result of the paper, namely, the covering semigroup
Γ(Σ, e) can be expressed as appropriate quotients of the semigroup Ŝ(X). We refer the
reader to the Ljapin´s book (see, Chap. VII, [15]) for the basic definitions and the
proposition listed below.

Definition 3.1. A relation ∼ in a semigroup S is said to be a congruence on S if it is
both right and left stable. That is, for any x, y ∈ S, x ∼ y implies xz ∼ yz and zx ∼ zy,
respectively, for every z in S.

Definition 3.2. Suppose that f is a homomorphism of the semigroup S onto the semi-
group H and that h is a homomorphism of H onto the semigroup T . We say that the ho-
momorphism f is a right divisor of the homomorphism g = hf defined by g(x) = h(f(x)),
x in S. Concerning g one says that it is divided on the right by f . We shall in this case
write f r g.

We note that only homomorphisms of one and the same semigroup can lie in the
relation of right divisibility r. If for the homomorphisms h1, h2 and h3 one has h1 r h2

and h2 r h3, then one has also h1 r h3 (transitivity of r).

Proposition 3.3. Let h1 and h2 be two homomorphism of a semigroup H. For h1 r h2

it is necessary and sufficient that if h1(x) = h1(y) for any x, y ∈ H, then h2(x) = h2(y).
On the other hand, if h1 and h2 are such that from h1(x) = h1(y) it always follows that
h2(x) = h2(y), then for the semigroup h1(H) one may define, uniquely, a homomorphism
f of it onto the semigroup h2(H) such that h2 = fh1. Thus, h1 r h2.

P r o o f . See [15]. �

We need for later references an appropriate version of the evaluation map ex0 in [6]
adopted to formal power series.

Definition 3.4. We define the evaluation map ê on Ĝ(X) to be the map ê : Ĝ(X)→ G

that sends a power series S ∈ Ĝ(X) to the end point of the trajectory induced by u ∈ Um

for which Ser(u) = S.

For our purposes it would be interesting if ê is an onto continuous homomorphism of
topological (semi)groups. Note that the image of ê is nothing else than the semigroup
SΣ(e) from the identity. Hence we state the following

Lemma 3.5. The evaluation map ê : Ĝ(X)→ G is an onto homomorphism of topolog-
ical groups which is continuous with respects to the projective topology on Ĝ(X).

P r o o f . Since Σ is a cone satisfying the Lie algebra rank condition then the map ê
is surjective. It follows that ê is a homomorphism since the concatenation of controls
leads concatenation of their respective trajectories. On the other hand, it is well known
that a homomorphism h : T1 → T2 of topological groups is continuous if and only if it is
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continuous at the identity eT1 of T1. Consequently, the map ê is continuous with respect
to the projective topology if and only if for any n ∈ N the restriction ên : Gn(X) → G
is continuous at the identity.

Now, given P ∈ L̂(X) we know that ê(exp(P )) = trj(u)(1), where trj(u) is the solution
of the differential equation

.

S = P · S in Ĝ(X) with the initial condition S(0) = 1. The
truncation map sends a solution of the former differential equation to a solution of the
same differential equation, regarded now as evolving in Gn(X). Being the solution of
a differential equation, ên is continuous at the identity for each n. This finishes the
proof. �

Suppose that h is any homomorphism of a semigroup H. It is well known that one
can define in H a relation c by putting

x c y if h(x) = h(y). (1)

Reflexivity, symmetry and transitivity of this relation are evident. The equivalence
c is called the equivalence corresponding to the given homomorphism h. It is also
clear that the equivalence c is two-side stable, and hence a congruence. This way,
to each homomorphism of the semigroup H there corresponds some two-sided stable
equivalence, i. e., a congruence. It follows that the set H/c of all c-classes is a semigroup,
called the quotient semigroup of the semigroup H modulo c. Moreover, there exists a
homomorphism π (in fact, the natural homomorphism of H onto H/c) to which the
equivalence (resp. congruence) c corresponds.

Suppose we are given two homomorphisms h1 and h2 of a semigroup H, and that
c1 and c2 are the corresponding equivalences (resp. congruences). It follows from the
Proposition 3.3 that if h2 r h1 holds for the homomorphisms, i. e., if h2 is a right divisor
of h1, then the equation h2(x) = h2(y) (x, y ∈ H) always implies h1(x) = h1(y), and
for the equivalence (resp. congruence) relations we have c2 ⊆ c1. Conversely, suppose
that c2 ⊆ c1. Therefore, for the homomorphisms h1 and h2 themselves, we find that for
some homomorphism ψ we have h1 = ψh2, i. e., h2 r h1. This means that the relation
r of right divisibility between homomorphisms is induced by the partial ordering of the
corresponding equivalences (resp. congruences). See [15] for further details.

It follows by means of the correspondence Um ' Ŝ(X) that the map trj : Um →
R(Σ, e) which associates to a control u its corresponding trajectory is a homomorphism
of the semigroup Ŝ(X). Similarly, if we compose trj with the canonical projection

π : R(Σ, e)→ Γ(Σ, e) = R(Σ, e)/ 'm

we obtain the mapping τ : Um → Γ(Σ, e) as a homomorphism of the same semigroup
Ŝ(X). Following the arguments mentioned above we define in Ŝ(X) a relation of con-
gruence hm by putting

S hm P if S ∈ P ker(τ), (2)

whenever S, P ∈ Ŝ(X). Analogously, in Ŝ(X) we also define a congruence h correspond-
ing to the homomorphism ê : Ŝ(X)→ SΣ(e) as follows:

S h P if S ∈ P ker(ê). (3)
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It turns out that from the standard theory of semigroups we obtain the following results
whose proof will be omitted.

Proposition 3.6. Let ê and τ denote the homomorphisms of the semigroup Ŝ(X) with
the corresponding congruences h and hm as above. Denote by π1 and π2 the natural
homomorphisms of Ŝ(X) onto Ŝ(X)/h and Ŝ(X)/hm, respectively. There exist the
isomorphisms ε1 : Ŝ(X)/h → SΣ(e) and ε2 : Ŝ(X)/hm → Γ(Σ, e) such that ê = ε1π1

and τ = ε2π2.

We have a simple corollary of the Proposition 3.3 as follows:

Lemma 3.7. Let ê and τ denote the two homomorphisms of the semigroup Ŝ(X) as
defined above. Then, the end-point mapping

ε : Γ(Σ, e)→ SΣ(e) ⊂ G defined by [γ]m → γ(1)

is the unique semigroup homomorphism of Γ(Σ, e) onto SΣ(e) such that ê = ετ .

P r o o f . Let S and P belong to Ŝ(X) and let α = trj(u) and β = trj(v) such that
S = Ser(u) and P = Ser(v). It follows that τ, ê ∈ Hom(Ŝ(X), ·) are such that

τ(S) = τ(P ) implies ê(S) = ê(P ).

Indeed, τ(S) = τ(P ) (or, equivalently S hm P ) means that α is monotonically homotopic
to β while ê(S) = ê(P ) (or, equivalent S h P ) says that they are homotopic as paths.
Since monotonic homotopy is a homotopy it is clear that τ(S) = τ(P ) always implies
ê(S) = ê(P ). By Proposition 3.3 the homomorphism f of τ(Ŝ(X)) onto ê(Ŝ(X)) such
that ê = fτ is uniquely defined. It follows that f = ε since ε already satisfies ê = ετ . �

However, for the end-point mapping ε : Γ(Σ, e) → SΣ(e) being an isomorphism it is
necessary and sufficient that if ê(S) = ê(P ) for any S, P ∈ Ŝ(X), then τ(S) = τ(P ). In
other word, ê r τ if homotopy of paths implies monotonic homotopy, which is in general
not true.

We have obtained up to now the semigroup Γ(Σ, e) of monotonic homotopy as the
factor semigroup Ŝ(X)/ ker(τ) and also the system semigroup SΣ(e) as the factor semi-
group Ŝ(X)/ ker(ê).

Now, we are willing to establish the main results of the paper.

Theorem 3.8. Keep the notations and assumptions as before. The covering semigroup
Γ(Σ, e) may be viewed as the intersection of the semigroup Ŝ(X) of formal power series
with the congruence classes determined by the kernel of the homomorphism τ of the
semigroup Ŝ(X) such that under the homomorphism ε one has hm ⊆ h. That is,

Γ(Σ, e) = Ŝ(X) ∩ [ker(τ)].

We also have Γ(Σ, e) = Ŝ(X)∩ [ker(ê)] such that h ⊆ hm whenever ε is an isomorphism.
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4. CONCLUSION

The main results of the paper in Theorem 3.8 shows a way to compute the covering
semigroup of an invariant control system through the formal power series associated to
the semigroup of the system. It is a preliminary theoretical work trying to establish
some algebraic properties of this set in order to obtain information of the system in
return. At this point, we are not able to exhibit examples. However, we hope that new
works in the subject will allow to show the importance of this natural connection and
in particular to get relevant information on the system from this construction.
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No. 116C081.

R E F E R E N C E S

[1] V. Ayala: Controllability of Nilpotent Systems. Banach Center Publications. Polish
Academy of Sciences 32 (1995), 35–46. DOI:10.4064/bc106-0-3

[2] V. Ayala, L. San Martin, and R. Ribeiro: Controllability on Sl(2,C) with restricted
controls. SIAM J. Control Optim. 52 (2014), 2548–2567. DOI:10.1137/130943662

[3] B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet: Transitivity of families of invariant
vector fields on semi-direct product of Lie groups. Trans. Amer. Math. Soc. 271 (1982),
521–535. DOI:10.1090/s0002-9947-1982-0654849-4

[4] R. Brockett: System theory on groups and coset spaces. SIAM J. Control 1 (1972),
265–284. DOI:10.1137/0310021

[5] K. Chen: Integration of paths, geometric invariants and a generalized Baker–Hausdorff
formula. Ann. Math. 65 (1975), 163–178. DOI:10.2307/1969671

[6] F. Colonius, E. Kizil, and L. San Martin: Covering space for monotonic homo-
topy of trajectories of control systems. J. Differential Equations 216 (2005), 324–353.
DOI:10.1016/j.jde.2005.02.021

[7] L. Dubins: On curves of minimal lengths with a constrains on average curvature and with
prescribed initial and terminal positions and tangents. Am. J. Math. 79 (1957), 3, 497.
DOI:10.2307/2372560

[8] J. Hilgert, K. Hofmann, and J. Lawson: Controllability of systems on a nilpotent Lie
group. Beitrage Algebra Geometrie 20 (1985), 185–190.

[9] A. Isidori: Nonlinear Control Systems. Springer-Verlag, 1995. DOI:10.1007/978-1-84628-
615-5

[10] V. Jurdjevic: Geometric Control Theory. Cambridge University Press, 1997.
DOI:10.1017/cbo9780511530036

[11] V. Jurdjevic: Optimal control problem on Lie groups: crossroads between geometry
and mechanics. In: Geometry of Feedback and Optimal Control (B. Jakubczyk and W.
Respondek, eds.), New York, Marcel Dekker 1997.

http://dx.doi.org/10.4064/bc106-0-3
http://dx.doi.org/10.1137/130943662
http://dx.doi.org/10.1090/s0002-9947-1982-0654849-4
http://dx.doi.org/10.1137/0310021
http://dx.doi.org/10.2307/1969671
http://dx.doi.org/10.1016/j.jde.2005.02.021
http://dx.doi.org/10.2307/2372560
http://dx.doi.org/10.1007/978-1-84628-615-5
http://dx.doi.org/10.1007/978-1-84628-615-5
http://dx.doi.org/10.1017/cbo9780511530036


The covering semigroup of invariant control systems on Lie groups 847

[12] V. Jurdjevic and I. Kupka: Control systems on semi-simple Lie groups and their homoge-
neous spaces. Ann. Inst. Fourier, Grenoble 31 (1981), 151–179. DOI:10.5802/aif.853

[13] V. Jurdjevic and H. Sussmann: Control systems on Lie groups. J. Differential Equations
12 (1972), 313–329. DOI:10.1016/0022-0396(72)90035-6

[14] C. Lobry: Controlabilite des systemes non lineaires. SIAM J. Control Optim. 8 (1970), 4,
573–605. DOI:10.1137/0308042

[15] E. Ljapin: Semigroups. Trans. Math. Monographs 3, American Mathematical Society
1963. DOI:10.1090/trans2/027/17

[16] D. Mittenhuber: Controllability of systems on solvable Lie groups: the generic case. J.
Dynam. Control Systems 7 (2001), 61–75. DOI:10.1023/a:1026697622549

[17] Y.L. Sachkov: Controllability of right-invariant systems on solvable Lie groups. J. Dynam.
Control Systems 3 (1997), 531–564. DOI:10.1007/bf02463282

[18] Y.L. Sachkov: Controllability of invariant systems on Lie groups and homogeneous
spaces. Dynamical systems 8, J. Math. Sci. (New York), 100 (2000), 4, 2355–2427.
DOI:10.1007/s10958-000-0002-8

[19] L. San Martin and P. Tonelli: Semigroup actions on homogeneous spaces. Semigroup
Forum 14 (1994), 1–30.

[20] H. Sussmann: Lie brackets and local controllability: A sufficient condition for scalar-input
systems. SIAM J. Control Optim. 21 (1983), 5, 686–713.

[21] H. Sussmann: A general theorem on local controllability. SIAM J. Control Optim. 25
(1987), 158–194. DOI:10.1137/0325011

[22] H. Sussmann and C. Willems: 300 years of optimal control: From the brachystochrone to
the maximum principle. IEEE Constrol Systems Magazine 17 (1997), 3, 32–44.

Vı́ctor Ayala, Instituto de Alta Investigación, Universidad de Tarapacá. Casilla 7D,
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