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Abstract

A dependence measure for arbitrary type pairs of random variables is proposed and analyzed, which in
the particular case where both random variables are continuous turns out to be a concordance measure.
Also, a sample version of the proposed dependence measure based on the empirical subcopula is provided,
along with an R package to perform the corresponding calculations.
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1 Introduction

If (X,Y ) is a bivariate random vector with joint probability distribution FX,Y (x, y) = P (X ≤ x, Y ≤ y), the
outstanding theorem by Sklar (1959) ensures that there exists a unique functional relationship S between
FX,Y and its marginal univariate probability distribution functions FX(x) = P (X ≤ x) and FY (y) = P (Y ≤
y), such that:

FX,Y (x, y) = S(FX(x), FY (y)) , x, y ∈ R = [−∞,+∞]. (1)

Since the ranges of FX,Y , FX , and FY are subsets of the unit interval I = [0, 1] which at least include 0 and
1 then S is a function with domain Ran FX ×Ran FY ⊆ I 2 and range a subset of I which at least includes
0 and 1. As an immediate consequence of (1) we obtain:

a) 0 = FX,Y (−∞, y) = S(FX(−∞), FY (y)) = S(0, v) where v ∈ Ran FY , and analogously S(u, 0) = 0 for
u ∈ Ran FX .

b) FY (y) = FX,Y (+∞, y) = S(FX(+∞), FY (y)) = S(1, v) where v = FY (y), and analogously S(u, 1) = u
where u = FX(x) for some x ∈ R.

c) 0 ≤ P (x1 < X ≤ x2 , y1 < Y ≤ y2) = FX,Y (x2, y2) − FX,Y (x2, y1) − FX,Y (x1, y2) + FX,Y (x1, y1) and
therefore by (1) we have that S(u2, v2)− S(u2, v1)− S(u1, v2) + S(u1, v1) ≥ 0 where ui = FX(xi) and
vi = FY (yi) for i = 1, 2.

Definition 1 A bivariate subcopula (or 2-subcopula) is a function S : D1 ×D2 → I, where {0, 1} ⊆ Di ⊆ I
(i = 1, 2), such that for all u, v ∈ I :

a) S(u, 0) = 0 = S(0, v);

b) S(u, 1) = u and S(1, v) = v ;

c) S(u2, v2)− S(u2, v1)− S(u1, v2) + S(u1, v1) ≥ 0 where u1 ≤ u2 and v1 ≤ v2 .
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Therefore the unique functional relationship S in (1) is a subcopula. In the particular case when the domain
of a bivariate subcopula is D1 ×D2 = I 2 then it is called bivariate copula (or 2-copula). This will be the
case when both X and Y are continuous random variables, but in any other case D1 ×D2 will be a proper
subset of I 2. Any subcopula which is not a copula may be extended to a copula in a non-unique way, see for
example Lemma 2.3.5 in Nelsen (2006). Every subcopula S is bounded by the Fréchet-Hoeffding bounds:

W (u, v) ≤ S(u, v) ≤M(u, v) (2)

where W (u, v) = max{u + v − 1, 0} and M(u, v) = min{u, v} are copulas which may be restricted to
subcopulas with the same domain as subcopula S, denoted by WS and MS , respectively. Recalling that X
and Y are independent random variables (of any kind) if and only if FX,Y (x, y) = FX(x)FY (y), the unique
underlying subcopula for such random vector (X,Y ) according to (1) would be S(u, v) = uv where the
domain of S would be Ran FX ×Ran FY . It is common to use the notation Π(u, v) = uv which is a copula
that may also be restricted to any subcopula domain, for example ΠS as in the notation introduced before.
As an immediate consequence of Theorems 2.5.4 and 2.5.5 in Nelsen (2006) we obtain the following:

Corollary 1 Let (X,Y ) be a random vector such that Y = g(X) for some function g, and let S be its unique
underlying subcopula according to (1).

a) S = MS if and only if g is almost surely nondecreasing on RanX.

b) S = WS if and only if g is almost surely nonincreasing on RanX.

In the particular case X and Y are continuous random variables, as explained in Nelsen (2006):

When X and Y are continuous, the support of their joint distribution function can have no
horizontal or vertical segments, and in this case it is common to say that “Y is almost surely [a
strictly] increasing function of X” if and only if the copula of X and Y is M ; and “Y is almost
surely a [strictly] decreasing function of X” if and only if the copula of X and Y is W.

As discussed in Nešlehová (2007) and Genest and Nešlehová (2007) for continuous random variables many
dependence concepts and measures of association can be expressed in terms of the unique underlying copula
only and thus independently from the marginal distributions. This interrelationship fails as soon as there
are discontinuities in the marginal distribution functions: the possibility of ties that results from atoms in
the probability distributions invalidates various familiar relations that lie at the root of copula theory in the
continuous case, and so neither the axiomatic definition for a concordance measure by Scarsini (1984) nor
the use of the concordance function is clear. Moreover, as stated in Nešlehová (2007):

The fact that marginal distributions functions take influence upon the dependence structure
is characteristic for non-continuous distributions. In the case of concordance measures, this
“nuissance” causes difficulties: the measures typically do not reach the bounds ±1 for counter-
monotonic and comonotonic marginals.

The probabilistic definitions of popular concordance measures (such as Kendall or Spearman) do not account
for ties, so modified versions of their theoretical and empirical definitions are needed, see: Denuit and
Lambert (2005), Nešlehová (2007), and Genest et al.(2014); but the way to define them is non-unique since
they are based on non-unique extensions of subcopulas to copulas. The main contribution of the present
work is to propose a dependence measure based directly on the unique underlying subcopula, regardless of
the random variable types in a bivariate random vector (X,Y ). Since a copula C is a particular case of
subcopula, such proposal turns out to be a concordance measure for a pair of continuous random variables
that is related to the L∞ distance between C and Π in an similar way as Spearman’s concordance measure
is related to the L1 distance between C and Π known as Schweizer and Wolff (1981) dependence measure.
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2 A monotone dependence measure

Let S : D1 × D2 → I be the unique underlying subcopula for a random vector (X,Y ) of arbitrary type
random variables accordingly to (1), where {0, 1}2 ⊆ D1 ×D2 = Ran FX × Ran FY ⊆ I 2.

Definition 2 (Adapted from Lehmann 1966 and Nelsen 2006). Two random variables X and Y will be
called positively quadrant dependent (PQD) if P (X ≤ x , Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y), which by (1) is
equivalent to S(u, v) ≥ ΠS(u, v) for all (u, v) ∈ D1 ×D2. Negative quadrant dependence (NQD) is defined
analogously by reversing the sense of the inequalities, that is S(u, v) ≤ ΠS(u, v) for all (u, v) ∈ D1 ×D2.

Proposition 1 Let A be the set of all bivariate subcopulas. The function d : A → R defined by

d(S) := sup
DomS

{S −ΠS} − sup
DomS

{ΠS − S} , S ∈ A (3)

has the following properties:

a) d(ΠS) = 0 ;

b) −1
4 ≤ d(WS) ≤ 0 ≤ d(MS) ≤ 1

4 ;

c) d(WS) ≤ d(S) ≤ d(MS) ;

d) |d(S)| = 1
4 if and only if (12 ,

1
2) ∈ DomS ;

e) if X and Y are PQD (respectively NQD) then d(S) ≥ 0 (respectively d(S) ≤ 0) ;

f) if S1, S2 ∈ A such that DomS1 = D = DomS2 and S1 � S2 then d(S1) ≤ d(S2).

Proof:

a) It follows immediately from the definition.

b) Elementary calculations can show that for a function h : I 2 → R defined by h(u, v) := M(u, v)−uv ≥ 0
we have that maxh = 1

4 = h(12 ,
1
2) and h(u, v) < 1

4 for (u, v) 6= (12 ,
1
2) , and therefore

0
by (2)

≤ d(MS) = sup
DomS

{MS −ΠS} − 0


= 1

4 if (12 ,
1
2) ∈ DomS

< 1
4 if (12 ,

1
2) /∈ DomS

and an analogous result follows using g(u, v) := W (u, v) − uv ≤ 0 since min g = −1
4 = g(12 ,

1
2) and

g(u, v) > −1
4 for (u, v) 6= (12 ,

1
2) .

c) From (2) we get S −ΠS �MS −ΠS and then

d(S) ≤ sup
DomS

{S −ΠS} ≤ sup
DomS

{MS −ΠS} − 0 = sup
DomS

{MS −ΠS} − sup
DomS

{ΠS −MS} = d(MS)

and an analogous reasoning leads to d(WS) ≤ d(S).

d) It follows immediately from the arguments to prove b) and c).

e) If X and Y are PQD then their underlying unique subcopula S � ΠS and therefore supDomS{ΠS−S} =
0 so we conclude from the definition that d(S) ≥ 0. Case NQD is analogous.

f) If S1 ≤ S2 then supD{S2 − ΠD} ≥ supD{S1 − ΠD} and − supD{ΠD − S2} ≥ − supD{ΠD − S1} , and
by adding left and right sides of these two inequalities we obtain d(S2) ≥ d(S1). ���
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Definition 3 The monotone dependence measure for arbitrary type random variables X and Y with un-
derlying subcopula S will be denoted and defined as:

µX,Y ≡ µ(S) :=


d(S)/d(MS) if d(S) ≥ 0 and MS 6= ΠS ,
−d(S)/d(WS) if d(S) ≤ 0 and WS 6= ΠS ,

0 if WS = ΠS = MS .

Notice that WS = ΠS = MS will occur if and only if DomS = {0, 1}× {0, 1}, and that would be the case of
a pair of constant random variables, so in what follows we will not consider this trivial case. The expression
monotone dependence measure is not new, it is being used in a similar way as in Cifarelli et al.(1996).

Theorem 1 The monotone dependence measure satisfies the following properties:

a) µX,Y is defined for every pair of arbitrary type random variables;

b) −1 ≤ µX,Y ≤ +1 , µX,X = +1 , and µX,−X = −1 ;

c) µX,Y = µY,X ;

d) if X,Y are independent then µX,Y = 0 ;

e) if µX,Y 6= 0 then µX,Y has opposite sign to µX,−Y and µ−X,Y ;

f) if S1, S2 are subcopulas such that DomS1 = D = DomS2 and S1 � S2 then µ(S1) ≤ µ(S2) ;

g) if P [Y = ϕ(X)] = 1 with ϕ nondecreasing (respectively nonincreasing) then µX,Y = +1 (respectively
µX,Y = −1) ;

h) if X and Y are PQD (respectively NQD) then µX,Y ≥ 0 (respectively µX,Y ≤ 0).

Proof:

a) An immediate consequence of Sklar’s theorem (1) since µX,Y is defined in terms of the unique under-
lying subcopula S.

b) If d(S) ≥ 0 then by Definition 3 we have that µX,Y = d(S)/d(MS) and applying Proposition 1 c) we
get µX,Y ≤ +1. Similarly, if d(S) ≤ 0 then µX,Y = −d(S)/d(WS) and by Proposition 1 b) and c) we
now get µX,Y ≥ −1. Now by Corollary 1 using Y = X we have that the underlying subcopula for
(X,X) is S = MS so d(S) = d(MS) ≥ 0 and therefore µX,X = d(MS)/d(MS) = +1. Similarly, using
Y = −X we have that the underlying subcopula for (X,−X) is S = WS so d(S) = d(WS) ≤ 0 and
therefore µX,−X = −d(WS)/d(WS) = −1.

c) Straightforward by applying Sklar’s theorem to the fact that FX,Y (x, y) = P ({X ≤ x} ∩ {Y ≤ y}) =
P ({Y ≤ y} ∩ {X ≤ x}) = FY,X(y, x).

d) If X and Y are independent then FX,Y (x, y) = FX(x)FY (y) and by Sklar’s theorem their unique
underlying subcopula is S = ΠS so by Proposition 1a we have d(S) = 0 and therefore µX,Y = 0.

e) It will suffice to prove that d(SX,−Y ) = −d(SX,Y ) where SX,Y and SX,−Y are the unique underlying
copulas for (X,Y ) and (X,−Y ), respectively.

F−Y (y) = P (−Y ≤ y) = P (Y ≥ −y) = 1− FY (−y) + P (Y = −y) = 1− FY ((−y)−) (4)

where FY ((−y)−) = limz→(−y)− FY (z) is a left-hand limit at −y, and so

RanF−Y = {F−Y (y) : y ∈ R} = {1− FY (y−) : y ∈ R} . (5)
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Let SX,Y : RanFX ×RanFY → I be the unique underlying subcopula for (X,Y ), and also let SX,−Y :
RanFX × RanF−Y → I be the unique underlying subcopula for (X,−Y ). Then:

SX,−Y
(
FX(x), F−Y (y)

) Sklar
= FX,−Y (x, y) = P (X ≤ x,−Y ≤ y) = P (X ≤ x, Y ≥ −y)

= P (X ≤ x)− lim
z→(−y)−

P (X ≤ x, Y ≤ z)

= FX(x)− FX,Y
(
x, (−y)−

)
Sklar
= FX(x)− SX,Y

(
FX(x), FY ((−y)−)

)
(4)
= FX(x)− SX,Y

(
FX(x), 1− F−Y (y)

)
.

If we define u := FX(x) and v := F−Y (y) in this last result we get:

SX,−Y (u, v) = u − SX,Y (u, 1− v) (6)

where u ∈ RanFX and v must satisfy:

v ∈ RanF−Y and 1− v ∈ RanFY , (7)

which implies that v ∈ RanF−Y = {1−FY (y−) : y ∈ R} and that v ∈ Ran(1−FY ) := {1−FY (y) : y ∈
R}, where RanF−Y = Ran(1−FY ) = I if Y is a continuous random variable, otherwise the symmetric
difference RanF−Y 4Ran(1−FY ) is at most countable, in which case both sides of (6) can be properly
defined over the domain RanX × D where the set D is the closure of RanF−Y ∩ Ran(1 − FY ), by
taking adequate limits. Finally:

d(SX,−Y ) = sup
(u,v)∈D

{SX,−Y (u, v)− uv} − sup
(u,v)∈D

{uv − SX,−Y (u, v)}

(6)
= sup

(u,v)∈D
{u− SX,Y (u, 1− v)− uv} − sup

(u,v)∈D
{uv − u+ SX,Y (u, 1− v)}

= sup
(u,v)∈D

{u(1− v)− SX,Y (u, 1− v)} − sup
(u,v)∈D

{SX,Y (u, 1− v)− u(1− v)}

= −d(SX,Y ).

f) An immediate consequence of Proposition 1f and Definition 3.

g) Applying Corollary 1, if ϕ is almost surely nondecreasing then the underlying subcopula for (X,Y )
is S = MS so d(S) = d(MS) ≥ 0 and therefore µX,Y = d(MS)/d(MS) = +1. Similarly, if ϕ is almost
surely nonincreasing then the underlying subcopula for (X,Y ) is S = WS so d(S) = d(WS) ≤ 0 and
therefore µX,Y = −d(WS)/d(WS) = −1.

h) An immediate consequence of Proposition 1e and Definition 3. ���

Corollary 2 If X and Y are continuous random variables with unique underlying copula C then:

a) µX,Y ≡ µ(C) = 4
(

max I 2{C −Π} − max I 2{Π− C}
)

;

b) µ is a measure of concordance.

Proof:

a) An immediate consequence from Proposition 1 and Definition 3 since d(M) = 1
4 = d(W ), and the fact

that C is a continuous function with domain the compact set I 2.
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b) Theorem 1 includes all the properties for a measure of concordance required by Definition 5.1.7 in
Nelsen (2006) except the following one: if {(Xn, Yn)} is a sequence of continuous random variables
with copulas Cn, and if {Cn} converges pointwise to C, then limn→∞ µ(Cn) = µ(C), but this is
straightforward to prove since all copulas are continuous with domain the compact set I 2, and so we
may exchange maximum and limit. ���

From Nelsen (2006), in the particular case of copulas the L∞ distance between C and Π is given by

Λ(C) = 4 sup
I2

∣∣C − Π
∣∣, (8)

and therefore if C is a member of a totally ordered (with respect to the concordance ordering �) copula
family that includes Π then Λ(C) = |µ(C)|, in a similar way as σ(C) = |ρ(C)| where σ is Schweizer and
Wolff (1981) dependence measure and ρ is Spearman’s concordance measure:

σ(C) = 12

∫∫
I 2
|C(u, v)− uv| dudv , ρ(C) = 12

∫∫
I 2

[C(u, v)− uv] dudv . (9)

3 Examples

Let (X,Y ) be a random vector of arbitrary type random variables with joint distribution function

FXY (x, y |α, θ1, θ2) = Sα
(
FX(x | θ1) , FY (y | θ2)

)
(10)

where (α, θ1, θ2) belongs to some parametric space, and where accordingly to (1) we have that the function
Sα : RanFX × RanFY → I is the unique underlying subcopula with parameter α ; and θ1 and θ2 are
marginal parameters of X and Y, respectively. If both X and Y are continuous random variables then
RanFX = I = RanFY , which implies that the domain of Sα is I 2 and therefore Sα would be, in fact, a
copula. In this particular case, the value of µX,Y will be only a function of the subcopula parameter α.
In case one of the random variables is non-continuous, say X, then RanFX is a proper subset of I which
depends on the marginal parameter θ1 and therefore µX,Y will be a function of α and (possibly) θ1. And of
course if both random variables are non-continuous the value of µX,Y will be a function of α and (possibly)
of θ1 and/or θ2.

Example 1 Consider a bivariate random vector (X,Y ) where X and Y are Bernoulli random variables with
parameters 0 < θ1 < 1 and 0 < θ2 < 1, respectively, and dependence parameter α = P (X = 1, Y = 1). We
may summarize its joint probability mass function P (X = x, Y = y) as:

P (X = x, Y = y) Y = 0 Y = 1 P (X = x)

X = 0 1 + α− θ1 − θ2 θ2 − α 1− θ1
X = 1 θ1 − α α θ1

P (Y = y) 1− θ2 θ2

(11)

where by Fréchet-Hoeffding bounds max{θ1 + θ2 − 1, 0} ≤ α ≤ min{θ1, θ2}, X and Y are independent
if and only if α = θ1θ2, and PQD/NQD if α ≥ θ1θ2 or α ≤ θ1θ2, respectively. In this case the unique
underlying subcopula S : D1 × D2 → I is determined by D1 = {0, 1 − θ1, 1}, D2 = {0, 1 − θ2, 1}, and
S(1− θ1, 1− θ2) = 1 +α− θ1− θ2 since the other 8 subcopula values are determined by boundary conditions
a) and b) in Definition 1:

S(u, v) v = 0 v = 1− θ2 v = 1

u = 0 0 0 0

u = 1− θ1 0 1 + α− θ1 − θ2 1− θ1
u = 1 0 1− θ2 1

(12)
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Then d(S) = α− θ1θ2 and

d(MS) =


θ2(1− θ1) , θ1 ≥ θ2

θ1(1− θ2) , θ1 ≤ θ2
(13)

− d(WS) =


θ1θ2 , θ2 ≤ 1− θ1

(1− θ1)(1− θ2) , θ2 ≥ 1− θ1
(14)

Therefore applying Definition 3:

µX,Y =


(α− θ1θ2)/θ2(1− θ1) , θ2 ≤ θ1 , α ≥ θ1θ2
(α− θ1θ2)/θ1(1− θ2) , θ2 ≥ θ1 , α ≥ θ1θ2
(α− θ1θ2)/θ1θ2 , θ2 ≤ 1− θ1 , α ≤ θ1θ2
(α− θ1θ2)/(1− θ1)(1− θ2) , θ2 ≥ 1− θ1 , α ≤ θ1θ2

(15)

It is straightforward to obtain Cov(X,Y ) = α− θ1θ2 = d(S), and therefore Pearson’s correlation coefficient
rX,Y = (α− θ1θ2)/

√
θ1(1− θ1)θ2(1− θ2). In Table 1 it is compared µX,Y versus rX,Y under extreme values

of α and independence:

α condition interpretation µX,Y rX,Y
min{θ1, θ2} θ1 6= θ2 P (Y ≥ X) = 1 +1 < +1
min{θ1, θ2} θ1 = θ2 P (Y = X) = 1 +1 +1

θ1θ2 none X and Y independent 0 0
max{θ1 + θ2 − 1, 0} θ2 > 1− θ1 P (Y ≥ 1−X) = 1 −1 > −1
max{θ1 + θ2 − 1, 0} θ2 < 1− θ1 P (Y ≤ 1−X) = 1 −1 > −1
max{θ1 + θ2 − 1, 0} θ2 = 1− θ1 P (Y = 1−X) = 1 −1 −1

Table 1: Comparing monotone dependence measure versus Pearson’s correlation in Example 1.

Example 2 Let (X,Y ) be a random vector with joint probability distribution function:

FX,Y (x, y |α, θ) = αmin{1− x−1, 1− (1− θ)byc}+ (1− α)(1− x−1)[1− (1− θ)byc] , x > 1, y ≥ 1 (16)

with parameters 0 ≤ α ≤ 1 and 0 < θ < 1, and where byc stands for the maximum integer less than or equal
to y. By marginalization it is straighforward to verify that X is a continuous random variable Pareto(1, 1)
and Y is a discrete Geometric(θ) random variable since FX(x) = FX,Y (x,+∞) = 1 − x−1, x > 1, and
FY (y | θ) = FX,Y (+∞, y) = 1− (1− θ)byc, y ≥ 1, and by (10) it is obtained:

FX,Y (x, y |α, θ) = Sα
(
FX(x) , FY (y | θ)

)
, x > 1, y ≥ 1 (17)

with underlying subcopula Sα : RanFX × RanFY → I 2, where RanFX = I and RanFY = {1 − (1 − θ)k :
k = 0, 1, . . .} ∪ {1} ⊂ I, given by:

Sα(u, v) = αmin{u, v} + (1− α)uv = αM(u, v) + (1− α)Π(u, v) , (18)

that is, subcopula Sα is a convex linear combination of copulas M and Π restricted to RanFX × RanFY ,
where S0 = Π and S1 = M. Recalling (2) we have that Π ≤ M which in this example implies Sα ≥ Π and
therefore:

d(Sα) = sup
DomSα

{Sα(u, v) − ΠSα(u, v) } − 0

= sup
DomSα

{α[M(u, v)−Π(u, v) ] } = α sup
DomSα

{M(u, v)−Π(u, v) }

= αd(MSα)

7



and consequently µX,Y = d(Sα)/d(MSα) = α. It should be noticed that despite Y is a discrete random
variable its parameter θ does not have an influence on µX,Y in this case. In this example it is not possible
to calculate Pearson’s correlation since first moment of X does not exist. ���

Example 3 Let (X,Y ) be a random vector of continuous random variables. In this case the unique
underlying subcopula in (10) is, in fact, a copula, and therefore the value µX,Y will only depend on it,
independently of the marginal distributions of X and Y. For continuous random variables, copula based
concordance measures such as Kendall’s τX,Y and Spearman’s ρX,Y are uniquely determined by:

τX,Y = 4

∫∫
I 2
Cθ(u, v) dCθ(u, v)− 1 , ρX,Y = 12

∫∫
I 2
Cθ(u, v) dudv − 3 ,

and will be compared to the proposed monotone dependence µX,Y under the Clayton family of copulas:

Cθ(u, v) =
[

max(u−θ + v−θ − 1, 0)
]−1/θ

, θ ∈ [−1,+∞[ \{0}

where C−1 = W, C0 = Π and C∞ = M. For Clayton copula with parameter θ it is possible to obtain
explicitly τX,Y = θ/(θ + 2), but for ρX,Y a numerical approximation is required, which in this example is
done by the copula R package by Hofert et al.(2016). There is no explicit expression for µX,Y in this case,
so to calculate it as in Corollary 2 a numerical maximization is performed applying the nlm function by the
R Core Team (2016). See Figure 1.
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Figure 1: Monotone dependence µX,Y (solid line), Kendall’s τX,Y (dashed line), and Spearman’s ρX,Y (dotted
line) in Example 3.

The Clayton family of copulas was chosen as an example because it is comprehensive (includes W, Π, and
M) and therefore all values in the [−1, 1] interval may be reached for concordance measures with appropriate
values of its parameter θ. As illustrated in Figure 1 the behavior of µX,Y is similar to τX,Y and ρX,Y .
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4 Empirical subcopula

Consider a bivariate random vector (X,Y ) where the random variables X and Y may be discrete, continuous
or mixed type, not necessarily both of the same kind. Let {(x1, y1), . . . , (xn, yn)} denote a size n sample of
observations from (X,Y ). Since there may be repeated values among {x1, . . . , xn} let {r1, . . . , rm1} be the
set of distinct observed values of X in the sample such that r1 < · · · < rm1 , where m1 ≤ n, and analogously
let {s1, . . . , sm2} be the ordered set of distinct observed values among {y1, . . . , yn}, where m2 ≤ n.

Let p1i be the proportion of the observed values of X that are equal to ri and p2j the proportion of the
observed values of Y that are equal to sj , that is:

p1i :=
1

n

n∑
k=1

1{xk = ri} , i ∈ {1, . . . ,m1} , p2j :=
1

n

n∑
k=1

1{yk = sj} , j ∈ {1, . . . ,m2} , (19)

where clearly p1i > 0 and p2j > 0, and also
∑m1

i=1 p1i = 1 and
∑m2

j=1 p2j = 1. Now define the sets D1 =
{q10, q11, . . . , q1m1} and D2 = {q20, q21, . . . , q2m2} where q10 = 0 = q20 and

q1i :=

i∑
k=1

p1k , i ∈ {1, . . . ,m1} , q2j :=

j∑
k=1

p2k , j ∈ {1, . . . ,m2} , (20)

where clearly 0 = q10 < q11 < · · · < q1,m1−1 < q1m1 = 1 and 0 = q20 < q21 < · · · < q2,m2−1 < q2m2 = 1. Then
the set D1×D2 is suitable as domain for a subcopula as in Definition 1. Let the function Sn : D1×D2 → I
be defined as Sn(q10, q2j) := 0 =: S(q1i, q20) for all i and j, and

Sn(q1i, q2j) :=
1

n

n∑
k=1

1{xk ≤ ri , yk ≤ sj} , i ∈ {1, . . . ,m1} , j ∈ {1, . . . ,m2} , (21)

then it is straightforward to verify that Sn is a subcopula and therefore we will call it empirical subcopula
associated to the observed sample {(x1, y1), . . . , (xn, yn)}. It should be noticed that the usual empirical joint
distribution Fn(ri, sj) = 1

n

∑n
k=1 1{xk ≤ ri , yk ≤ sj} = Sn(q1i, q2j), that is Fn and Sn have the same range,

but different domain since Fn : R2 → I. It is possible then to calculate (3) as:

d(Sn) = max{Sn(q1i, q2j)−q1iq2j : q1i ∈ D1, q2j ∈ D2}−max{q1iq2j−Sn(q1i, q2j) : q1i ∈ D1, q2j ∈ D2} (22)

and therefore a sample version of the monotone dependence measure would be µ(Sn) which is calculated
accordingly to Definition 3 and (22).

In the particular case where X and Y are both continuous random variables, an observed bivariate sample
{(x1, y1), . . . , (xn, yn)} will contain non repeated values, and then m1 = n = m2, ri = x(i) and sj = y(j)
(where x(i) stands for the i-th order statistic), p1i = 1

n = p2j for all i and j, q1i = i
n and q2j = j

n , and

D1 = In = D2 where In = {0, 1n , . . . ,
n−1
n , 1}. In this case the empirical subcopula Sn : I 2n → I defined in

(21) would be equivalent to:

Sn

( i
n
,
j

n

)
=

1

n

n∑
k=1

1{xk ≤ x(i) , yk ≤ y(j)} (23)

and Sn( in , 0) = 0 = Sn(0, jn), which agrees with the usual definition of empirical copula for continuous
random variables, see Definition 5.6.1 in Nelsen (2006). The expression “empirical copula” is somehow
misleading since it is a subcopula with finite support I 2n, but not a copula. Of course, empirical subcopula
(23) may be extended in a non-unique way to a copula, for example by bilinear interpolation as in Lemma
2.3.5 in Nelsen (2006), which is also known as checkerboard copula, see Li et al.(1997) or Durante and Sempi
(2016).
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Consequently, for observations from a pair of continuous random variables (22) becomes:

d(Sn) = max

{
Sn

( i
n
,
j

n

)
− ij

n2
: i, j ∈ {0, . . . , n}

}
− max

{
ij

n2
− Sn

( i
n
,
j

n

)
: i, j ∈ {0, . . . , n}

}
(24)

and by elementary calculations:

− d(WSn) = d(MSn) =


1
4 if n even,

n2−1
4n2 if n odd,

(25)

therefore by Definition 3:

µ(Sn) =


4d(Sn)(−1)1{d(Sn)≤0} if n even,

4n2

n2−1 d(Sn)(−1)1{d(Sn)≤0} if n odd,

(26)

where 1{d(Sn) ≤ 0} is equal to 1 if d(Sn) ≤ 0 and 0 otherwise.

An R package subcopem2D by Erdely (2017) has been developed to perform the above calculations. subcopem
function is for calculation of bivariate empirical subcopula matrix (21), induced partitions D1 and D2,
and µ(Sn) for a given bivariate sample of a pair of arbitrary type random variables. subcopemc function
performs the same but it is specifically for a pair of continuous random variables with the possibility of faster
calculations. dependence function calculates a matrix of pairwise dependence values for several variables.
Examples are provided within the package.

5 Conclusion

A monotone dependence measure µX,Y (Definition 3) is proposed for arbitrary type random variables X and
Y based on the unique underlying subcopula given by Sklar’s Theorem (1), and its main properties are sum-
marized in Theorem 1. Examples for discrete-discrete, continuous-discrete, and continuous-continuous pairs
of random variables were analyzed, and in the particular case where both random variables are continuous
µX,Y turns out to be a concordance measure (Corollary 2), with the advantage that its definition is still
unique in the general context of subcopulas, in contrast with other concordance measures that depend on
non-unique extensions of copulas to subcopulas. Also, a sample version of the proposed dependence measure
based on the empirical subcopula has been provided, for the general case (22) and for the particular case
where both random variables are continuous (26), along with an R package subcopem2D by Erdely (2017)
to perform such calculations.
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Genest, C., Nešlehová, J., and Rémillard, B. (2014) On the empirical multilinear copula process for count
data. Bernoulli 20, 1344–1371.

Hofert, M., Kojadinovic, I., Maechler, M., and Yan, J. (2016) copula: Multivariate Dependence with Copulas.
R package version 0.999-16 URL https://CRAN.R-project.org/package=copula

Lehmann, E.L. (1966) Some concepts of dependence. Ann. Math. Statist. 37, 1137–1153.
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