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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 4 , P AGES 6 3 0 – 6 5 2

EXTENSION PRINCIPLE AND CONTROLLER DESIGN
FOR SYSTEMS WITH DISTRIBUTED TIME-DELAY

Altuğ İftar

Extension principle is defined for systems with distributed time-delay and the necessary and
sufficient conditions for one system being an extension of the other are presented. Preservation
of stability properties between two systems, one of which is an extension of the other is also dis-
cussed and it is shown that when the expanded system is an extension of the original system, (i)
the original system is bounded-input bounded-output stable if and only if the expanded system
is bounded-input bounded-output stable and (ii) the original system is exponentially stable if
the expanded system is exponentially stable. Controller design using the extension principle is
then considered. It is shown that, if the expanded system is an extension of the original system,
then any controller designed for the expanded system can be contracted for implementation on
the original system. Furthermore, if the controller designed for the expanded system stabilizes
the expanded system and satisfies certain performance requirements, then the contracted con-
troller stabilizes the original system and satisfies corresponding performance requirements for
the original system. Finally, overlapping decompositions and controller design using overlap-
ping decompositions are demonstrated. A highway traffic congestion control problem is then
considered to demonstrate a possible application of the presented controller design approach.

Keywords: large-scale systems, time-delay systems, distributed time-delay, overlapping
decompositions, decentralized control, controller design

Classification: 93A14, 93A15, 93C23

1. INTRODUCTION

Many physical systems usually involve time-delays [31]. This is especially true for large-
scale systems [4, 10, 28]. Systems which involve time-delay are usually termed as time-
delay systems [42]. Such systems are infinite-dimensional, since their state can not be
represented by a finite number of state variables [12]. Time-delays in a system can be
discrete or distributed [9]. Systems with distributed time-delays can appear in many
applications such as traffic flow [30, 44], combustion [47], logistics [8], neural networks
[2, 40], and biology [32, 41]. Furthermore, many systems may involve both discrete
and distributed time-delays together [29]. Both discrete and distributed time-delays,
however, can be combined in the same model by using Dirac delta functions [41]. In this
sense, distributed-time-delay systems are more general than discrete-time-delay systems.
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Decomposition techniques are usually necessary when designing controllers for large-
scale systems [43]. Many systems, however, may involve subsystems which are strongly
interconnected through certain dynamics but loosely interconnected otherwise. The ap-
proach of overlapping decompositions has first been introduced by Ikeda and Šiljak [24]
in order to obtain useful decompositions for such systems. Since its introduction, this
approach has been used successfully to design controllers for many large-scale systems
(e. g., [1, 3, 15, 19, 21, 23, 26, 35, 45]). The theoretical framework of the overlapping
decompositions is the inclusion principle. This principle was first introduced for finite-
dimensional systems whose state-space is overlappingly decomposed by Ikeda et. al.
[27]. This principle was then extended to finite-dimensional systems whose input and
output spaces are also overlappingly decomposed by Ikeda and Šiljak [25]. A special case
of inclusion, called extension, was then introduced by İftar and Özgüner [22]. The ad-
vantage of using extension, rather than the more general inclusion, is that any controller
designed in the expanded spaces can be contracted for implemention on the original
system if extension is used. When inclusion (or another special case, called unrestric-
tion, which was introduced in [25]) is used, there is no guarantee of contractibility of
controllers designed in the expanded spaces. Although extension was first introduced
for systems whose state and input spaces are overlappingly decomposed, it was later
extended to systems whose output space is also overlappingly decomposed by İftar [13].
Overlappingly decentralized controller and estimator design using extension was also
discussed in [13].

Although overlapping decompositions and the inclusion and extension principles for
finite-dimensional systems have been well discussed in the literature, as described in the
previous paragraph, consideration of these concepts for time-delay systems have been
very recent (e. g., [5, 6, 7, 16]). Furthermore, most of this literature has been restricted
to discrete-time-delay systems. To the author’s best knowledge, overlapping decomposi-
tions and the inclusion principle were first considered for distributed-time-delay systems
in [17], where the inclusion principle was defined and overlapping decompositions of
distributed-time-delay systems were presented. Robust controller design for large-scale
distributed-time-delay systems using inclusion and overlapping decompositions was then
presented in [18]. Both in [17] and [18], however, only the overlapping decompositions of
the state space was considered. In the present work, we extend the results of [17] to the
case where the input and the output spaces are also overlappingly decomposed besides
the state space. We first define the principle of extension in Section 2 and present the
necessary and sufficient conditions for one system being an extension of the other. We
then show in Section 3 that, certain stability properties are preserved between two sys-
tems if one is an extension of the other. Controller design is then considered in Section
4, where we show that any controller designed in the expanded spaces is contractible to a
controller for implementation on the original system if the expanded system is an exten-
sion of the original system. We further show in Section 4 that, if the controller designed
for the expanded system stabilizes the expanded system and satisfies certain perfor-
mance requirements, then the contracted controller stabilizes the original system and
satisfies corresponding requirements for the original system. The overlapping decompo-
sitions and controller design using overlapping decompositions are then demonstrated
in Section 5. A possible application of the presented results is demonstrated in Sec-
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tion 6, where a highway traffic congestion control problem is considered. Finally, some
concluding remarks are included in Section 7.

Throughout the paper, R and R+ denote the sets of, respectively, real numbers and
non-negative real numbers. For a, b ∈ R with a ≤ b, [a, b] := {θ ∈ R | a ≤ θ ≤ b}. For
positive integers k and l, Rk and Rk×l denote the spaces of, respectively, k-dimensional
real vectors and k× l-dimensional real matrices. For x ∈ Rk, ‖x‖ is the 2-norm of x, for
X ∈ Rk×l, ‖X‖ is the induced 2-norm (i. e., the maximum singular value) of X, and for
ξ : [a, b] → Rk, ‖ξ‖ :=

∫ b
a
‖ξ(θ)‖ dθ. Ik denotes the k × k-dimensional identity matrix.

0 may denote either the scalar zero, a zero vector, a zero matrix, or a matrix function
which is identically zero. ·T is the transpose of · and i denotes the imaginary unit. For
a vector function x(·), ẋ(t) is the derivative of x(t) with respect to t.

2. EXTENSION

In this section, we introduce the principle of extension for systems with distributed time-
delay. Consider the linear time-invariant (LTI) retarded distributed-time-delay systems,
Σ:

ẋ(t) =
∫ 0

−τ
(A(θ)x(t+ θ) +B(θ)u(t+ θ)) dθ (1)

y(t) =
∫ 0

−τ
C(θ)x(t+ θ) dθ (2)

and Σ̂:

˙̂x(t) =
∫ 0

−τ

(
Â(θ)x̂(t+ θ) + B̂(θ)û(t+ θ)

)
dθ (3)

ŷ(t) =
∫ 0

−τ
Ĉ(θ)x̂(t+ θ) dθ (4)

where τ > 0 is the maximum time-delay in Σ and Σ̂, x(t) ∈ Rn, u(t) ∈ Rp, and y(t) ∈ Rq
are, respectively, the state, the input, and the output vectors of Σ, and x̂(t) ∈ Rn̂,
û(t) ∈ Rp̂, and ŷ(t) ∈ Rq̂ are, respectively, the state, the input, and the output vectors
of Σ̂ at time t. Here, it is assumed that the outputs, y(t) and ŷ(t) are measurable and
the inputs u(t) and û(t) are accessible. It is also assumed that the dimensions of the
state, input, and output vectors of Σ̂ are greater than or equal to the dimensions of the
state, input, and output vectors of Σ, respectively; i. e., n̂ ≥ n, p̂ ≥ p, and q̂ ≥ q. In the
sequel, Σ and Σ̂ are respectively referred to as the original and the expanded systems.
Similarly, the state/input/output spaces of Σ are referred to as the original spaces and
those of Σ̂ are referred to as the expanded spaces. It is further assumed that A(·) :
[−τ, 0] → Rn×n, B(·) : [−τ, 0] → Rn×p, C(·) : [−τ, 0] → Rq×n, Â(·) : [−τ, 0] → Rn̂×n̂,
B̂(·) : [−τ, 0]→ Rn̂×p̂, and Ĉ(·) : [−τ, 0]→ Rq̂×n̂ are bounded matrix functions, except
that they may contain Dirac delta terms, δ(·). By this assumption, Σ and Σ̂ are allowed
to have discrete time-delays besides distributed time-delays, since a discrete time-delay
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of h, where 0 ≤ h ≤ τ , in, e. g., x(·), can be represented as

x(t− h) =
∫ 0

−τ
δ(θ + h)x(t+ θ) dθ . (5)

Finally, the initial states for Σ and Σ̂ are assumed to be given as:

x(θ) = φ(θ) and x̂(θ) = φ̂(θ) , θ ∈ [−τ, 0] , (6)

for some functions φ : [−τ, 0] → Rn and φ̂ : [−τ, 0] → Rn̂, respectively. We also note
that the states of Σ and Σ̂ at time t ≥ 0 are respectively given by the functions xt :
[−τ, 0] → Rn and x̂t : [−τ, 0] → Rn̂, which are respectively defined as xt(θ) := x(t + θ)
and x̂t(θ) := x̂(t+ θ), for θ ∈ [−τ, 0], where x(·) and x̂(·) are the unique solutions to (1)
and (3), respectively, with the initial states as in (6) [12].

Now, we can define extension.

Definition 1. Σ̂ is said to be an extension of Σ and Σ is said to be a disextension of
Σ̂ if there exist full-rank matrices

T ∈ Rn̂×n , R ∈ Rp×p̂ , and S ∈ Rq̂×q (7)

such that for all φ(·) and for all û(·), the choice

φ̂(θ) = Tφ(θ) , θ ∈ [−τ, 0] (8)

and
u(t) = Rû(t) , t ≥ −τ (9)

implies
x̂(t) = Tx(t) , t ≥ −τ (10)

and
ŷ(t) = Sy(t) , t ≥ 0 . (11)

Remark 1. The extension defined in Definition 1 is a generalization of extension, which
was first defined for finite-dimensional systems in [13]. As indicated in [13], extension is a
generalization of unrestriction, first defined for finite-dimensional systems in [27] and for
time-delay systems in [17], to the case where input and output spaces are also expanded
besides the state space. However, it is different than the unrestriction defined in [25],
which was defined for an arbitrary input u(t) in the original input space, and the input
in the expanded space is obtained by a transformation of the form û(t) = R̃u(t), where
R̃ ∈ Rp̂×p is a full-rank matrix. Here, however, as in [13], the extension is defined for
an arbitrary input û(t) in the expanded input space and the input in the original space
is obtained by (9). This choice results in contractibility of any controller designed in the
expanded spaces to a controller which can be implemented on the original system (see
Corollary 2 below). As it was shown in [25], if unrestriction is used, a controller designed
in the expanded spaces may not be contractible even in the case of finite-dimensional
systems.

The following theorem gives the necessary and sufficient conditions for Σ̂ to be an
extension of Σ.
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Theorem 1. Σ̂ is an extension of Σ and Σ is a disextension of Σ̂ if and only if there
exist full-rank matrices as in (7) such that

Â(θ)T = TA(θ) , ∀θ ∈ [−τ, 0] , (12)

B̂(θ) = TB(θ)R , ∀θ ∈ [−τ, 0] , (13)

and
Ĉ(θ)T = SC(θ) , ∀θ ∈ [−τ, 0] . (14)

P r o o f . To prove the if part, first note that (10) for t ∈ [−τ, 0] is implied by (8). To
establish (10) for t ≥ 0, premultiply both sides of (1) by T and use (9) to obtain

T ẋ(t) =
∫ 0

−τ
(TA(θ)x(t+ θ) + TB(θ)Rû(t+ θ)) dθ . (15)

Next, use (12) and (13) in the right-hand-side of (15) and compare with (3). Together
with (8), by the uniqueness of solutions [12], this establishes (10) for t ≥ 0. Next, to
establish (11), premultiply both sides of (2) by S to obtain

Sy(t) =
∫ 0

−τ
SC(θ)x(t+ θ) dθ (16)

Next, use (14) and (10) in the right-hand-side of (16) and compare with (4). This
establishes (11), which concludes the proof of the if part.

Next, to prove the only if part, consider (15) at t = 0, in which case, x(t+ θ) in the
right-hand-side is replaced by φ(θ). Also, consider (3) at t = 0, in which case, x̂(t + θ)
in the right-hand-side is replaced by φ̂(θ), which, by (8), is Tφ(θ). Now, suppose that
û(θ) = 0, for θ ∈ [−τ, 0], and that (12) is not satisfied. Then this implies, for some
φ(·), ˙̂x(0) 6= T ẋ(0), which implies that (10) does not hold. Since φ(·) is arbitrary, this
establishes the necessity of (12). Next, to estbalish the necessity of (13), suppose that
φ(θ) = 0, for θ ∈ [−τ, 0], and that (13) is not satisfied. Then this implies, for some
û(·), ˙̂x(0) 6= T ẋ(0), which implies that (10) does not hold. Since û(·) is arbitrary, this
establishes the necessity of (13). Finally, to estbalish the necessity of (14), consider (16)
at t = 0, in which case, x(t+θ) in the right-hand-side is replaced by φ(θ). Also, consider
(4) at t = 0, in which case, x̂(t + θ) in the right-hand-side is replaced by φ̂(θ), which,
by (8), is Tφ(θ). Now, suppose that (14) is not satisfied. Then this implies, for some
φ(·), ŷ(0) 6= Sy(0), which implies that (11) does not hold. Since φ(·) is arbitrary, this
establishes the necessity of (14). This completes the proof. �

For finite-dimensional systems, it is common to relate the matrices of the two systems
by using complementary matrices. Similarly, here we can relate the matrix functions
of Σ and Σ̂ by using complementary matrix functions. Using T , R, and S, which are
introduced in (7), and T̃ ∈ Rn×n̂, which satisfies T̃ T = In (there exists such T̃ , since T
is of full-rank and n̂ ≥ n), the matrix functions of Σ and Σ̂ can be related as

Â(θ) = TA(θ)T̃ +M(θ) (17)
B̂(θ) = TB(θ)R+N(θ) (18)
Ĉ(θ) = SC(θ)T̃ + L(θ) (19)
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for θ ∈ [−τ, 0]. Here, M(·), N(·), and L(·) are called as complementary matrix functions,
which are bounded matrix functions, except that they may contain Dirac delta terms.
As will be shown in Section 5, by defining these matrix functions appropriately, it will
be possible to expand an overllappingly decomposed system into a system where the
subsystems appear as disjoint. For the expanded system to be an extension of the
original system, however, these matrix functions must satisfy certain relations, which
are given by the following result.

Corollary 1. Σ̂ is an extension of Σ and Σ is a disextension of Σ̂ if and only if

M(θ)T = 0 , N(θ) = 0 , and L(θ)T = 0 , ∀θ ∈ [−τ, 0] . (20)

P r o o f . Postmultiply both sides of (17) by T , use T̃ T = In, and compare with (12).
This establishes the first condition in (20). The second condition in (20) directly follows
from (13). To establish the last condition in (20), postmultiply both sides of (19) by T ,
use T̃ T = In, and compare with (14). This completes the proof. �

3. STABILITY

When Σ̂ is an extension of Σ, some important properties, like stability, are preserved
between the two systems. Here we consider both input-output stability and internal
stability. For the case of input-output stability, we use the most common definition,
bounded-input bounded-output (BIBO) stability. For internal stability, we use exponen-
tial stability, since it is the strongest internal stability definition commonly used for
linear systems. For the sake of completeness, let us first present these definitions. In
Definition 3, by ψ we indicate the initial state of the system (thus, for Σ, ψ(θ) = φ(θ),
θ ∈ [−τ, 0], and for Σ̂, ψ(θ) = φ̂(θ), θ ∈ [−τ, 0]) and by ξt we indicate the state of
the system at time t (thus, for Σ, ξt(θ) = xt(θ), θ ∈ [−τ, 0], and for Σ̂, ξt(θ) = x̂t(θ),
θ ∈ [−τ, 0]).

Definition 2. A system, such as Σ or Σ̂, is said to be BIBO stable if, in response to
any bounded input, it produces a bounded output when its initial state is zero.

Definition 3. A system, such as Σ or Σ̂, is said to be exponentially stable if there
exist α, β > 0, such that, when the system input is zero, for any bounded initial state,
‖ξt‖ ≤ α‖ψ‖e−βt, ∀t ≥ 0.

Now we can establish the following.

Theorem 2. If Σ̂ is an extension of Σ, then Σ is BIBO stable if and only if Σ̂ is BIBO
stable.

P r o o f . When Σ and Σ̂ have both zero initial states, then (8) holds. Now, suppose that
Σ is BIBO stable. For any bounded û(·), any u(·), which satisfies (9), will be bounded.
Then, since Σ is BIBO stable, y(·) will be bounded. Then, (11) implies that ŷ(·) will be
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bounded. Thus, Σ̂ will be BIBO stable. Next, suppose that Σ̂ is BIBO stable. Since S
is of full-rank and q̂ ≥ q, there exists S̃ ∈ Rq×q̂ such that S̃S = Iq. Then, (11) implies

y(t) = S̃ŷ(t) , t ≥ 0 . (21)

Furthermore, since R is of full-rank and p̂ ≥ p, there exists R̃ ∈ Rp̂×p such that RR̃ = Ip.
Then, for any bounded u(·), û(·) := R̃u(·) is bounded and satisfies (9). Then, since Σ̂ is
BIBO stable, corresponding ŷ(·) will be bounded. Then, (21) implies that y(·) will be
bounded. Thus, Σ will be BIBO stable. �

Theorem 3. If Σ̂ is an extension of Σ, then Σ is exponentially stable if Σ̂ is expo-
nentially stable.

P r o o f . When Σ and Σ̂ have both zero inputs, then (9) holds. Now, suppose that Σ̂ is
exponentially stable. Then, there exist α, β > 0, such that, for any bounded φ̂(·),

‖x̂t‖ ≤ α‖φ̂‖e−βt , ∀t ≥ 0 . (22)

Since T is of full-rank and n̂ ≥ n, there exists T̃ ∈ Rn×n̂ such that T̃ T = In. Then, (10)
implies x(t) = T̃ x̂(t), for t ≥ −τ , which implies

‖xt‖ ≤ ‖T̃‖‖x̂t‖ , ∀t ≥ 0 . (23)

Furthermore, for any bounded φ(·), by (8), φ̂(·) is bounded and ‖φ̂‖ ≤ ‖T‖‖φ‖. Now,
use (22) in (23) to obtain

‖xt‖ ≤ α̂‖φ‖e−βt , ∀t ≥ 0 , (24)

where α̂ := α‖T̃‖‖T‖. This, however, implies that Σ is exponentially stable. �

Remark 2. Converse of Theorem 3 does not hold in general, since x̂t may not be
bounded for some φ̂ which is not in the range space of T . However, since the controllers
are designed in the expanded space to satisfy stability of Σ̂ and then contracted for
implementation on Σ (see the next section), the direction in Theorem 3 is the important
result.

4. CONTROLLER DESIGN

In this section, we consider output feedback controller design for a LTI distributed-
time-delay system, like Σ or Σ̂. For this purpose, we consider LTI controllers, which are
dynamic, in general, and which may be subject to distributed time-delays. Thus, we
consider a controller, to be denoted by Γ, of the form

ż(t) =
∫ 0

−σ
(F (θ)z(t+ θ) +G(θ)w(t+ θ)) dθ (25)

v(t) =
∫ 0

−σ
(H(θ)z(t+ θ) +K(θ)w(t+ θ)) dθ (26)
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for Σ, and a controller, to be denoted by Γ̂, of the form

˙̂z(t) =
∫ 0

−σ

(
F̂ (θ)ẑ(t+ θ) + Ĝ(θ)ŵ(t+ θ)

)
dθ (27)

v̂(t) =
∫ 0

−σ

(
Ĥ(θ)ẑ(t+ θ) + K̂(θ)ŵ(t+ θ)

)
dθ (28)

for Σ̂. Here, σ > 0 is the maximum time-delay in Γ and Γ̂, z(t) ∈ Rm and ẑ(t) ∈ Rm̂
are the state vectors, w(t) ∈ Rq and ŵ(t) ∈ Rq̂ are the input vectors, and v(t) ∈ Rp and
v̂(t) ∈ Rp̂ are the output vectors of, respectively, Γ and Γ̂ at time t. Here, it is assumed
that m̂ ≥ m. This assumption is justified since Σ is, in general, forms a part of Σ̂, and
thus should not require a controller with larger dimensional state vector. Furthermore, it
is assumed that F (·) : [−σ, 0]→ Rm×m, G(·) : [−σ, 0]→ Rm×q, H(·) : [−σ, 0]→ Rp×m,
K(·) : [−σ, 0] → Rp×q, F̂ (·) : [−σ, 0] → Rm̂×m̂, Ĝ(·) : [−σ, 0] → Rm̂×q̂, Ĥ(·) : [−σ, 0] →
Rp̂×m̂, and K̂(·) : [−σ, 0] → Rp̂×q̂ are bounded matrix functions, except that they may
contain Dirac delta terms. Finally, the initial states for Γ and Γ̂ are assumed to be given
as:

z(θ) = ζ(θ) and ẑ(θ) = ζ̂(θ) , θ ∈ [−σ, 0] , (29)

for some functions ζ : [−σ, 0]→ Rm and ζ̂ : [−σ, 0]→ Rm̂, respectively.
The controllers Γ and Γ̂ are to be applied to Σ and Σ̂, respectively, by letting

w(t) = y(t)− r(t) and ŵ(t) = ŷ(t)− r̂(t) (30)

and
u(t) = v(t) + e(t) and û(t) = v̂(t) + ê(t) (31)

for t ≥ 0, where r(t) ∈ Rq and r̂(t) ∈ Rq̂ are the reference inputs and e(t) ∈ Rp
and ê(t) ∈ Rp̂ are the external inputs (which may be, e. g., actuator disturbance) for,
respectively, Σ and Σ̂ at time t.

Remark 3. The controllers of the form (25)–(26) and (27)–(28) are quite general.
They include all LTI retarded output feedback controllers with distributed and/or dis-
crete (by using Dirac delta terms) time-delays. They also include finite-dimensional
dynamic and static LTI output feedback controllers. By letting σ = 0+, F (θ) = Foδ(θ),
G(θ) = Goδ(θ), H(θ) = Hoδ(θ), and K(θ) = Koδ(θ), where Fo, Go, Ho, and Ko are
appropriately dimensioned constant matrices, (25)–(26) reduces to a finite-dimensional
dynamic LTI controller. Furthermore, if m = 0, then (25)–(26) further reduces to a
finite-dimensional static LTI controller of the form v(t) = Kow(t).

Since the outputs, v and v̂, of Γ and Γ̂ are respectively to be applied to the inputs of Σ
and Σ̂, to satisfy condition (9) following the application of the controllers, the following
property must be satisfied.

Definition 4. Suppose that the connection in (30) is made but the connection in (31)
is not made. The controller Γ̂ for Σ̂ is said to be contractible to the controller Γ for Σ if
there exist full-rank matrices

T ∈ Rn̂×n , R ∈ Rp×p̂ , S ∈ Rq̂×q , and P ∈ Rm×m̂ (32)
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such that for all initial states φ(·) of Σ, for all inputs û(·) of Σ̂, for all reference inputs
r(·) of Σ, and for all initial states ζ̂(·) of Γ̂, the choice (8), (9),

ζ(θ) = P ζ̂(θ) , θ ∈ [−σ, 0] (33)

and
r̂(t) = Sr(t) , t ≥ −σ (34)

implies
z(t) = P ẑ(t) , t ≥ −σ (35)

and
v(t) = Rv̂(t) , t ≥ 0 . (36)

Remark 4. Although we require u(t) = Rû(t), for t ≥ −τ in (9), we only require
v(t) = Rv̂(t), for t ≥ 0 in (36). This is because the controllers are assumed to be applied
at time t = 0.

The following theorem presents the conditions for Γ̂ to be contractible to Γ when Σ̂
is an extension of Σ.

Theorem 4. Suppose that Σ̂ is an extension of Σ. Then, the controller Γ̂ for Σ̂ is
contractible to the controller Γ for Σ if there exists a full-rank matrix P ∈ Rm×m̂ such
that

F (θ)P = PF̂ (θ) , G(θ) = PĜ(θ)S , H(θ)P = RĤ(θ) , (37)

and
K(θ) = RK̂(θ)S , (38)

for θ ∈ [−σ, 0], where R and S are as in (7).

P r o o f . Since the connection (30) is made at time t = 0, we have

w(t) =
{
−r(t) , t < 0
y(t)− r(t) , t ≥ 0 and ŵ(t) =

{
−r̂(t) , t < 0
ŷ(t)− r̂(t) , t ≥ 0 .

Then, (11) and (34) implies

ŵ(t) = Sw(t) , t ≥ −σ . (39)

Now, note that (35) for t ∈ [−σ, 0] is implied by (33). To establish (35) for t ≥ 0,
premultiply both sides of (27) by P and use (39) to obtain

P ˙̂z(t) =
∫ 0

−σ

(
PF̂ (θ)ẑ(t+ θ) + PĜ(θ)Sw(t+ θ)

)
dθ . (40)

Next, use the first two equations in (37) in the right-hand-side of (40) and compare with
(25). Together with (33), by the uniqueness of solutions, this establishes (35) for t ≥ 0.
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Next, to establish (36), premultiply both sides of (28) by R and use (39) and the last
equation in (37) to obtain

Rv̂(t) =
∫ 0

−σ

(
H(θ)P ẑ(t+ θ) +RK̂(θ)Sw(t+ θ)

)
dθ . (41)

Next, use (35) and (38) in the right-hand-side of (41) and compare with (26). This
establishes (36), which concludes the proof. �

As mentioned in Remark 1, since the controllers are to be designed in the expanded
spaces and then to be contrated for implementation on the original system, it is impor-
tant that any controller Γ̂ for Σ̂ to be contractible to a controller Γ for Σ. The following
corollary proves that this is indeed the case if Σ̂ is an extension of Σ.

Corollary 2. If Σ̂ is an extension of Σ, then any controller Γ̂ of the form (27)–(28)
for Σ̂ is contractible to a controller Γ of the form (25)–(26) for Σ with

F (θ) = F̂ (θ) , G(θ) = Ĝ(θ)S , H(θ) = RĤ(θ) , (42)

and
K(θ) = RK̂(θ)S , (43)

for θ ∈ [−σ, 0], where R and S are as in (7).

P r o o f . With m = m̂ and P = Im, (42)–(43) are equivalent to (37)–(38). �

Now, suppose that Γ is applied to Σ and Γ̂ is applied to Σ̂ by making the connections
in (30) and (31) at time t = 0. Let us denote the closed-loop system obtained by
applying Γ to Σ by Σc and the closed-loop system obtained by applying Γ̂ to Σ̂ by Σ̂c.

The input to Σc is
[
e(t)
r(t)

]
and the output from Σc is

[
y(t)
v(t)

]
. Similarly, the input

to Σ̂c is
[
ê(t)
r̂(t)

]
and the output from Σ̂c is

[
ŷ(t)
v̂(t)

]
. The total time-delay in both Σc

and Σ̂c is 2τ + σ. However, since the loops are assumed to be closed at time t = 0, the
effect of the initial state of the controller on the plant and vice-versa, for t < 0, is zero.
Therefore, the initial states of Σc and Σ̂c can be represented as

ψ(θ) =
[
φ̄(θ)
ζ̄(θ)

]
and ψ̂(θ) =

[ ¯̂
φ(θ)
¯̂
ζ(θ)

]
, θ ∈ [−2τ − σ, 0] , (44)

respectively, where

φ̄(θ) :=
{
φ(θ) , θ ∈ [−τ, 0]
0 , θ < −τ , ζ̄(θ) :=

{
ζ(θ) , θ ∈ [−σ, 0]
0 , θ < −σ (45)

and, similarly,

¯̂
φ(θ) :=

{
φ̂(θ) , θ ∈ [−τ, 0]
0 , θ < −τ ,

¯̂
ζ(θ) :=

{
ζ̂(θ) , θ ∈ [−σ, 0]
0 , θ < −σ . (46)
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The states of Σc and Σ̂c at time t ≥ 0, on the other hand, can be represented as

ξt(θ) =
[
x(t+ θ)
z(t+ θ)

]
and ξ̂t(θ) =

[
x̂(t+ θ)
ẑ(t+ θ)

]
, θ ∈ [−2τ − σ, 0] , (47)

respectively. The following two theorems show that, when Σ̂ is an extension of Σ and Γ̂
is contractible to Γ, stability of Σ̂c implies stability of Σc.

Theorem 5. If Σ̂ is an extension of Σ and Γ̂ is contractible to Γ, then Σc is BIBO
stable if Σ̂c is BIBO stable.

P r o o f . Since the connection (31) is made at time t = 0, we have

u(t) =
{
e(t) , t < 0
v(t) + e(t) , t ≥ 0 and û(t) =

{
ê(t) , t < 0
v̂(t) + ê(t) , t ≥ 0 .

Then, (36) and
e(t) = Rê(t) , t ≥ −τ , (48)

implies (9). Furthermore, when the initial states of Σc and Σ̂c are both zero, (8) and
(33) are both satisfied. Then, since Σ̂ is an extension of Σ and Γ̂ is contractible to Γ, as
long as all the initial states are zero and e(·) and r̂(·) respectively satisfy (48) and (34),
(11) and (36) are satisfied. Furthermore, as in the proof of Theorem 2, (11) implies (21).
Now, suppose that Σ̂c is BIBO stable. Since R is of full-rank and p̂ ≥ p, there exists
R̃ ∈ Rp̂×p such that RR̃ = Ip. Then, for any bounded e(·), ê(·) := R̃e(·) is bounded
and satisfies (48). Furthermore, for any bounded r(·), any r̂(·) which satisfies (34) is
bounded. Then, since Σ̂c is BIBO stable, corresponding ŷ(·) and v̂(·) will be bounded.
Then, (21) and (36) respectively implies that y(·) and v(·) will be bounded. Thus, Σc
will be BIBO stable. �

Theorem 6. If Σ̂ is an extension of Σ and Γ̂ is contractible to Γ, then Σc is exponen-
tially stable if Σ̂c is exponentially stable.

P r o o f . First note that, when the inputs of both Σc and Σ̂c are zero, i. e., when
e(t) = 0, r(t) = 0, ê(t) = 0, and r̂(t) = 0, ∀t, (48) and (34) are both satisfied. Then, by
the arguments used in the proof of Theorem 5, as long as (8) and (33) are satisfied, (10)
and (35) are satisfied. Then, the states of Σc and of Σ̂c at time t will be related as

ξt(θ) = Qξ̂t(θ) , ∀θ ∈ [−2τ − σ, 0] , ∀t ≥ 0 , (49)

where Q :=
[
T̃ 0
0 P

]
, where T̃ satisfies T̃ T = In (there exists such T̃ , since T is of

full-rank and n̂ ≥ n). Now, let Q̃ :=
[
T 0
0 P̃

]
, where P̃ satisfies PP̃ = Im (there exists

such P̃ , since P is of full-rank and m̂ ≥ m). Then, for any initial state ψ(·) of Σc, the
initial state

ψ̂(θ) = Q̃ψ(θ) , θ ∈ [−2τ − σ, 0] , (50)
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of Σ̂c is bounded and satisfies (44)–(46), where (8) and (33) are satisfied. Now, let Σ̂c
be exponentially stable. Then, there exist α, β > 0, such that, for any bounded ψ̂(·),

‖ξ̂t‖ ≤ α‖ψ̂‖e−βt , ∀t ≥ 0 . (51)

Now, for any bounded ψ(·), let ψ̂(·) be given by (50). Then, ψ̂(·) will be bounded and
will satisfy ‖ψ̂‖ ≤ ‖Q̃‖‖ψ‖. Then, using (51), (49) will give

‖ξt‖ ≤ ‖Q‖‖ξ̂t‖ ≤ α̂‖ψ‖e−βt , ∀t ≥ 0 , (52)

where α̂ := α‖Q̃‖‖Q‖. This, however, implies that Σc is exponentially stable. �

In controller design, besides stability, some performance requirements are also sought.
One common performance requirement is the tracking of certain reference inputs despite
certain disturbances. We can define this requirement as follows.

Definition 5. A closed-loop system, such as Σc, is said to achieve good tracking for
reference inputs r(·), with respect to a tolerance function g : R+ → R+ and a disturbance
bound f : [−τ,∞) → R+, if, assuming that the initial state is zero, the output, y(·),
satisfies ‖y(t)− r(t)‖ ≤ g(t), ∀t ≥ 0, for all external inputs which satisfy ‖e(t)‖ ≤ f(t),
∀t ≥ −τ .

The following theorem shows that, when Σ̂ is an extension of Σ, if Γ̂ is designed to
achieve good tracking for the expanded system, then the contracted controller Γ achieves
good tracking for the original system.

Theorem 7. Let Σ̂ be an extension of Σ and Γ̂ be contractible to Γ. Suppose that
Σ̂c achieves good tracking for reference inputs r̂(t) = Sr(t), t ≥ −σ, for some r(·),
where S is as in (7), with respect to ĝ : R+ → R+ and f̂ : [−τ,∞) → R+. Then,
Σc achieves good tracking for reference inputs r(·), with respect to g(·) := ‖S̃‖ĝ(·) and
f(·) := 1

‖R̃‖ f̂(·), where, for R is as in (7), R̃ and S̃ respectively satisfy RR̃ = Ip and

S̃S = Iq (there exist such R̃ and S̃ since R and S are of full rank and p̂ ≥ p and q̂ ≥ q -
note that it is advantageous to choose R̃ and S̃ as such matrices with minimum norm;
i. e., it is advantageous to choose R̃ and S̃ as the Moore–Penrose inverse [39] of R and
S respectively).

P r o o f . First, note that both (8) and (33) are satisfied when both Σ and Σ̂ has zero
initial states. Furthermore, (34) is satisfied by assumption. Then, since Γ̂ is contractible
to Γ, as discussed in the proof of Theorem 5, to satisfy (9), it is sufficient to have (48).
Then, since Σ̂ is an extension of Σ, when (48) is satisfied, (11) is satisfied. Now, for
any e(t), which satisfy ‖e(t)‖ ≤ f(t), ∀t ≥ −τ , let ê(t) := R̃e(t), t ≥ −τ . Then, (48) is
satisfied. Furthermore, ‖ê(t)‖ ≤ ‖R̃‖‖e(t)‖ ≤ ‖R̃‖f(t) = f̂(t), ∀t ≥ −τ . Then, since Σ̂c
achieves good tracking, ‖ŷ(t)− r̂(t)‖ ≤ ĝ(t), ∀t ≥ 0. Then, by (11) and (34), y(t)−r(t) =
S̃(ŷ(t)− r̂(t)), ∀t ≥ 0. Hence, ‖y(t)− r(t)‖ ≤ ‖S̃‖‖ŷ(t)− r̂(t)‖ ≤ ‖S̃‖ĝ(t) = g(t), ∀t ≥ 0,
which proves the desired result. �
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The above results show that, when Σ̂ is an extension of Σ, a controller can first be
designed for the expanded system to achieve stability and/or good tracking. Then, this
controller can be contracted for implementation on the original system. The original
closed-loop system will then be stable and/or achieve good tracking. This approach is
particularly useful when the original system has an overlapping structure. In such a
case overlapping decompositions can be used to obtain the expanded system for which
a decentralized controller is first designed. This controller is then contracted for imple-
mentation on the original system. This approach is presented in the next section.

5. OVERLAPPING DECOMPOSITIONS

As pointed out in [14], large-scale systems may have subsystems which may overlap in
many different ways. The simplest and the most investigated case in the literature is
two overlapping subsystems. The state, the input, and the output vectors of the system
in this case can be decomposed as follows:

x =

 x1

xc
x2

 , u =

 u1

uc
u2

 , y =

 y1
yc
y2

 , (53)

where, for i = 1, 2, xi ∈ Rni , ui ∈ Rpi , and yi ∈ Rqi are, respectively, the state, the
input, and the output vectors of the ith subsystem only, and xc ∈ Rnc , uc ∈ Rpc , and
yc ∈ Rqc are, respectively, the state, the input, and the output vectors of the overlapping
part. Then, to obtain an extension of this system, the matrices in (7) can be chosen as

T =


In1 0 0
0 Inc

0
0 Inc

0
0 0 In2

 , R =

 Ip1 0 0 0
0 Ipc Ipc 0
0 0 0 Ip2

 , S =


Iq1 0 0
0 Iqc

0
0 Iqc

0
0 0 Iq2

 .

(54)
Now, consider the system Σ, described by (1)–(2). Suppose that the state, the input,

and the output vectors of Σ are decomposed as in (53). Partition the matrix functions
in (1)–(2) compatible with (53):

A(·) =

 A11(·) A1c(·) A12(·)
Ac1(·) Acc(·) Ac2(·)
A21(·) A2c(·) A22(·)

 , B(·) =

 B11(·) B1c(·) B12(·)
Bc1(·) Bcc(·) Bc2(·)
B21(·) B2c(·) B22(·)

 ,
and

C(·) =

 C11(·) C1c(·) C12(·)
Cc1(·) Ccc(·) Cc2(·)
C21(·) C2c(·) C22(·)

 .

Then, an extension Σ̂ of Σ can be described by (3)–(4), where the matrix functions in
(3)–(4) are chosen as in (17)–(19), where

T̃ =

 In1 0 0 0
0 1

2Inc

1
2Inc

0
0 0 0 In2

 , M(·) =


0 1

2A1c(·) − 1
2A1c(·) 0

0 1
2Acc(·) − 1

2Acc(·) 0
0 − 1

2Acc(·)
1
2Acc(·) 0

0 − 1
2A2c(·) 1

2A2c(·) 0

 ,
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N(·) = 0 , and L(·) =


0 1

2C1c(·) − 1
2C1c(·) 0

0 1
2Ccc(·) − 1

2Ccc(·) 0
0 − 1

2Ccc(·)
1
2Ccc(·) 0

0 − 1
2C2c(·) 1

2C2c(·) 0

 .

Here, T̃ is chosen as the Moore–Penrose inverse of T and the matrix functions M(·)
and L(·) are chosen to minimize the interactions between the subsystems among all
complementary matrix functions which satisfy (20). N(·), however, is chosen as zero, to
satisfy (20). By Corollary 1, then, Σ̂ is an extension of Σ. The state, the input, and the
output vectors of Σ̂ can now be decomposed as:

x̂ =
[
x̂1

x̂2

]
, û =

[
û1

û2

]
, ŷ =

[
ŷ1
ŷ2

]
, (55)

where, for i = 1, 2, x̂i ∈ Rn̂i , n̂i := ni + nc, ûi ∈ Rp̂i , p̂i := pi + pc, and ŷi ∈ Rq̂i ,
q̂i := qi + qc. Then, Σ̂ is composed of two subsystems: Σ̂1 and Σ̂2, where x̂i, ûi, and ŷi
respectively form the state, the input, and the output vectors of Σ̂i, for i = 1, 2.

Now, suppose that a local controller Γ̂i of the form

˙̂zi(t) =
∫ 0

−σ

(
F̂i(θ)ẑi(t+ θ) + Ĝi(θ)ŵi(t+ θ)

)
dθ (56)

v̂i(t) =
∫ 0

−σ

(
Ĥi(θ)ẑi(t+ θ) + K̂i(θ)ŵi(t+ θ)

)
dθ (57)

is designed for Σ̂i, for i = 1, 2, which is meant to be applied to Σ̂i by letting

ŵi(t) = ŷi(t)− r̂i(t) and ûi(t) = v̂i(t) + êi(t) (58)

for t ≥ 0, where r̂i(t) ∈ Rq̂i is the reference input and êi(t) ∈ Rp̂i is the external input
for Σ̂i at time t. A decentralized controller Γ̂ for Σ̂ can then be obtained as in (27)–(28),
where, for θ ∈ [−σ, 0],

F̂ (θ) =
[
F̂1(θ) 0

0 F̂2(θ)

]
, Ĝ(θ) =

[
Ĝ1(θ) 0

0 Ĝ2(θ)

]
,

Ĥ(θ) =
[
Ĥ1(θ) 0

0 Ĥ2(θ)

]
, and K̂(θ) =

[
K̂1(θ) 0

0 K̂2(θ)

]
.

This controller can then be contracted to a controller Γ, which is described by (25)–
(26), where the matrix functions are given by (42)–(43). This controller can then be
implemented on the original system as shown in Figure 1 (where e and r are decomposed
compatible with, respectively, u and y in (53); v11 (w11) indicates the first p1 (q1)
elements of v̂1 (ŵ1) and v12 (w12) indicates the last pc (qc) elements of v̂1 (ŵ1); similarly,
v21 (w21) indicates the first pc (qc) elements of v̂2 (ŵ2) and v22 (w22) indicates the last
p2 (q2) elements of v̂2 (ŵ2)). The overlapping decentralized structure of the controller
is evident from the figure. Assuming that the controller Γ̂ stabilizes the system Σ̂
(respectively in BIBO and exponential sense), by Theorems 5 and 6, the contracted
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Fig. 1. Implementation of the contracted controller on the original

system.

controller Γ stabilizes the original system Σ. Furthermore, if Σ̂c (obtained by applying
Γ̂ to Σ̂) achieves good tracking for reference inputs r̂(t) = Sr(t), t ≥ −σ, for some r(·),
with respect to some ĝ : R+ → R+ and f̂ : [−τ,∞) → R+, then, by Theorem 7, Σc
(obtained by applying Γ to Σ, as shown in Figure 1) achieves good tracking for reference
inputs r(·), with respect to g(·) := ‖S̃‖ĝ(·) and f(·) := 1

‖R̃‖ f̂(·).

Remark 5. If each of the local controllers Γ̂i (i = 1, 2) is designed by considering only
the subsystem Σ̂i (i. e., by ignoring the interactions between the subsystems), then, nat-
urally, there is no guarantee that the combined controller Γ̂ will stabilize and/or achieve
good performance for Σ̂. However, if the overlapping decomposition and the expansion
are done properly such that the interactions between the subsystems are weak (which is
the whole idea of overlapping decompositions and expansions), there is a good chance
that the overall controller Γ̂ will stabilize and achieve good performance for Σ̂ (e. g., see
[4]–[7], [19]–[27], [43], [45]). Furthermore, while designing Γ̂i (i = 1, 2), the interactions
between the subsystems may also be taken into account. Such an approach was sug-
gested in [18], where a robustness bound, which accounts for the neglected interactions
between the subsystems and any uncertainties in the system model is first obtained.
Then, the stability of the overall closed-loop system Σ̂c is guaranteed, if each of the
local controllers Γ̂i is designed to stabilize the subsystem Σ̂i and to satisfy a certain con-
straint involving the robustness bound (only the decomposition of the state-space was
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considered in [18]; however, similar results can also be obtained for the present case).
We should perhaps note that, as it was shown in [11], there exist local controllers Γ̂i
such that the overall closed-loop system Σ̂c is stable, if and only if the open-loop system
Σ̂ does not have any unstable decentralized fixed modes (although only systems with
discrete time-delays were considered in [11], its results can be extended to the present
case). We should also indicate that, even though the expanded closed-loop system Σ̂c is
not stable, the original closed-loop system Σc, under the contracted controllers may be
stable (e. g., see the example in [20]). Therefore, rather than ensuring the stability of Σ̂c,
one may also design local controllers Γ̂i independently (counting on weak interactions
between the subsystems) and check whether the resulting actual closed-loop system Σc
is stable and achieves desired preformance.

6. EXAMPLE

In this section, we consider a simplified model of a highway traffic congestion control
system to demonstrate a possible application of our results. The rate of change of traffic
density at a point i on the highway is given by [37]:

ρ̇i(t) = f in
i (t)− fout

i (t) (59)

where ρi(t) (measured in v/ul, where v and ul respectively stand for “vehicles” and
“unit length”) is the traffic density at point i at time t and f in

i (t) and fout
i (t) (both

measured in v/tu, where tu stands for “time unit”) are respectively the in-flow and the
out-flow traffic rates at time t at a section of infinitesimally small unit length centered
at point i. The in-flow traffic rate at time t at point i is simply a delayed version of the
out-flow traffic rate at point i − 1, which precedes point i, plus the sum of the delayed
versions of the traffic in-flow rates from the on-ramps between point i− 1 and i, minus
the sum of the delayed versions of the traffic out-flow rates from the off-ramps between
point i − 1 and i. Although, many times in the literature, these delays are assumed to
be discrete time-delays, it is more realistic to use distributed time-delays, since different
vehicles typically travel at different speeds. In the present example, we will assume that
there is only one on-ramp and one off-ramp between any two points, which are at the
same position on the highway. Thus, we let

f in
i (t) =

∫ 0

−τ/2

(
αi(θ)fout

i−1(t+ θ) + bi(θ)ui(t+ θ)
)

dθ (60)

where τ/2 is the maximum time of travel between any two points (due to a convolution,
to be given below, the maximum delay in the system becomes twice that value, this
is why we use τ/2, rather than τ), ui(t) is the net in-flow rate at the ramps between
points i− 1 and i (i. e., the in-flow rate from the on-ramp minus the out-flow rate from
the off-ramp) at time t, and αi(·) and bi(·) are functions which depend on the traffic
characteristics between the two points and satisfy

∫ 0

−τ/2 αi(θ) dθ =
∫ 0

−τ/2 bi(θ) dθ = 1.
The out-flow traffic rate at time t at point i, on the other hand, is given as fout

i (t) =
vi(t)ρi(t), where vi(t) is the mean traffic speed at point i at time t. When there is no
downstream congestion, this speed is simply equal to the free speed, vf , on the highway.
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When the downstream traffic densities are higher than a critical value, however, this
speed is significantly reduced [36]. Although there is a nonlinear relation between the
downstream traffic density and mean speed, thus between the downstream traffic density
and the out-flow traffic rate, we take a simplified, linearized model as:

fout
i (t) = vfρi(t)−

∫ 0

−τ/2
βi(θ)ρi+1(t+ θ) dθ (61)

where we take vf = 1 ul/tu and βi(·) is a function which depends on the traffic charac-
teristics and the current operating conditions. Using (60) and (61) in (59), we obtain

ρ̇i(t) = −ρi(t)−
∫ 0

−τ
γi(θ)ρi(t+ θ) dθ

+
∫ 0

−τ/2
(αi(θ)ρi−1(t+ θ) + βi(θ)ρi+1(t+ θ) + bi(θ)ui(t+ θ)) dθ (62)

where

γi(θ) :=
∫ 0

−τ/2
αi(ν)βi−1(θ − ν) dν. (63)

Now, let us consider a highway where congestion is present on a stretch which includes
three consecutive points, labelled as “1”, “c” and “2”. Let us assume that there is a
constant traffic density, which equals to ρ0 at point “0” which immediately precedes
point “1”. Let us also assume that the maximum time of travel between any two points
is 10 tu (thus, τ = 20 tu) and

α1(θ) = αc(θ) = α2(θ) := α(θ) =

 10 + θ , for − 10 ≤ θ ≤ −9
−8− θ , for − 9 ≤ θ ≤ −8
0 , otherwise

b1(θ) = bc(θ) = b2(θ) := b(θ) =

 3 + θ , for − 3 ≤ θ ≤ −2
−1− θ , for − 2 ≤ θ ≤ −1
0 , otherwise

β0(θ) = β1(θ) = βc(θ) := β(θ) =

 (10 + θ)/50 , for − 10 ≤ θ ≤ −5
−θ/50 , for − 5 ≤ θ ≤ 0
0 , otherwise.

Furthermore, we let β2(θ) = 0, since there is no congestion downstream of point “2”.
We then have γ1(θ) = γc(θ) = γ2(θ) := γ(θ) =

∫ 0

−10
α(ν)β(θ − ν) dν.

We assume that the traffic densities at each point can be measured directly (which
is possible, e. g., by using inductive loops [36]) and, for i = 1, c, 2, let

ξ̇i(t) = ρi(t)− ri (64)

where ri is the desired traffic density at section i and ξi(t) is the state of an integrator
added for the purpose of achieving tracking of the desired traffic density. Then, by
defining xi(t) :=

[
ρi(t) ξi(t)

]T , the overall system dynamics can then be represented
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as in (1) with an additional constant vector
[
ρ0 −r1 0 −rc 0 −r2

]T on the
right-hand side (the term ρ0 represents the effect of the upstream traffic density on the
part of the system under consideration and, for control purposes, can be treated as a
constant disturbance), where

A(θ) :=


−δ(θ)− γ(θ) 0 β(θ) 0 0 0

δ(θ) 0 0 0 0 0
α(θ) 0 −δ(θ)− γ(θ) 0 β(θ) 0

0 0 δ(θ) 0 0 0
0 0 α(θ) 0 −δ(θ)− γ(θ) 0
0 0 0 0 δ(θ) 0

 ,

B(θ) :=

 b(θ) 0 0 0 0 0
0 0 b(θ) 0 0 0
0 0 0 0 b(θ) 0

T ,

where δ(·) is the Dirac delta function, and x and u are as defined in (53). Further-
more, since the traffic densities can be measured and the integrator outputs are avail-
able, the output of the system is given as y(t) = x(t), which can be represented as
in (2), where C(θ) := δ(θ)I6. Moreover, we assume that the traffic out-flow rates
from each off-ramp can also be measured and the traffic in-flow rates from each on-
ramp can be adjusted using on-ramp metering [38]. Thus, assuming that there is suf-
ficient out-flow (to allow negative net in-flow) and sufficient demand for in-flow, the
net in-flow rates u1(t), uc(t), and u2(t) can be set as desired. The problem, then,
is to choose u(t) :=

[
u1(t) uc(t) u2(t)

]T so that the traffic density vector ρ(t) :=[
ρ1(t) ρc(t) ρ2(t)

]T converges to a desired constant vector r(t) :=
[
r1 rc r2

]T .
To design controllers, we first obtain an extension of this system as explained in

Section 5. We then obtain two identical local design models as:

˙̂xi(t) =
∫ 0

−τ

(
Âi(θ)x̂i(t+ θ) + B̂i(θ)ûi(t+ θ)

)
dθ (65)

ŷi(t) = x̂i(t) =
∫ 0

−τ
Ĉi(θ)x̂i(t+ θ) dθ (66)

for i = 1, 2, where

Â1(θ) = Â2(θ) =


−δ(θ)− γ(θ) 0 β(θ) 0

δ(θ) 0 0 0
α(θ) 0 −δ(θ)− γ(θ) 0

0 0 δ(θ) 0

 ,

B̂1(θ) = B̂2(θ) =
[
b(θ) 0 0 0

0 0 b(θ) 0

]T
,

and Ĉ1(θ) = Ĉ2(θ) = δ(θ)I4.
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To stabilize the overall system and achieve desired tracking, then, for each i = 1, 2,
we design a local static controller Γ̂i of the form

ûi(t) = K̄i (ŷi(t)− r̂i(t)) (67)

where r̂1(t) =
[
r1 0 rc 0

]T and r̂2(t) =
[
rc 0 r2 0

]T . Note that, this con-
troller can be represented in the form (56)–(58) with dim(ẑi) = 0, K̂i(θ) = δ(θ)K̄i, and
êi(t) = 0. We note that the open-loop systems are unstable, due to the integral action
used in (64), which is required to achieve desired tracking. We then choose the gains
K̄i to move the right-most mode(s) of the closed-loop system as far left as possible by
using the non-smooth optimization approach of [46] (see [34, 33] for the decentralized
implementation of this approach). We determine

K̄1 = K̄2 =
[
−0.7212 −0.2434 0.0570 0.0463
−0.3095 −0.3680 −0.4026 −0.1042

]
which move the right-most modes of each local closed-loop system to −0.0586±0.3104i.
Although it is possible to move these modes further left by using dynamic (whether
finite-dimensional or time-delay) controllers, we find these locations sufficient. We then
apply these controllers to the original system as described in Section 5 and as illustrated
in Figure 1. The right-most modes of the original closed-loop system turn out to be
−0.0480 ± 0.5463i. Thus, the designed controllers stabilize the original system and
achieve tracking of the desired traffic density.

Although, in this example, we considered a highway with only three points, it is
possible to extend this methodolgy when there are, say, N consecutive points on the
highway whose traffic densities are to be controlled. In such a case this system can be
decomposed into N − 1 ovelapping subsystems, where subsystem i contains points i and
i+ 1 (now, we assume that the points are labelled as “1”, “2”, . . ., “N”). Furthermore,
when the congestion proceeds upstream or downstream, new subsystems, thus new con-
trollers, can be added to the system without changing the already designed controllers.
Therefore, besides offering an easier design approach, the proposed methodology also
offers a modularity in design.

7. CONCLUSION

Extension principle has been defined for LTI retarded distributed-time-delay systems.
Preservation of stability properties between two systems, one of which is an extension
of the other has also been discussed. Controller design using the extension principle has
then been considered. It has been shown that, if the expanded system is an extension
of the original system, then any controller designed for the expanded system can be
contracted for implementation on the original system. Furthermore, if the controller
designed for the expanded system stabilizes the expanded system and satisfies certain
performance requirements, such as good tracking, then the contracted controller stabi-
lizes the original system and satisfies corresponding performance requirements for the
original system. Finally, overlapping decompositions of LTI retarded distributed-time-
delay systems, whose input, output, and state spaces are overlappingly decomposed,
has been discussed. Controller design using overlapping decompositions has also been
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demonstrated. We in particular note that, when such decompositions are used, the re-
sulting controllers will also have an overlappingly decentralized structure as shown in
Figure 1. Although, for the sake of brevity, we only considered the case of two overlap-
ping subsystems, different overlapping structures can also be considered (e. g., see [14]
for the finite-dimensional case). Extensions of the present results to non-linear, and/or
time-varying, and/or neutral systems can be undertaken as further research topics.

The main contribution of the present work is that, using the proposed approach,
it is possible to decompose a large-scale system, which may be subject to distributed
time-delays, into a number of overlapping subsystems, then design a controller for each
subsystem, and finally apply the designed controllers to the actual system. As demon-
strated in the previous section, such an approach provides both ease and modularity in
design. This is important in many large-scale systems, such as traffic control, polution
control, energy distribution, among others, where the system under consideration may
involve overlapping subsystems some of which may require control at certain times but
may be passive at certain other times.
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[1] B. Ataşlar and A. İftar: Decentralized routing controller design using overlapping decom-
positions. Int. J. Control 72 (1999), 1175–1192. DOI:10.1080/002071799220335

[2] F. M. Atay and A. Hutt: Neural fields with distributed transmission speeds and
long-range feedback delays. SIAM J. Appl. Dynam. Systems 5 (2006), 670–698.
DOI:10.1137/050629367
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[11] H. E. Erol and A. İftar: Stabilization of decentralized descriptor-type neutral
time-delay systems by time-delay controllers. Automatica 64 (2016), 262–269.
DOI:10.1016/j.automatica.2015.11.022

[12] J. K. Hale and S. M. Verduyn-Lunel: Introduction to Functional Differential Equations.
Springer-Verlag, New York 1993.
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[15] A. İftar: Decentralized robust control based on overlapping decompositions. In:
Preprints 10th IFAC Symposium on Large Scale Systems, Osaka 2004, pp. 605–609.
DOI:10.1016/s1474-6670(17)31673-7
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