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Abstract

In the paper asymptotic properties of functionals of stationary Gibbs particle
processes are derived. Two known techniques from the point process theory in
the Euclidean spaceRd are extended to the space of compact sets onRd equipped
with the Hausdorff metric. First, conditions for the existence of the stationary
Gibbs point process with given conditional intensity have been simplified re-
cently. Secondly, the Malliavin-Stein method was applied to the estimation of
Wasserstein distance between the Gibbs input and standard Gaussian distribu-
tion. We transform these theories to the space of compact sets and use them
to derive a Gaussian approximation for functionals of a planar Gibbs segment
process.
Keywords: asymptotics of functionals, innovation, stationary Gibbs particle
process, Wasserstein distance
MSC: 60D05, 60G55

1 Introduction

Recently several papers paid attention to the limit theory of functionals of Gibbs
point processes in the Euclidean space, cf. [2, 10, 13, 15]. In the present paper
we are dealing with the question how to develop these results to Gibbs processes
of geometrical objects (particles). There are at least three ways how to do it.
One natural approach is to extend asymptotic results to Gibbs marked point
processes, see e.g. [7]. In applications marks correspond to the geometrical
properties of particles, they can be either scalar or vector or particles themselves.
In the literature it is often just mentioned that asymptotic results from point
process theory can be easily generalized to the marked point processes. This is
typically so for processes with independent marks, which may not be the case of
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Gibbs processes. Another approach is to parametrize some particle attributes
and deal with the point process on the parametric space, see e.g. [14].

In the present paper we are trying to deal directly with particle processes
in the sense of [9], defined on the space of compact sets equipped with the
Hausdorff distance. Our aim is first to verify that the existence of a stationary
Gibbs particle process is guaranteed under analogous conditions as stated by
[4] for Gibbs point processes. Secondly we find that the methodology of [13]
based on Malliavin-Stein method can be developed to Gibbs particle processes.
The general background in that paper is formulated on Polish spaces, which
covers the space of compact sets. However, the part devoted to Gibbs process
is discussed in the Euclidean space only.

Finally we present examples of two functionals of segment processes in the
plane where the Gaussian approximation can be derived using additionally an
integral geometric argument.

2 Preliminaries

Let Cd be the space of compact subsets (particles) of (Rd,Bd), equipped with
the Hausdorff metric and let C(d) = Cd \{∅}.Moreover, let Bd, B(Cd) denote the
Borel σ-algebras on Rd, Cd, respectively. Note that B(Cd) is equivalent to the
Borel σ-algebra generated by the Fell topology on the space of closed subsets
of Rd restricted to the space Cd (cf. [9, Theorem 2.4.1]). Moreover, it can be
shown that Cd is Polish (cf. [6, Theorem A.26]). Let Nd denote the space of all
locally finite subsets x on C(d), i.e. cardinality

card{L ∈ x : L ∩K 6= ∅} <∞
for all K ∈ C(d). We equip this space with the σ-algebra

N d = σ({x ∈ Nd : card{K ∈ x : K ∈ B} = m}, B ∈ B(Cd) bounded, m ∈ N).

Let Nd
f be a subsystem of Nd consisting of finite sets.

A point process on C(d) (also called particle process) is a random element

ξ : (Ω,A,P) −→ (Nd, N d),

its distribution Pξ = Pξ−1. A particle process ξ is called stationary if Pθxξ = Pξ

for each x ∈ Rd, where for any x ∈ Nd we set

θxx = {K + x : K ∈ x}, K + x = {y + x : y ∈ K}.
Let Q be a probability measure on C(d) such that

Q({K ∈ C(d) : c(K) = 0}) = 1, (1)

where c(K) is the centre of the circumscribed ball B(K) of K and 0 denotes
the origin in Rd. Define a measure λ on C(d) by

λ(B) =

∫

C(d)

∫

Rd

1[K+x∈B] dxQ(dK), B ∈ B(Cd), (2)
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where the inner integration is with respect to the d-dimensional Lebesgue mea-
sure Leb. The measure λ is invariant under shifts, i.e. λ(B) = λ(B+x), x ∈ Rd.
We call λ the reference measure and Q the reference particle distribution. In
the following we make an assumption that there is some R > 0 such that

Q({K ∈ C(d) : B(K) ⊂ B(0, R)}) = 1, (3)

where B(x,R) is the closed Euclidean ball with radius R centered at x ∈ Rd.

2.1 Finite volume Gibbs particle process

In Gibbs process theory we deal with an energy function as a measurable func-
tion

H : Nd
f −→ R+ ∪ {+∞} (4)

which will be assumed to be invariant under shifts (stationary), i.e. H(x) =
H(θxx), x ∈ Rd. It satisfies H(∅) < +∞ and it is hereditary, i.e. for x ∈
Nd

f , K ∈ x

H(x) < +∞ =⇒ H(x \ {K}) < +∞.

A class of energy functions we will deal with is of the form

H(x) =

6=
∑

{K,L}⊂x

g(K ∩ L), x ∈ Nd
f , (5)

where the sum is over pairs of different sets, g : Cd −→ R+ is called the pair
potential, it is measurable, invariant under shifts such that g(∅) = 0.

In the following we consider a bounded set Λ ⊂ Rd with Leb(Λ) > 0. We
denote

C(d)
Λ = {K ∈ C(d); c(K) ∈ Λ}.

Let Nd
Λ be the system of finite subsets of C(d)

Λ equipped with the trace σ-algebra
N d

Λ. Further let

λΛ(B) =

∫

C(d)

∫

Λ

1[K+x∈B]dxQ(dK), B ∈ B(C(d)
Λ )

and πΛ be the Poisson process on C(d)
Λ with intensity measure λΛ. We define a

finite volume Gibbs particle process on Λ with activity τ > 0, inverse tempera-
ture β ≥ 0 and energy function H as a particle process with distribution P τ,β

Λ

on Nd
Λ given by the Radon-Nikodym density p with respect to πΛ, where

p(x) =
1

Zτ,β
Λ

τNΛ(x) exp(−βH(x)), x ∈ Nd
Λ, (6)

NΛ(x) is the number of particles K ∈ x with c(K) ∈ Λ,

Zτ,β
Λ =

∫

N
d
Λ

τNΛ(x) exp(−βH(x))πΛ(dx)
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is the normalizing constant.
For any bounded set ∆ ⊂ Λ, Leb(∆) > 0, ∆c is its complement in Λ and for

x ∈ N
(d)
Λ let x∆ = {K ∈ x; c(K) ∈ ∆}. We define

H∆(x) = H(x)−H(x∆c).

The following are Dobrushin-Lanford-Ruelle (DLR) equations for P τ,β
Λ -a.a. x∆c

we have

P τ,β
Λ (dx∆|x∆c) =

1

Zτ,β
∆ (x∆c)

τN∆(x) exp(−βH∆(x))π∆(dx∆), (7)

where

Zτ,β
∆ (x∆c) =

∫

τN∆(x)e−βH∆(x)π∆(dx∆).

The local energy h of K in x ∈ Nd
f is defined as

h(K,x) = H(x ∪ {K})−H(x).

The Georgii-Nguyen-Zessin (GNZ) equations follow for any measurable function
f : C(d) ×Nd

f −→ R+

∫

N
d
f

∑

K∈x

f(K,x\{K})P τ,β
Λ (dx) = τ

∫

N
d
f

∫

C
(d)
Λ

f(K,x) exp(−βh(K,x))λ(dK)P τ,β
Λ (dx).

(8)
The GNZ equations characterize the finite volume Gibbs particle process, i.e. if
any probability measure on Nd

Λ satisfies (8) for any f as stated, then it is equal

to P τ,β
Λ . The function

λ∗(K,x) = τ exp(−βh(K,x)), K ∈ C(d)
Λ , x ∈ Nd

Λ

is called the (Papangelou) conditional intensity.

2.2 Infinite volume Gibbs particle process

It is verified that the results obtained for point processes in Rd in [4] hold in
the particle process case as well. Consider the sequence of windows

Λn = [−n, n]d ⊂ Rd,

spaces C(d)
Λn
, intensity measures λn =

∫ ∫

Λn
1[K+x∈.]dxQ(dK) (for a fixed prob-

ability measure Q satisfying (1) and (3)), Poisson particle processes πΛn
, Gibbs

point processes P τ,β
Λn

, n ∈ N. A measurable function f : Nd −→ R is called local

if there is a bounded set ∆ ⊂ Rd such that for all x ∈ Nd we have f(x) = f(x∆).
The local convergence topology on the space of probability measures P on Nd is
the smallest topology such that for any local and bounded function f : Nd −→ R
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the map P 7→
∫

fdP is continuous. Define a probability measure P̄ τ,β
Λn

such that

for any n ≥ 1 and any measurable test function f1 : Nd −→ R it holds
∫

Nd

f1(x)P̄
τ,β
Λn

(dx) = (2n)−d

∫

Λn

∫

Nd

f1(θux)P
τ,β
Λn

(dx)du. (9)

It can be shown that the sequence (P̄ τ,β
Λn

)n≥1 is tight for the local convergence

topology (cf. [5, Chapter 15]). We denote P τ,β one of its cluster points. Due to
the stationarization (9) P τ,β is the distribution of a stationary particle process,
in order to show that it satisfies the DLR and GNZ equations one needs to add
an assumption.

The energy function H has a finite range r > 0 if for every bounded set
∆ ⊂ Rd the energy H∆ is a local function on ∆ ⊕ B(0, r), where ⊕ is the
Minkowski sum of sets. The finite range property allows to extend the domain
of H and H∆ from the space Nd

f to Nd and consequently to define the desired
stationary Gibbs particle process.

Definition 2.1. Let H be a stationary and finite range energy function on Nd.
A stationary Gibbs particle process is a particle process with distribution P on
Nd invariant over shifts, such that for any bounded ∆ ⊂ Rd, Leb(∆) > 0, for
P -a.a. x∆c it holds

P (dx∆|x∆c) =
1

Zτ,β
∆

τN∆(x) exp(−βH∆(x))π∆(dx∆), (10)

τ > 0, β ≥ 0, the denominator is the normalizing constant.

For the stationary and finite range energy function the cluster point P τ,β

satisfies DLR equations (10). Also it satisfies GNZ equations for any measurable
function f : C(d) ×Nd −→ R+ :
∫

Nd

∑

K∈x

f(K,x \ {K})P τ,β(dx) =

∫

Nd

∫

C(d)

f(K,x)λ∗(K,x)λ(dK)P τ,β(dx).

(11)
Conversely, any measure P on Nd which satisfies (11) is a distribution of a
stationary Gibbs particle process. Then given an hereditary function λ∗ on
C(d) × Nd there exists a stationary Gibbs particle process with λ∗ being its
conditional intensity. The uniqueness issue is not investigated in this paper, see
[4] for more discussion.

In this work, we deal with the conditional intensity of the form

λ∗(K,x) := τ exp

{

−β
∑

L∈x

g(K ∩ L)
}

, K ∈ C(d), x ∈ Nd, (12)

where g is the pair potential, τ > 0, β ≥ 0.

Example 2.2 (Planar segment process). Denote by S ⊂ C(2) the space of all
segments in R2, S0 be the subsystem of segments centered in the origin. Fix
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a reference probability measure Q on S0, which corresponds to Qφ ⊗QL, where
Qφ, QL is the reference distribution of directions, lengths of segments, respec-
tively. Thanks to the assumption (3) QL has support (0, 2R]. Set

g(K) = 1{K 6= ∅}, K ∈ C2, (13)

and using the previous construction we define the stationary Gibbs segment pro-
cess ξ in R2 as a stationary Gibbs particle process with conditional intensity

λ∗(K,x) = τ exp

{

−β
∑

L∈x

1{K ∩ L 6= ∅}
}

, K ∈ S,x ∈ N
2.

In fact, λ∗(K,x) = τe−βNx(K), where Nx(K) denotes the number of intersec-
tions of K with the segments in x. It has to be mentioned that the reference
distribution Q need not coincide with the observed joint length-direction distri-
bution of the process, cf. [1].

3 Generalization of some asymptotic results for

Gibbs particle processes

Our aim is to extend the result [13, Theorem 5.3] concerning estimates of the
bound of the Wasserstein distance between standard Gaussian random variable
and functionals of stationary Gibbs point processes in Rd given by conditional
intensity. To do so we will use the general bound given by [13, Corrolary 3.5]
that is formulated for wider class of point processes having conditional intensity.
We consider the space C(d) of compact sets, conditional intensity (12) and a
stationary Gibbs particle process µ from Definition 2.1, satisfying (11). Behind
the presented model there is a probability measure Q on C(d) satisfying (1) and
(3), defining the reference measure λ in (2). In the following we always mean
that a stationary Gibbs particle process has activity τ, inverse temperature β,
pair potential g and particle distribution Q. Thanks to (3), (5) and assumptions
laid on g the finite range property holds.

3.1 Bounds onWasserstein distance for functionals of Gibbs

particle processes

The mean value E [λ∗(K,µ)], K ∈ C(d), is called a correlation function. Sharp
lower and upper bound for the correlation function of a Gibbs point process on
Rd can be found in [12]. For our purpose the following simple bounds for the
correlation function of a stationary Gibbs particle process are sufficient.

Lemma 3.1. Let µ be a stationary Gibbs particle process given by the condi-
tional intensity of the form (12) with activity τ > 0, inverse temperature β ≥ 0,
reference particle distribution Q satisfying (3), and with pair potential g which
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is bounded from above by some positive constant a. Then there exists b ∈ [0,∞)
such that it holds

τ(1− βb) ≤ E[λ∗(K,µ)] ≤ τ (14)

for λ-a.a. K ∈ C(d).

Proof. The stationary process µ has some intensity measure θ and particle dis-
tribution Q1 (typically not equal to Q). Using the Campbell theorem and the
disintegration ([9]) we obtain

E[λ∗(K,µ)] = τE[exp{−β
∑

L∈µ

g(K ∩ L)}] ≥ τ



1− βE
∑

L∈µ

g(K ∩ L)





= τ

(

1− β

∫

C(d)

g(K ∩ L)θ(dL)
)

= τ

(

1− β

∫

C(d)

∫

Rd

g(K ∩ (L + x)) dxQ1(dL)

)

≥ τ

(

1− βa

∫

C(d)

Leb(K ⊕ Ľ)Q1(dL)

)

≥ τ(1 − βb),

where we denote Ľ = {−l : l ∈ L}. The support suppQ1 ⊂ suppQ, cf. [1],
therefore using (3) we can choose b = a(2R)dωd, where ωd is the volume of the
unit ball in Rd. The upper bound follows from (12).

Definition 3.2. We define the innovation of a Gibbs particle process µ as a
random variable

Iµ(ϕ) =
∑

K∈µ

ϕ(K,µ \ {K})−
∫

C(d)

ϕ(K,µ)λ∗(K,µ)λ(dK)

for any measurable ϕ : C(d)×N
d → R, for which |Ix(ϕ)| <∞ for µ-a.a. x ∈ N

d.

We are interested in estimates of the Wasserstein distance dW , cf. [13]
between an innovation Iµ and a standard Gaussian random variable Z.

Theorem 3.3. Let µ be a stationary Gibbs particle process given by the condi-
tional intensity of the form (12) with activity τ > 0, inverse temperature β ≥ 0,
reference particle distribution Q satisfying (3), and with pair potential g which
is bounded from above by some positive constant a. Let ϕ : C(d) → R be a
measurable function that does not depend on x ∈ N

d and

ϕ ∈ L1(C(d), λ) ∩ L2(C(d), λ).
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Then

dW (Iµ(ϕ), Z) ≤
√

2

π

√

1− 2τ(1 − βb)||ϕ||2
L2(C(d),λ)

+ τ2||ϕ||4
L2(C(d),λ)

+ τ ||ϕ||3L3(C(d),λ) +

√

2

π
τ2||ϕ||2L1(C(d),λ)|1− e−βa|

+ 2τ2||ϕ||2L2(C(d),λ)||ϕ||L1(C(d),λ)|1− e−βa|
+ τ3||ϕ||3L1(C(d),λ)|1− e−βa|2.

Proof. First note that in this setting the finite range property holds. We would
like to estimate individually terms of the bound in Corollary 3.5 in [13] (valid
on a Polish space). First of all, we need to verify the assumptions of this result.
By using the upper bound from Lemma 3.1 and the integrability assumptions
on ϕ, we can write

∫

C(d)

|ϕ(K)|E[λ∗(K,µ)]λ(dK) ≤ τ ||ϕ||L1(C(d),λ) <∞

and
∫

C(d)

|ϕ(K)|2E [λ∗(K,µ)]λ(dK) ≤ τ ||ϕ||2L2(C(d),λ) <∞

and hence, the assumptions are verified.
For simplicity, denote

α2(K,L, µ) := E[λ∗(K,µ)λ∗(L, µ)],

α3(K,L,M, µ) := E[λ∗(K,µ)λ∗(L, µ)λ∗(M,µ)]

for K,L,M ∈ C(d). Then again based on Lemma 3.1, we can estimate α2 and
α3 as

α2(K,L, µ) ≤ τ2,

α3(K,L,M, µ) ≤ τ3,
(15)

for λ-a.a. K,L,M ∈ C(d).
If we investigate the term DKλ

∗(L,x) in Corollary 3.5 in [13], we obtain

DKλ
∗(L,x) = λ∗(L,x ∪ {K})− λ∗(L,x) =

= τ exp







−β
∑

M∈x∪{K}

g(L ∩M)







− τ exp

{

−β
∑

M∈x

g(L ∩M)

}

= τ exp

{

−β
∑

M∈x

g(L ∩M)

}

(

e−βg(L∩K) − 1
)

= λ∗(L,x)
(

e−βg(L∩K) − 1
)

.
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Using this expression, we can compute the individual terms. In the first
term, we will use estimates (14) and (15) to obtain the bound

√

2

π

√

1− 2

∫

C(d)

|ϕ(K)|2E[λ∗(K,µ)]λ(dK) +

∫

(C(d))2
|ϕ(K)ϕ(L)|2α2(K,L, µ)λ(dK)λ(dL)

≤
√

2

π

√

1− 2τ(1− βb)

∫

C(d)

|ϕ(K)|2λ(dK) + τ2
∫

(C(d))2
|ϕ(K)ϕ(L)|2λ(dK)λ(dL)

≤
√

2

π

√

1− 2τ(1− βb)||ϕ||2
L2(C(d),λ)

+ τ2||ϕ||4
L2(C(d),λ)

.

The second term can be estimated analogously:

∫

C(d)

|ϕ(K)|3E[λ∗(K,µ)]λ(dK) ≤ τ

∫

C(d)

|ϕ(K)|3λ(dK) ≤ τ ||ϕ||3L3(C(d),λ).

In the following terms, we will use additionally the boundedness of the pair
potential g. Thus,

√

2

π

∫

(C(d))2
|ϕ(K)ϕ(L)|E[|DKλ

∗(L, µ)|λ∗(K,µ)]λ(dK)λ(dL)

=

√

2

π

∫

(C(d))2
|ϕ(K)ϕ(L)||1 − e−βg(K∩L)|α2(K,L, µ)λ(dK)λ(dL)

≤ τ2|1− e−βa|
√

2

π

∫

(C(d))2
|ϕ(K)ϕ(L)|λ(dK)λ(dL)

= τ2|1− e−βa|
√

2

π
||ϕ||2L1(C(d),λ)

and

2

∫

(C(d))2
|ϕ(K)|2|ϕ(L)|E[|DKλ

∗(L, µ)|λ∗(K,µ)]λ(dK)λ(dL)

= 2

∫

(C(d))2
|ϕ(K)|2|ϕ(L)||1 − e−βg(K∩L)|α2(K,L, µ)λ(dK)λ(dL)

≤ 2τ2|1− e−βa|
∫

(C(d))2
|ϕ(K)|2|ϕ(L)|λ(dK)λ(dL)

= 2τ2|1− e−βa|||ϕ||2L2(C(d),λ)||ϕ||L1(C(d),λ).
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and
∫

(C(d))3
|ϕ(K)ϕ(L)ϕ(M)|E[|DKλ

∗(L, µ)DKλ
∗(M,µ)|λ∗(K,µ)]λ(dK)λ(dL)λ(dM)

=

∫

(C(d))3
|ϕ(K)ϕ(L)ϕ(M)||1 − e−βg(K∩L)||1− e−βg(K∩M)|α3(K,L,M, µ)λ(dK)λ(dL)λ(dM)

≤ τ3|1− e−βa|2
∫

(C(d))3
|ϕ(K)ϕ(L)ϕ(M)|λ(dK)λ(dL)λ(dM)

= τ3|1− e−βa|2||ϕ||3L1(C(d),λ).

Adding these estimates together yields the theorem.

3.2 Gaussian approximation for a functional of a station-

ary Gibbs planar segment process

As an example of an application of Theorem 3.3, we will derive a Gaussian
approximation for an innovation of a stationary Gibbs planar segment process
defined in Example 2.2. Two functionals are investigated: the normalized num-
ber of segments observed in a window and normalized total length of segments
hitting the window. We take windows forming a convex averageing sequence (cf.
[3]), i.e. monotone increasing sequence of convex bounded Borel sets converging
to R2.

Theorem 3.4. Consider for each n ∈ N a stationary Gibbs planar segment
process ξ(n) with the conditional intensity

λ∗n(K,x) = τn exp

{

−βn
∑

L∈x

1{K ∩ L 6= ∅}
}

, K ∈ S,x ∈ N
2,

where τn > 0 and βn ≥ 0. Moreover, suppose that βn → 0 and 0 < c1 <
τn < c2 < ∞, n ∈ N, for some constants c1, c2 and that the common reference
particle distribution Q for all ξ(n) has a uniform directional distribution. Let
{Wn, n ∈ N} be a convex averaging sequence in R2 such that Leb(Wn) = O(β−1

n )
(i.e. the asymptotic order of the growth of Leb(Wn) is at most β−1

n ). For n ∈ N

and K ∈ S, define

ϕn(K) =
1

√

τnLeb(Wn)
· 1{K ∩Wn 6= ∅}.

Further

ψn(K) =
l(K)√
ELl2

ϕn(K),

where l(K) denotes the length of the segment K, l is a random variable that
follows the law of QL and EL denotes the expectation with respect to QL. Then

dW (Iξ(n)(ϕn), Z) → 0, dW (Iξ(n)(ψn), Z) → 0
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as n→ ∞, where Z is a standard Gaussian random variable.

Proof. We prove the theorem for the functions ψn. The result for ϕn is then a
special case taking l(K) = 1, K ∈ S, and ELl

2 = 1. We want to use Theorem
3.3 for S ⊂ C(2). First, we have to verify the assumptions. In Lemma 3.1, we
can set b = 4πR2 and a = 1. Further, for every n ∈ N,
∫

C(2)

|ψn(K)|λ(dK) =

∫

C(2)

l(K)
1{K ∩Wn 6= ∅}
√

τnLeb(Wn)ELl2
λ(dK)

=
1

√

τnLeb(Wn)ELl2

∫

S0

∫

R2

l(K + x)1{(K + x) ∩Wn 6= ∅}dxQ(dK)

=
1

√

τnLeb(Wn)ELl2

∫

S0

l(K)

∫

R2

1{(K + x) ∩Wn 6= ∅}dxQ(dK)

=
1

√

τnLeb(Wn)ELl2

∫

S0

l(K)Leb(Ǩ ⊕Wn)Q(dK) <∞,

since Wn is bounded and K is the segment of the length less than or equal to
2R. Similarly,
∫

C(2)

|ψn(K)|2λ(dK) =

∫

C(2)

l(K)2
1{K ∩Wn 6= ∅}
τnLeb(Wn)ELl2

λ(dK)

=
1

τnLeb(Wn)ELl2

∫

S0

l(K)2
∫

R2

1{(K + x) ∩Wn 6= ∅}dxQ(dK)

=
1

τnLeb(Wn)ELl2

∫

S0

l(K)2Leb(Ǩ ⊕Wn)Q(dK) <∞.

Hence, the assumptions of Theorem 3.3 are satisfied and so we can compute
the explicit bounds on the Wasserstein distance between a Gaussian random
variable Z and the innovation Iξ(n)(ψn) for each n ∈ N.

Take some fixed n ∈ N and α > 1. Using definition of the measure λ and
Steiner theorem (cf. [11]), we obtain

||ψn||Lα(C(2),λ) =

(

∫

C(2)

∣

∣

∣

∣

∣

l(K)
1{K ∩Wn 6= ∅}
√

τnLeb(Wn)ELl2

∣

∣

∣

∣

∣

α

λ(dK)

)
1
α

=
1

√

τnLeb(Wn)ELl2

(∫

S0

l(K)αLeb(Ǩ ⊕Wn)Q(dK)

)
1
α

=
1

√

τnLeb(Wn)ELl2

(

∫ 2R

0

∫

S1

rαLeb(Ǩ ⊕Wn)Qφ(dφ)QL(dr)

)
1
α

=
1

√

τnLeb(Wn)ELl2

(

∫ 2R

0

rα
(

Leb(Wn) +
r

π
U(Wn)

)

QL(dr)

)
1
α

=
1

√

τnLeb(Wn)ELl2

(

Leb(Wn)ELl
α +

U(Wn)

π
ELl

α+1

)
1
α

,
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where U(Wn) denotes the perimeter of the set Wn. Note that since QL has a
compact support, it has all moments finite. Then the bound in Theorem 3.3
can be evaluated as

dW (Iξ(n)(ψn), Z) ≤
√

2

π

√

1− 2τn(1− βnb)||ψn||2L2(C(2),λ)
+ τ2n||ψn||4L2(C(2),λ)

+ τn||ψn||3L3(C(2),λ) +

√

2

π
τ2n||ψn||2L1(C(2),λ)|1− e−βn |

+ 2τ2n||ψn||2L2(C(2),λ)||ψn||L1(C(2),λ)|1 − e−βn |+ τ3n||ψn||3L1(C(2),λ)|1− e−βn |2

=

√

2

π

√

1− 2(1− βnb)

(

1 +
1

π

U(Wn)

Leb(Wn)

ELl
3

ELl2

)

+

(

1 +
1

π

U(Wn)

Leb(Wn)

ELl
3

ELl2

)2

+
1

√

τn(ELl2)3

(

1
√

Leb(Wn)
ELl

3 +
1

π

U(Wn)

Leb(Wn)3/2
ELl

4

)

+

√

2

π

τn
ELl2

|1− e−βn |
(

√

Leb(Wn)ELl +
1

π

U(Wn)ELl
2

√

Leb(Wn)

)2

+ 2
√
τn|1− e−βn |

(

1 +
1

π

U(Wn)

Leb(Wn)

ELl
3

ELl2

)

(

√

Leb(Wn)
ELl√
ELl2

+
1

π

U(Wn)
√
ELl2

√

Leb(Wn)

)

+ τ3/2n |1− e−βn |2
(

√

Leb(Wn)
ELl√
ELl2

+
1

π

U(Wn)
√

Leb(Wn)
ELl

2

)3

.

The convexity of Wn implies U(Wn)/Leb(Wn) → 0 as n → ∞. Combined with
the assumed growth of Leb(Wn), also dW (Iξ(n)(ψn), Z) → 0 as n approaches
+∞.

The assumption of βn → 0 as n→ ∞ in Theorem 3.4 is limiting, analogously
to the assumption of r = 1/n in Example 5.9 in [13], where r was the hard-core
distance. It says that the interactions tend to zero in the sequence of processes
investigated. Up to our opinion the presented methodology does not enable
to relax the assumption βn → 0, it is an open problem for further research.
Also we are able to provide Gaussian approximation for functionals of type
∑

x∈µ φ(x) here and not for interaction functionals of type
∑

x∈µ φ(x, µ), e.g.
the total number of intersections of segments in the window. Generalization of
other approaches, e.g. that of [2], to the space of compact sets, seems to be
promising.
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