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BAYESIAN STOPPING RULE IN DISCRETE PARAMETER
SPACE WITH MULTIPLE LOCAL MAXIMA

MIrROSLAV KARNY

The paper presents the stopping rule for random search for Bayesian model-structure estima-
tion by maximising the likelihood function. The inspected maximisation uses random restarts
to cope with local maxima in discrete space. The stopping rule, suitable for any maximisation
of this type, exploits the probability of finding global maximum implied by the number of local
maxima already found. It stops the search when this probability crosses a given threshold. The
inspected case represents an important example of the search in a huge space of hypotheses so
common in artificial intelligence, machine learning and computer science.
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1. INTRODUCTION

Global optimisation is a demanding research area with many sub-problems [7] and an
extreme applicability width. Generally, it tries to find absolute extremes of multi-modal
functions. Maximisation of a multi-modal function defined on a huge discrete grid is
common to feature extraction, hypotheses testing, structure estimation etc, [4} 13} [15].
In computer science, similar problems are met when constructing hash functions that
randomly map a big space into a much smaller space [I1]. Size of the grid, the lack of
smoothness and function-evaluation costs prevent the exhaustive search and makes the
use of Gaussian processes [12] unsuitable.

No free lunch theorem [I6] indicates that no universal maximising algorithm can
be gained without additional assumptions on the optimised function. Typically, a sort
of “continuity”, relating mutual positions of function arguments to mutual positions
function values, is to be assumed. The motivating structure estimation does not meet
such an assumption.

In outlined cases, an initial guess of the maximising argument is chosen and via a local
search a local maximum is found and the procedure repeats with another randomly
chosen start. Then, the maximum of local maxima is taken as an estimate of the global
maximum. Its quality depends on the sufficient number of trials, which have to stop
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2 M. KARNY

well before making an exhaustive search. A rational choice of the number of restarts
has to be made. This choice becomes vital if the evaluation of the function values is
computationally expensive. The choice is the decision-making task under uncertainty
[3] and as such it is addressed here.

The paper shows that a very straightforward use of Bayesian methodology provides
an efficient solution. The results concern a specific practically-important problem of the
model-structure estimation [8), [I0], which fits the above framework and which has lacked
a suitable stopping rule. Many other problems are solvable by using the same search
strategy with their specific locally-maximising algorithms. Their users and developers
may directly adopt the proposed stopping rule.

Section [2] formulates and solves the central stopping problem. The formulation and
solution are made in the vein of [9]. Its behavior is illustrated in Section and conclusions
drawn in Section[d] An evaluation of a normalisation constant determining the stopping
rule is in Appendix Appendix [0] recalls main steps of the motivating structure-
estimation algorithm.

Throughout, x is a set of z-values, || is cardinality of &. Sequences z(t) = (x1,...,2+)
are inspected in discrete time 7,t € t, |t| < oco. Time index is the first one and sepa-
rated by semicolon if it is used together with another subscript. The symbol f denotes
probability (density) function (pdf). Its arguments are used for distinguishing them. No
formal distinction is made between random variable, its realisation and an argument of
a pdf. Context provides the correct meaning. Basic properties of pdfs are only used, see
e.g. [14].

2. PROBLEM FORMULATION AND SOLUTION

A huge set of competitive structureﬂ s € s, |s| < 00, is inspected. Within the adopted
Bayesian paradigm, each structure is characterised by the posterior probability. Due
to the impossibility to evaluate its normalising factor the corresponding a posteriori
real-valued likelihood function £(s) is to be considered.

The likelihood function £(s) has an unknown number |m| < |s| < oo of local maxima.
A fixed deterministic algorithm A, as in []], is at disposal. It assigns to any initial guess
s € s an argument a = A(s) € s locally maximising £(s). In the motivating problem, a
local maximum is searched for structures gained by adding to or by removing one entry
from to the regressors specified by the initial guess, see [§, [I0] and Appendix @ The
global maximum of L(s), s € s, is searched for, by sequentially evaluating mutually-
independent, uniformly-distributed initial guesses s; € s, t € t. For each s; € s,
the algorithm A finds the argument a; = A(s;) € s giving the local maximum of the
likelihood function. The sequential search is stopped when the probability that all local
mazima were inspected is high enoughﬂ The design of such a rule is formulated and
solved here as the problem of decision making under uncertainty.

IFor instance, 100 potential regressors creates |s| = 21°0 hypotheses, which cannot be fully inspected.
2This is a generalised form of secretary or marriage problems [5].
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2.1. Parametric model

First, a parametric model relating the observed locally-maximising arguments to the
unknown |m/| is constructed. The domain s splits into |m| mutually disjoint subsets
$m C 8, mem={1,...,|m|}, such that a common mth structure a,, = A(s) is found
for all s € s,,. The probability that the structure a,, is found in ¢th independent trial
is

Sm m
flae = an|®) = f (ar = aml|s1, ..., Sjm. Im|) = ||8| = alml, (1)

The unknown multivariate parameter is © = (a‘m|, |m|), where

alml = (a'{"',...,a}z{) €al™ = {a;;‘ >0, > alml= } im| € {1,....]s|}.

mem
(2)
Thus, the parametric model relating the observed data a(t) = (ai,...,a;) to the un-
known © is

fla®1©) =TT TT (e)™ " timi = mo) = TT (o) "x(lmi =m0, (3)

T<tmem mem

where Kronecker’s ¢ equals one for equal arguments and is zero otherwise. Heaviside’s
function x(-) equals one on non-negative arguments and zero otherwise. The wvalue
F¢.m counts how many times the structure a,, occurred during ¢ evaluations, cf. .
The probability that the observed number m; of different maxima is greater than the
number of maxima |m)| is zero.

2.2. Prior pdf

For a fixed number of local maxima |m/|, the adopted model belongs to exponential
family [2] and thus it has conjugated prior pdf. It is Dirichlet’s pdﬁ

lml _q

B Hmem (aerl)%:m
)= 5 () W
[LhemT (“l)n:nl)

r (ZmEm HlOT;l‘) '

£ (™ iml) = D (5

Im|  _ |m| e i Iml\ _
K = K01 om0 Kogm >0, Blkg ) =

It remains to choose marginal prior probability of |m|. The uniform pdf on |m| =
{1,...,]s|} is the most simple option (o is proportionality)

f(Im]) oc x(Im[ = 1)x(|s| — [m]). (5)

3The pdf is zero out of the set al™!, see . Gamma function I'(z) = [;° 2*~1 exp(—x) d,
z > 0, is used, see [1].
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It is, however, unreasonable as it a priori expect that the probability that each structure
reaches the local maximum is the same as the probability that the maximised likelihood
is unimodal. Thus, it is wise to assign lower probabilities to higher values of |m|. We are
choosing prior probability reciprocal to polynomial of the order k. The next heavy-tailed
type distribution [6] respects this

f(iml) o< (D(Im| = k)x(Im| — k = I (|m]) + x(k — [m|)x(Im| — 1)) x(|s| — [m]). (6)

The accumulated experience indicates the reasonable range [1,2] of its real positive
parameter k. The normalisation constant for @ is derived in Appendix

2.3. Estimation and prediction

The pdf f(a!™l|a(t), |m|) preserves the conjugated prior form

F@™ja(),fml) o Do (6™) x(Iml = mo)x(ls| = [ml). #™ = i+ w™(7)

where |m| € {1,...,|s|} and mth entry k., of &; is defined
l;:t;m = Z d(ar, am). (8)
T<t

Further on, m; denotes the number of positive entries in K.y, .

The probabilities /™! form nuisance parameter of the problem. We only need the
parametric model relating a(t) to |m|. It is the predictive pdf conditioned on |m| €
{my,...,|s|}. Tt is proportional to the ratio of the normalising factor

e
fla(®)]lm]) ngg-x(m = my). (9)
ko

The sufficient statistic for any decision making about |m| is the posterior probability of
the unknown |m|. With uniform prior on |m/| € s, i.e. the prior pdf @ for k=0, it is
proportional to the expression @D The appealing form arises for the uniform prior pdf

ml < |m| and |m| < |s|. This special

on unknown probabilities a/™! given by Koym =

case gives

(im0 o 1(mi) TT T (x3) e ey x(im] = mox(lsl = m)).— (10)

mem

For constant k/™ = 1, the product over m in is independent of |m/| and

O;m —
I'(lm|) )X(‘m| —my)x(|s| — |m]). (11)

f(lmlla(t)) o f(\ml)m

The more sound general prior pdf (6) gives f(|/mla(t)) o

(| - ) r(m)
(P sl = fmim] = b = 1) 4 = ) ) ] = o). (12
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With this, the final form of the posterior probability is f(|m/||a(t)) =

(REEH (U] = Imx(Im] — &k = 1) + sk = fm]) ) x(Jm] = me)

K ol (13)
L(jm|) - L(jm| - k)
R e (SRR SR L
I'(t I'(t
Im|=m, ( t |m|) |m|=max(m¢,k+1) ( T |m|)
Z(my,k,t) I(=max(m¢,k+1)—k,|s|—k,t+k)

D=x(k—m)Z(my,k,t)+Z(max(m,k+1)—k,|s|—k,t+k)

Using evaluations presented in Appendix the denominator D in can be expressed
in a simple form. It exploits the definition of beta function and gives

D = x(k—my)Z(my, k,t) +I(max(me, k+1)—k,|s| —k, t+ k)

t—1 mi+t—1) T(k+t)

Lo Dim—k)  T(s|—k+1)
t+k—1\T(m+t—1) I'(]s| +1) ’
where m = max(my, k + 1). For simplicity, |s| = oo is assumed from now on. It is
realistic approximation for the target application and, if need be, it can be avoided. For

|s| >> |m|, the last member % in denominator D is dominated by the other

members anyway, so it can certainly be neglected.
If m; is above k the formula can be further simplified

(t+k—1)D(jm| — E)D(my +t—1)

ffmlla(t) = e ml —m).(15)

2.4. Sequential choice of the number of experiments

The decision task formulated at the section beginning can be now solved formally.

After generating tth random initial structure s; and evaluating the local maximiser
a; = A(s¢), we have to decide whether to generate a new sample or not. The sufficient
statistic available to this is the number of experiments ¢, the parameter k of the prior pdf
@ and, most importantly, the number m; of different observed values of local maxima.
With them, the stopping is recommended if

f(m| = myla(t)) = f(lm| = mymy, t, k) > A, where A € (0, 1) isachosen threshold.

(16)
By introducing expression into , we get the final stopping rule in which the
optional parameter A € (0, 1) balances reliability of the guess |m| = m; and costs of the
local maximum evaluation. The final stopping rule is

(t+k—D0me —R)D(me+1=1) _ t+k=1 _
1

mitt=1  _T(t+me) ( 1 7F(Ic+1))
t—1 T(m)T(t+k) \ t+k—1 t—1

For m; > k, stop if

> A (17)

For m; < k, stop if
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The final stopping rule is computationally cheap and may significantly spare com-
putational budget of the overall learning to which the maximisation serves.

3. ILLUSTRATIVE EXAMPLES
This section indicates usability of the stopping rule .

3.1. Experiment 1: k =2 @ and varying A ({17))

|m| and al™! were sampled from the considered prior pdf. For each sample, search for
the global maximum in randomly generated space with the given © was performed and
the stopping rule was applied with a given A\. With k = 2 and |s| = 32768, the number
of Monte-Carlo experiments was 10° for each tested .

Results The runs in which aAll local maxima were found was taken as successful. Their
portion in all runs is denoted A and provides a bound on A, to which it should converge.
It was indeed so as the results in Table [I] show.

A || 0.7000 | 0.7500 | 0.8000 | 0.8500 | 0.9000 | 0.9500 | 0.9700 | 0.9800 | 0.9900

A | 0.7477 | 0.7728 | 0.8087 | 0.8429 | 0.8821 | 0.9307 | 0.9532 | 0.9670 | 0.9809

Tab. 1. Used X and its estimated lower bound .

3.2. Experiment 2: Maxima in the model-structure space

Maximum a posteriori likelihood (probability) of the structure of autoregressive-regressive
model was searched. Scalar outputs ., stimulated by scalar normal, zero mean white-
noise inputs u, and unobserved noise e, were generated

yr = 1.4183y, 1 — 1.5894y,_» + 1.3161y,_5 — 0.8864u,_3 + 0.2826u,_4 + 0.5067¢,.

The richest inspected structure for the structure selection was

6 6
Yr = Zain_i + Z b;ur_; + ¢ + oe, with unknown a;, b;, ¢, o > 0.
i=1 i=0

The richest structure has dimension 14. The number of its substructures is |s| = 16384.
Maximum of the posterior likelihood L(s) is searched by the algorithm .A(s) proposed
in [8]. It acts on randomly chosen prior guess of the structure s € s and returns a,, € 8
corresponding to a local maximum of £, cf. Section A small number of data was
simulated in order to get the high number |m| = 245 of local maxima. Stopping rule
was used with A = 0.7 and k = 2.
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Results. Figure[l|shows the increasing number of local maxima found when the num-
ber of restarts ¢ increases. The search stopped at ¢ = 400 when the number of found
local maxima was m; = 168. This is quite a good result, because m;/|m| = 168/245 =
0.686 ~ A = 0.7. It indicates applicability of the prior probability @ chosen irrespec-
tively of the problem specificity. Figure [2[shows the cumulative number of local maxima
found in experiment without a stopping rule. It confirms that the stopping rule spares
a lot of the computational effort.

m 250

200 |- -
—

150 - // 4

//
///
100 //// —
///
,/
50 - /// -
///
// L L L L L L L
° 50 100 150 200 250 300 350 200

Fig. 1. The number of local maxima in Experiment 2 with the
stopping rule applied. The straight line is the limit given by the
stopping rule on the probability . The search was stopped
after ¢ = 400 restarts when the number of found local maxima was

maq00 = 168.

L L L L L
o 500 1000 1500 2000 2500 3000 t

Fig. 2. The number of local maxima in Experiment 2 without the
stopping rule applied. The search found all of them for ¢ > 2200.



8 M. KARNY

4. CONCLUSIONS

Bayesian sequential rule (17) was designed to stop the search when there is a high
probability that all local maxima were found. Its design was motivated by the quest for
an enhanced efficiency of the structure estimation algorithm [8 [I0], which relies on a
sufficient number of random restarts. The same problem is, however, common in many
sub-domains of machine learning, artificial intelligence and wherever a global optimum is
searched for. This made us to elaborate the stopping rule without entering details of the
local search employed. The experimental evidence whose illustrative sample is presented
indicates a high efficiency of the stopping rule and its wide applicability. Quest for a
wider use, testing and analysing made us to present the rule and its technical details to
a wider audience.

The desirable additional extensive Monte-Carlo type experiments concerning param-
eters k and A and optimisation variants will be published elsewhere. Our accumulated
experience with various real-data problems indicates robustness of the stopping rule with
respect to their choice. The rule simplicity offers the reader the possibility to test it on
his/her specific cases.

5. APPENDIX: NORMALISATION CONSTANT

Calculation of normalisation constants and generating the random variable |m| dis-
tributed as @ need to evaluate the sum

= T()
I(A,B,C) = —
i:ZA I(C+1)
For C # 0 and C # 1,
1 Z . 1 = i—1 -1
I(A,B,C) = m;B(z,C) = m/0 ;433 (1—x)°"tda.
' B (xA $B+1) .
Identity Z xt = T gives
i=A
@ =2t (1 - 2)2de B(C —1,4)—B(C —1,B+1)
I(A,B,C) = =0 o) = 0) .
. B I'(A) (B +1)
Finally I(4,8,0) = C-1I(A+C—-1) (C-1DIB+0)
For B — oo, Z(A,00,C) = ()

(@I +C-1)

This formula does not work for C' = 1. Proof of this case would be much more compli-
cated, so we just give the result

—_

B
I(A,B,1) =Y ~ =®(0,B+1) - ®(0,4)
i=A

~.
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where ®(-,-) is polygamma, specifically ®(0, -) is digamma function and v = —®(0, 1) is
Euler’s constant.

6. APPENDIX: LOCAL SEARCH FOR MAXIMUM A POSTERIORI STRUCTURE
ESTIMATE

This appendix recalls basic idea of the local search for the best model structure.
Considered linear-in-parameters single-output y, Gaussian regression and auto-regres-
sion (' denotes transposition)

(y‘r B 0/'(/)7')2] (18)

1
f(err, 67 U) = \/%0_ €xXp |:_ 202

has an extreme application width due the flexibility of the regression vector ¥;. It can be
an arbitrary real finite-dimensional image of observed data and time. Moreover, chain
rule for pdfs implies that multi-output case can always be treated as a collection of
single-output cases by appropriately extending .

The model belongs to exponential family and has Gauss Inverse-Wishart pdf
[1I7] as the conjugate prior of unknown parameters (6,0). It is seen by rewriting (18]

into the form
Yr
, U, = .
ke

(19)
The likelihood function, which is the product of f(y,|w-,6,0) with observed data in-
serted, is obviously determined by sufficient statistics that evolve recursively with the
growing number of processed data (V. is scalar)

202

ERAIENAY

1
s, 0,0) = ——exp | —tr | ¥, 0L
F(0rlr.0.0) = —— p[ (

V"'?Q V‘If,’l/’lb

V,=V, 1 +V, ¥ = {
Vigy Vo

] . Ur=U;_1+ 1. (20)

They determine the posterior pdf, of the same form as the likelihood function, when the
recursion is initiated by the statistics Vy > 0 (symmetric positive definite matrix)
and vy > 0. Structure s (of the length ¢,) of the considered model determines individual
regressors entering. The likelihood for estimating s € s is the ratio of normalising factors
J of the posterior and the prior Gauss Inverse-Wishart pdf, [9],

j(VT;S7 VT;s) ‘0'5(”_1)

_ 0.5v 0.5¢ |Vw
T(Vomvmes)’ J(V,v) =T(0.5v)2"" (27)

L(s)=L(s)= R (21)
The evaluation of determinants |V|, |Vsy| for the considered structure is numerically
the most sensitive and demanding operation. Paper [§] copes with it by: a) collecting
the sufficient statistics for the richest s € s inspected structure; b) evaluating Choleski
square root of V' (typically, during sequential processing of observed data vectors ¥ .5);
¢) noticing that V for any structure embedded in § has the statistic embedded in Vs; d)
designing and using efficient algorithms evaluating Choleski square root of Vy directly
from Choleski square root of V3 corresponding the structure s € s in which s is embedded.
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With the outlined machinery, the an efficient local search is designed. Using the
initial guess of s, the likelihood is evaluated for all structures, which arise from it either
by cancelling one regressor from it or by adding one regressors from s. This requires
just 5 values of £ and selecting maximising argument a,,, among them.

Details can be found in [8] while [9] describes LD factorised version of this algorithm,
which is used during computationally demanding structure estimation of multivariate
normal mixtures [9].
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