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K Y B E R N E T I K A — V O L U M E 5 5 ( 2 0 1 9 ) , N U M B E R 2 , P A G E S 4 2 2 – 4 3 4

RANDOM NOISE AND PERTURBATION OF COPULAS

Radko Mesiar, Ayyub Sheikhi and Magda Komorńıková

For a random vector (X,Y ) characterized by a copula CX,Y we study its perturbation
CX+Z,Y characterizing the random vector (X + Z, Y ) affected by a noise Z independent of
both X and Y . Several examples are added, including a new comprehensive parametric copula
family (Ck)k∈[−∞,∞].
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Classification: 60E05, 62H20

1. INTRODUCTION AND PRELIMINARIES

Observation of random variables is often polluted by a random noise. On the other
hand, the stochastic dependence of a couple of random variables is described by means
of copulas, e. g., Sklar (1959) [6], Joe (1997) [4], Nelsen (2006) [5] and Durante & Sempi
(2016) [2].

The main aim of this contribution is the study of perturbation of a copula CX,Y
related to a random vector (X,Y ) in the case when the first coordinate X is polluted
by some noise Z, i. e., we are interested in copula CX+Z,Y when Z is random variable
independent of both X and Y .

Recall that due to Sklar theorem [6] for any random vector (X,Y ) such that

FX,Y : R2 → [0, 1]

is its joint distribution function and

FX , FY : R→ [0, 1]

are distribution functions of random variables X, Y respectively, there exists a copula

C : [0, 1]
2 → [0, 1]

such that
FX,Y (x, y) = C(FX(x), FY (y)). (1)

Copula C is unique if both X and Y are continuous random variables.
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We denote the copula couplingX and Y as CX,Y . Note also that we have an axiomatic
characterization of copulas, see [2, 4, 5]:

A function C : [0, 1]
2 → [0, 1] is a copula if and only if it satisfies the next three

axioms:

C1 C(x, 0) = C(0, x) = 0 for each x ∈ [0, 1] (C is grounded);

C2 C(x, 1) = C(1, x) = x for each x ∈ [0, 1] (C has a neutral element e = 1);

C3 for all x1, x2, y1, y2 ∈ [0, 1], x1 ≤ x2, y1 ≤ y2 it holds C(x1, y1) + C(x2, y2) −
C(x2, y1)− C(x1, y2) ≥ 0 (C is 2–increasing).

A similar axiomatization describe n–ary copulas characterizing the stochastic depen-
dence structure of n–ary random vectors (X1, ..., Xn). In this paper, we consider only
binary copulas, and for readers interested in n–ary copulas, n ≥ 2 we recommend books
[2, 4, 5].

There are many copula families available in the literature, in which, the upper Fréchet-
Hoeffding, the lower Fréchet-Hoeffding and the product copula are known as the three
basic copulas and denoted by M , M(u, v) = min(u, v), W , W (u, v) = max(0, u+ v− 1)
and Π, Π(u, v) = uv, respectively. It is well known that for any copula C it holds

W ≤ C ≤M.

More, it is known that when X and Y are linked by a copula CX,Y , the distribution
function of X + Y of their sum is given by

FX+Y (s) =

∫ ∫
x+y≤s

dHX,Y (x, y) s ∈ R. (2)

Where HX,Y (x, y) = CX,Y (FX(x), FY (y)) and dHX,Y (x, y) is its derivative. When
C = Π, the formula (2) is referred as convolution of two independent random variables X
and Y . Williamson and Downs (1990) [8] discussed the distribution of some arithmetic
convolution function of X,Y where their marginal distributions is fixed. One may refer
to Cherubini et al. (2016) [1], for more details of distributions of convolution of variables.

Also, the distribution of linear combination of two (or more) random variables in
the case when their marginal distributions as well as their copula are available, has
been investigated in the literature. Durante and Sempi (2016) [2] have obtained the
distribution of X + Y as well as the copula of X + Y and Y in this situation. Gijbels
and Herrmann (2014) [3] have found the distribution of sums of random variables with
copula-induced dependence. See also Williamson and Downs (1990) [8], Wang (2014)
[7] and Durante and Sempi (2016) [2].

As already mentioned, the main aim of this paper is related to the description of
copula CX+Z,Y which can be seen as a perturbation of the copula CX,Y . Here we
suppose the independence of Z on X and Y , and the main results are given in the next
section. In Section 3, we study a particular case when X and Y are uniformly distributed
on [0, 1], and Zε is uniformly distributed on [0, ε], where ε ∈]0,∞[ is a positive parameter
charactering the considered noise. Our approach allows to construct a new parametric
comprehensive family of copulas [5], i. e., family containing all three basic copulas M, W
and Π. Finally, some concluding remarks are added.
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2. PERTURBATION OF COPULAS UNDER NOISE

Consider two random variables X and Y linked by a copula CX,Y . Let Z be a random
variable Z, independent of both X and Y . Evidently, the knowledge of CX,Y and of
distribution function FZ is not sufficient to determination of the copula CX+Z,Y . This
fact follows from the well known facts that CX,Y = Cϕ(X),η(Y ) for any transformations
ϕ, η : R→ R which are strictly increasing on Ran X and Ran Y , respectively. Therefore,
to describe the perturbed copula CX+Z,Y , we need to know the original copula CX,Y
and distribution functions FX , FY and FZ (possible modifications of values of FY which
do not influence the form of copula CX,Y do not play a role in the next considerations).
More, we will consider in the rest of the paper continuous random variables X,Y and Z.
This is caused not only by the fact that then the copulas CX,Y and CX+Z,Y are unique,
but also by the formula inverse to (1) valid in this case, namely that then

CX,Y (u, v) = FX,Y (F−1X (u), F−1Y (v)), (3)

where F−1X , F−1Y :]0, 1[→ R are the related quantile functions for some bijective functions
FX and FY respectively (for more details see [2, 4, 5]).

Theorem 1. If CX,Y is the copula function of X and Y and the random variable Z is
independent of X and Y , then the copula function CX+Z,Y is given by

CX+Z,Y (u, v) =

∫ ∫ v

0

D2CX,Y
(
FX(F−1X+Z(u)− z), r

)
drdFZ(z) (4)

where D2CX,Y (u, v) =
∂FX,Y (u,v)

∂v if this derivative exists, and D2CX,Y (u, v) = 0 other-
wise. More, the bijective function FX+Z is the standard convolution of FX and FZ .

P r o o f . Using the theorem of total probability we have

FX+Z,Y (s, t) = P (X + Z < s, Y < t) =

∫
P (X + Z < s, Y < t|Z = z) dFZ(z)

=

∫
P (X + z < s, Y < t|Z = z) dFZ(z) =

∫
P (X < s− z, Y < t) dFZ(z)

=

∫ ∫ t

−∞
P (X < s− z|Y = y) dFY (y) dFZ(z)

=

∫ ∫ t

−∞
D2CX,Y (FX(s− z), FY (y)) dFY (y) dFZ(z).

Defining r = FY (y), it becomes

FX+Z,Y (s, t) =

∫ ∫ FY (t)

0

D2CX,Y (FX(s− z), r) dr dFZ(z).

So, the perturbed copula CX+Z,Y is given by

CX+Z,Y (u, v) =

∫ ∫ v

0

D2CX,Y
(
FX(F−1X+Z(u)− z), r

)
drdFZ(z).

�
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Example 1. Let X and Y be two random variables uniformly distributed on [0, 1] linked
with minimum copula, CX,Y = M , and let the random variable Z independent of X and
Y has uniform distribution on [0, 1]. Clearly, then X = Y , and

CX+Z,Y (u, v)) =


u if 0 ≤ u ≤ 1

2 ,
√

2u ≤ v
v
√

2u− v2

2 if 0 ≤ u ≤ 1
2 ,
√

2u ≥ v

v − (
√

2(1−u)+v−1)2

2 if 1
2 ≤ u ≤ 1, 1−

√
2(1− u) ≤ v

v if 1
2 ≤ u ≤ 1, 1−

√
2(1− u) ≥ v.

(5)

P r o o f . Let FX+Z(s) is the CDF of Irwin-Hall distribution for n = 2, Since the support
of the joint density of X,Z is [0, 1]2 and is finite so FX+Z(s) is a strictly increasing
function which yields the bijectivity proprerty of FX+Z(s) . By inverting the FX+Z(s)
we obtain

F−1X+Z(s) =


0 if s ≤ 0√

2s if 0 ≤ s ≤ 1
2

2−
√

2(1− s) if 1
2 ≤ s ≤ 1

2 if 1 ≤ s.
Also, since D2CX,Y (u, v) = ∂M(u,v)

∂v = 1(u<v), where 1(u<v) is an indicator function
which equals 1 if u < v and zero otherwise, we have

D2CX,Y
(
FX(F−1X+Y (u)− z), r

)
= 1(r<F−1

X+Y (u)−z)

and based on (4) we have the following four parts:

1. if 0 ≤ u ≤ 1
2 ,
√

2u ≤ v
CX+Z,X(u, v) =

∫√2u

0

∫√2u−z
0

drdz = u,

2. if 0 ≤ u ≤ 1
2 ,
√

2u ≥ v
CX+Z,X(u, v) =

∫√2u−v
0

∫ v
0

drdz +
∫√2u√

2u−v
∫√2u−z
0

drdz = v
√

2u− v2

2 ,

3. for the sake of notational simplicity, define g(u) = 2 −
√

2(1− u), if 1
2 ≤ u ≤

1, g(u)− 1 ≤ v,

CX+Z,X(u, v) =
∫ g(u)−v
0

∫ v
0

drdz +
∫ 1

g(u)−v
∫ g(u)−z
0

drdz = v − (
√

2(1−u)+v−1)2

2 ,

4. if 1
2 ≤ u ≤ 1, g(u)− 1 ≥ v

CX+Z,X(u, v) =
∫ 1

0

∫ v
0

drdz = v,

which completes the proof. �

Figure 1 depicts this copula function.
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Fig. 1. 2D and 3D view of Copula function CX+Z,X .

It should be noticed the L∞ norm of the difference between CX,X and CX+Z,X can
be obtained as follows.

Corollary 1. Under the assumption of Example 1,

L∞(CX,X , CX+Z,X) =
1

8
.

P r o o f . We have two cases: 0 ≤ u ≤ 1
2 and 1

2 ≤ u ≤ 1.
If 0 ≤ u ≤ 1

2 , using (5) and CX,Y (u, v) = M(u, v) we have

L∞(CX,X , CX+Z,X) = max |CX,X(u, v)− CX+Z,X(u, v)|

=



max |u− u| if u ≤ v & v ≤ v
√

2u− v2

2

max
∣∣∣u− v√2u+ v2

2

∣∣∣ if u ≤ v & v ≥ v
√

2u− v2

2

max

∣∣∣∣v − v +
(
√

2(1−u)+v−1)2

2

∣∣∣∣ if u ≥ v & v ≤ v
√

2u− v2

2

max |v − v| if u ≥ v & v ≥ v
√

2u− v2

2

=


0 if u ≤ v & v ≤ v

√
2u− v2

2

max
∣∣u− 1

2

√
2u+ 1

8

∣∣ = 1
8 if u ≤ v & v ≥ v

√
2u− v2

2

max
∣∣∣ v22 ∣∣∣ = 1

8 if u ≥ v & v ≤ v
√

2u− v2

2

0 if u ≥ v & v ≥ v
√

2u− v2

2

and similarly, if 1
2 ≤ u ≤ 1, we have four parts; so

L∞(CX,X , CX+Z,X) = max |CX,X(u, v)− CX+Z,X(u, v)|

=



0 if u ≤ v & v ≥ v(2−
√

2u)− v2−(1−
√

2(1−u))2

2

max
∣∣u−√2u− 1

2

∣∣ = 1
8

if u ≤ v & v ≤ v(2−
√

2u)− v2−(1−
√

2(1−u))2

2

max
∣∣∣v − (v − v2

2
)
∣∣∣ = 1

8
if u ≥ v & v ≤ v(2−

√
2u)− v2−(1−

√
2(1−u))2

2

0 if u ≥ v & v ≥ v(2−
√

2u)− v2−(1−
√

2(1−u))2

2

.

�



Random noice and perturbation of copulas 427

Example 2. Let X and Y be two random variables uniformly distributed on [0, 1] with
the Fréchet copula W, CX,Y (u, v) = max(0, u+ v − 1), (i. e., Y = 1−X) and random
variable Z, independent of X and Y, has uniform distribution on [0, 1], then

CX+Z,Y (u, v) =


0 if 0 ≤ u ≤ 1

2 ,
√

2u ≤ 1− v
(
√
2u+v−1)2

2 if 0 ≤ u ≤ 1
2 ,
√

2u ≥ 1− v
u+ v − 1 if 1

2 ≤ u ≤ 1,
√

2(1− u) ≤ v
v(1−

√
2(1− u)) + v2

2 if 1
2 ≤ u ≤ 1 ,

√
2(1− u) ≥ v.

(6)

P r o o f . Similar to Example 1 we have the same F−1X+Z(s) and since D2CX,Y (u, v) =
∂W (u,v)

∂v = 1(u>1−v), then

1. if 0 ≤ u ≤ 1
2 ,
√

2u ≥ 1− v

CX+Z,1−X(u, v) =

∫ √2u

1−v

∫ √2u−z

0

drdz =
(
√

2u+ v − 1)2

2

2. if 0 ≤ u ≤ 1
2 ,
√

2u ≤ 1− v

CX+Z,1−X(u, v) = 0,

3. if 1
2 ≤ u ≤ 1, v ≥

√
2(1− u), by defining g(u) = 2−

√
2(1− u),

CX+Z,1−X(u, v) = v −
∫ 1

g(u)−1

∫ 1

g(u)−z
drdz = v + u− 1,

4. if 1
2 ≤ u ≤ 1, v ≤

√
2(1− u)

CX+Z,1−X(u, v) =

∫ g(u)−1

0

∫ 1

1−v
drdz +

∫ g(u)−v+1

g(u)−1

∫ g(u)−z

1−v
drdz

= v(1−
√

2(1− u)) +
v2

2
.

Hence,

CX+Z,Y (u, v)) =


0 if 0 ≤ u ≤ 1

2 ,
√

2u ≤ 1− v
(
√
2u+v−1)2

2 if 0 ≤ u ≤ 1
2 ,
√

2u ≥ 1− v
u+ v − 1 if 1

2 ≤ u ≤ 1,
√

2(1− u) ≤ v
v(1−

√
2(1− u)) + v2

2 if 1
2 ≤ u ≤ 1 ,

√
2(1− u) ≥ v.

�

Figure 2 presents this copula function and similar to Corollary 1, after a simple
computation, we can obtain that

L∞(CX,1−X , CX+Z,1−X) = max |CX,1−X(u, v)− CX+Z,1−X(u, v)| = 1

8
.
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Fig. 2. 2D and 3D view of copula function CX+Z,1−X .

The proof of the following example is trivial.

Example 3. If X, Y and Z are independent random variables with uniform distribu-
tion on [0, 1] then

CX+Z,Y (u, v) = uv.

Remark 1. (i) Note that Theorem 1 can be applied also in case when Z is not inde-
pendent of X and Y . Obviously, then the distribution function FX+Z should be
computed by means of formula

FX+Y (s) =

∫ ∫
x+y≤s

dHX,Y (x, y)) s ∈ R.

In particular, if Z = Y , then the copula CX+Y,Y is given by

CX+Y,Y (u, v) =

∫ v

0

D2CX,Y
(
FX(F−1X+Y (u)− F−1Y (r)), r

)
dr.

Recall that this result was obtained as Theorem (3.4.2) already in book [2].

(ii) Observe that copulas CX+Z,X and CX+Z,1−X discussed in Example 1 and Exam-
ple 2, respectively, are related by the flipping relations,

CX+Z,1−X(u, v) = u− CX+Z,X(u, 1− v) = v − CX+Z,X(1− u, v).

Consequently, both these copulas are survival invariant, i. e.,

CX+Z,X(u, v) = 1− u− v + CX+Z,X(1− u, 1− v)

and

CX+Z,1−X(u, v) = 1− u− v + CX+Z,1−X(1− u, 1− v).
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3. A PARAMETRIC COMPREHENSIVE FAMILY OF COPULAS

In this section, a new parametric comprehensive family of copulas is introduced. It is
based on the subsequent Examples 4 and 5.

Example 4. Let X and Y be two random variables with uniform distribution on
[0, 1] with minimum copula, CX,Y (u, v) = min(u, v), and random variable Z, inde-
pendent of X and Y, has uniform distribution on [0, ε], where ε ∈]0,∞[. Then

a) if ε ≤ 1,

CX+Z,Y (u, v)) =



u if 0 ≤ u ≤ ε
2 &
√

2εu ≤ v
or ε

2 ≤ u ≤ 1− ε
2 & u+ ε

2 ≤ v ≤ 1
1
ε [v
√

2εu− v2

2 ] if 0 ≤ u ≤ ε
2 & v ≤

√
2εu

u− 1
ε

(u+ ε
2−v)

2

2 if ε
2 ≤ u ≤ 1− ε

2 & u− ε
2 ≤ v ≤ u+ ε

2

v − 1
ε
(v−g(u))2

2 if 1− ε
2 ≤ u ≤ 1 & g(u) ≤ v

v if ε
2 ≤ u ≤ 1− ε

2 & 0 ≤ v ≤ u− ε
2

or 1− ε
2 ≤ u ≤ 1 & v ≤ g(u)

(7)

b) if ε > 1,

CX+Z,Y (u, v)) =



u if 0 ≤ u ≤ 1
2ε &

√
2εu ≤ v

1
ε [v
√

2εu− v2

2 ] if 0 ≤ u ≤ 1
2ε & v ≤

√
2εu

1
ε [v(εu+ 1

2 − v) + v2

2 ] if 1
2ε ≤ u ≤ 1− 1

2ε & 0 ≤ v ≤ 1

v − (v−g(u))2
2ε if 1− 1

2ε ≤ u ≤ 1 & v ≥ g(u)
v if 1− 1

2ε ≤ u ≤ 1 & v ≤ g(u)
(8)

where g(u) = 1−
√

2ε(1− u).

P r o o f .

a) Similar to Example 1 we have the bijective function

FX+Z(s) =


s2

2ε if 0 ≤ s ≤ ε
s− ε

2 if ε ≤ s ≤ 1

1− (1+ε−s)2
2ε if 1 ≤ s ≤ ε+ 1

and equal zero for s < 0 and 1 for s > ε + 1. So, its inverse in the corresponding
intervals is

F−1X+Z(s) =


√

2εs if 0 ≤ s ≤ ε
2

s+ ε
2 if ε

2 ≤ s ≤ 1− ε
2

ε+ 1−
√

2ε(1− s) if 1− ε
2 ≤ s ≤ 1

and similar to the Example 1, D2CX,Y (u, v) = 1(r<F−1
X+Z(s)−z). So, we have the

following cases:
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1. if 0 ≤ u ≤ ε
2 ,
√

2εu ≤ v

CX+Z,X(u, v) =
∫√2εu

0

∫√2εu−z
0

1
ε drdz = u,

2. if 0 ≤ u ≤ ε
2 ,
√

2εu ≥ v

CX+Z,X(u, v) =
∫√2εu−v
0

∫ v
0

1
ε drdz +

∫√2εu√
2εu−v

∫√2εu−z
0

1
ε drdz = 1

ε (v
√

2εu −
v2

2 ),

3. if ε
2 ≤ u ≤ 1− ε

2 and

i) if 0 ≤ v ≤ u− ε
2

CX+Z,X(u, v) =
∫ ε
0

∫ v
0

1
ε drdz = v

ii) if u− ε
2 ≤ v ≤ u+ ε

2

CX+Z,X(u, v) =
∫ u+ ε

2−v
0

∫ v
0

1
ε drdz+

∫ ε
u+ ε

2−v
∫ u+ ε

2−z
0

1
ε drdz = u− 1

ε

(u+ ε
2−v)

2

2

iii) if u+ ε
2 ≤ v ≤ 1

CX+Z,X(u, v) =
∫ ε
0

∫ u− ε
2

0
1
ε drdz +

∫ ε
0

∫ u+ ε
2−z

u− ε
2

1
ε drdz = u

4. if 1− ε
2 ≤ u ≤ 1, v ≤ g(u),

CX+Z,X(u, v) =
∫ ε
0

∫ v
0

1
ε drdz = v

5. if 1− ε
2 ≤ u ≤ 1, g(u) ≤ v

CX+Z,X(u, v) =
∫ ε
0

∫ v
0

1
ε drdz −

∫ v
g(u)+ε−v

∫ v
g(u)+ε−z

1
ε dzdr = v − 1

ε
(v−g(u))2

2 .

which is (7). Figure 3 presents this copula function for ε = 1
2 .

Fig. 3. 2D and 3D view of copula function CX+Z,X from Example 4

for ε = 1
2
.

b) Again, similar to to Example 1 we have the bijective function

FX+Z(s) =


s2

2ε if 0 ≤ s ≤ 1
2s−1
2ε if 1 ≤ s ≤ ε

1− (1+ε−s)2
2ε if ε ≤ s ≤ ε+ 1

and equals zero for s < 0 and 1 for s > ε+ 1. So, its inverse in the corresponding
intervals is
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F−1X+Z(s) =


√

2εs if 0 ≤ s ≤ 1
2ε

εs+ 1
2 if 1

2ε ≤ s ≤ 1− 1
2ε

ε+ 1−
√

2ε(1− s) if 1− 1
2ε ≤ s ≤ 1

and similar to the Example 1, D2CX,Y (u, v) = 1(r<F−1
X+Z(s)−z). So, we have the

following five cases:

1. if 0 ≤ u ≤ 1
2ε ,
√

2εu ≤ v

CX+Z,X(u, v) =
∫√2εu

0

∫√2εu−z
0

1
ε drdz = u,

2. if 0 ≤ u ≤ 1
2ε ,
√

2εu ≥ v

CX+Z,X(u, v) =
∫√2εu−v
0

∫ v
0

1
ε drdz +

∫√2εu√
2εu−v

∫√2εu−z
0

1
ε drdz = 1

ε (v
√

2εu −
v2

2 ),

3. if 1
2ε ≤ u ≤ 1− 1

2ε ,

CX+Z,X(u, v) =
∫ εu+ 1

2−v
0

∫ v
0

1
ε drdz +

∫ ε
εu+ 1

2−v
∫ εu+ 1

2−z
0

1
ε drdz = 1

ε (v(εu +

1
2 − v) + v2

2 ),

4. if 1− 1
2ε ≤ u ≤ 1, v ≥ g(u),

CX+Z,X(u, v) =
∫ ε+g(u)−v
0

∫ v
0

1
ε drdz+

∫ ε
ε+g(u)−v

∫ ε+g(u)−z
0

1
ε drdz = v− (v−g(u))2

2ε ,

5. if 1− 1
2ε ≤ u ≤ 1, v ≤ g(u)

CX+Z,X(u, v) =
∫ ε
0

∫ v
0

1
ε drdz = v,

which is (8).

�

Figure 4 presents this copula function for ε = 2.

Fig. 4. 2D and 3D view of copula function CX+Z,X from Example 4

for ε = 2.

Using a similar computation, we will obtain the following results when Y = 1−X.
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Example 5. Let X and Y be two random variables uniformly distributed on [0, 1] linked
with copula W, CX,Y (u, v) = max(0, u+ v − 1) (i. e., Y = 1−X), and let the random
variable Z independent of X and Y has uniform distribution on [0, ε], then

a) if ε ≤ 1,

CX+Z,Y (u, v)) =



0 if
0 ≤ u ≤ ε

2 &
√

2εu ≤ 1− v
or

ε
2 ≤ u ≤ 1− ε

2 & u+ ε
2 ≤ 1− v

1
2ε (
√

2εu+ v − 1)2 if 0 ≤ u ≤ ε
2 &
√

2εu ≥ 1− v
1
ε

(u+ ε
2−v−1)

2

2 if ε
2 ≤ u ≤ 1− ε

2 & u− ε
2 ≤ 1− v ≤ u+ ε

2
1
ε [v(g(u) + ε− 1) + v2

2 ] if 1− ε
2 ≤ u ≤ 1 & g(u) ≤ 1− v

u+ v − 1 if

ε
2 ≤ u ≤ 1− ε

2 & 1− v ≤ u− ε
2

or
1− ε

2 ≤ u ≤ 1 & g(u) ≥ 1− v
(9)

b) if ε > 1,

CX+Z,Y (u, v)) =



0 if 0 ≤ u ≤ 1
2ε &

√
2εu ≤ 1− v

1
2ε (
√

2εu+ v − 1)2 if 0 ≤ u ≤ 1
2ε &

√
2εu ≥ 1− v

(εu+v− 1
2 )

2−(εu− 1
2 )

2

2ε if 1
2ε ≤ u ≤ 1− 1

2ε
(h(u)+v)2−h2(u)

2ε if 1− 1
2ε ≤ u ≤ 1 & h(u) ≤ ε− v

u+ v − 1 if 1− 1
2ε ≤ u ≤ 1 & h(u) ≥ ε− v

(10)

where g(u) is defined as in Example 4 and h(u) = ε−
√

2ε(1− u).

It should be noted that the copula functions (7) and (9) can be reduced to (5) as
well as (8) and (10) reduce to (6) when ε = 1. The following corollaries describe the
asymptotic behaviors of these copula functions.

Corollary 2. Under the assumptions of Example 4 we have the following results

a) CX+Z,X(u, v))→M(u, v), as ε→ 0

b) CX+Z,X(u, v))→ Π(u, v), as ε→∞.

P r o o f .

a) When ε→ 0, the third and the fifth part of (7) respectively will be

lim
ε→0

CX+Z,X(u, v))I( ε
2 , 1− ε

2 )
(u)I(0,u− ε

2 )
(v) = v lim

ε→0
I( ε

2 , 1− ε
2 )

(u)I(0,u− ε
2 )

(v)

= vI(0,1)(u)I(0,u)(v)
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and

lim
ε→0

CX+Z,X(u, v))I( ε
2 , 1− ε

2 )
(u)I(u+ ε

2 ,1)
(v) = u lim

ε→0
I( ε

2 , 1− ε
2 )

(u)I(u+ ε
2 ,1)

(v)

= uI(0,1)(u)I(u,1)(v).

Hence CX+Z,X(u, v))→ min(u, v) = M(u, v) as ε→ 0.

b) When ε→∞, the third part of (8) will be

lim
ε→∞

CX+Z,X(u, v))I( 1
2ε ,1−

1
2ε )

(u)I(0,1)(v)

= lim
ε→∞

1

ε
[v(εu+

1

2
− v) +

v2

2
]I( 1

2ε ,1−
1
2ε )

(u)I(0,1)(v)uvI(0,1)(u)I(0,1)(v)

= Π(u, v).
�

Similar to Corollary 2 we readily can prove the following corollary.

Corollary 3. Under the assumptions of Example 5 we have the following results

a) CX+Z,1−X(u, v))→W (u, v), as ε→ 0,

b) CX+Z,1−X(u, v))→ Π(u, v), as ε→∞.

For k ∈]0,∞[, let us denote by Ck the copula CX+Z,X from Example 4 in the case
when k = 1

ε . Similarly for k ∈] −∞, 0[, we denote by Ck the copula CX+Z,1−X from
Example 5 in the case when k = − 1

ε . Moreover, let C0 = Π, C∞ = M and C−∞ = W .

Theorem 2. The parametric copula family (Ck)k∈[−∞,∞] is a comprehensive family of
copulas continuous and strictly increasing in parameter k.

The proof of the above theorem follows from Examples 4, 5 and Corollaries 2, 3. Evi-
dently, for any dependence parameter like Kendal’s tau, Spearmann’s rho, Gini’s gamma,
Blomquist beta, see [2, 4, 5], the range of our comprehensive family (Ck)k∈[−∞,∞] is full,

i. e., it is [−1, 1], and any of these dependence parameters is increasing in parameter k.
More, any copula Ck is survival invariant,

Ck(u, v) = 1− u− v + Ck(1− u, 1− v),

and Ck and C−k are linked by the flipping relations,

C−k(u, v) = u− Ck(u, 1− v) = v − Ck(1− u, v).

4. CONCLUDING REMARKS

We have discussed the form of copula CX+Z,Y when the first coordinate X of a random
vector (X,Y ) is affected by a noise Z (independent of both X and Y ). Obviously, similar
results for the case when the second coordinate is affected, i. e., for CX,Y+Z , can be
obtained in a straight way. Repeating our approach twice, one can obtain the copula
CX+Z1,Y+Z2

dealing with affection of both coordinates. A deeper study of this case,
including the dropping of the independence of Z (Z1, Z2) and X,Y , is a topic for the
further study. More, in the next study the general case of n–dimensional random vectors
affected by noise should be considered.
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