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A NOTE ON
HOW RÉNYI ENTROPY CAN CREATE A SPECTRUM
OF PROBABILISTIC MERGING OPERATORS

Martin Adamč́ık

In this paper we present a result that relates merging of closed convex sets of discrete
probability functions respectively by the squared Euclidean distance and the Kullback–Leibler
divergence, using an inspiration from the Rényi entropy. While selecting the probability func-
tion with the highest Shannon entropy appears to be a convincingly justified way of representing
a closed convex set of probability functions, the discussion on how to represent several closed
convex sets of probability functions is still ongoing. The presented result provides a perspective
on this discussion. Furthermore, for those who prefer the standard minimisation based on the
squared Euclidean distance, it provides a connection to a probabilistic merging operator based
on the Kullback–Leibler divergence, which is closely connected to the Shannon entropy.
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1. INTRODUCTION

Information geometry is a branch of mathematics that explores geometry of probability
functions (also called distributions). In this paper, we will discuss sequences of prob-
ability functions, and show a limit theorem that gives us a perspective on an ongoing
discussion in the field. Over the last 70 years [18] Kullback, Leibler, Shannon, Jaynes,
Amari, Cichocki and others explored applications to communication, uncertain reason-
ing, neuroscience and cryptography. Resolving the debate around representing several
sets of probability functions could further support a recently introduced application of
this field to meta–analysis [4].

Formally, we work here with the set DJ of positive discrete probability functions,
which consists of ordered J–tuples v = (v1, . . . , vJ) that satisfy

∑J
j=1 vj = 1 and v1 >

0, . . . , vJ > 0. In other words, DJ is a (J − 1)–dimensional open simplex. J will be a
fixed constant greater than two throughout the paper. We say that a subset W of DJ
is convex if for any two v,w ∈W

(λ · v1 + (1− λ) · w1, . . . , λ · vJ + (1− λ) · wJ) ∈W ,
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for all λ ∈ [0, 1]. Furthermore, we say that a subset W of DJ is closed if the limit point
of every convergent sequence constructed from the elements of W has its limit inside W .

Now, a question as to how to represent what is essentially a closed convex set of
probability functions by a single probability function has been extensively investigated,
see for example [9, 13, 14, 15]. Such a set to represent was usually defined in an appli-
cation motivated way, and the representation was to satisfy some rational criteria. For
example, the theoretical model discussed in [14] was inspired by a problem of a physician
differentiating between different types of tumor from sample slides. In this problem, the
physician’s knowledge was sufficient only to restrict the distribution of possible combi-
nations of visual features and tumor types, which effectively yielded a closed convex set
of possible probability functions. Rational criteria could involve for example a principle
that irrelevant information must not influence the chosen representation.

A similar question concerning several closed convex sets of probability functions rep-
resenting inconsistent knowledge was in various settings discussed in [1, 2, 5, 11, 12, 19].
Even a single physician may eventually make a series of mutually contradicting claims,
and there is need to address how to represent opinion of a panel of experts and to merge
findings of contradicting medical studies.

For the purposes stated above, all those referenced papers had to in some way in-
troduce a way of measuring ‘distance’ between two probability functions. This was, it
seems, without exception based on some convex Bregman divergence [8]. Note that a
divergence takes as its two arguments two probability functions and outputs a single
real number.

Prominent examples of such a divergence are the squared Euclidean distance

E(w‖v) =

J∑
j=1

(wj − vj)2

and the Kullback–Leibler divergence from v to w

KL(w‖v) =

J∑
j=1

wj log
wj
vj

,

where in our consideration ‘log’ denotes the natural logarithm. Although using the loga-
rithm to base 2 is common in information theory, this would merely scale the divergence
by a constant and thus would have no influence on optimisation problems. Our specific
choice is based on [3].

The squared Euclidean distance, exceptionally a symmetric divergence, is an attrac-
tive choice [16], but it is the Kullback–Leibler divergence that is related to a famous
notion of entropy. In the context of information theory, maximising the Shannon en-
tropy −

∑J
j=1 wj logwj [18], or alternatively minimising the KL–divergence from the

uniform ( 1
J , . . . ,

1
J ), gives us the choice that carries the least additional information be-

yond to that contained in a given piece of knowledge. When we talk about representing
a single closed convex set of probability functions, maximising the Shannon entropy
appears to be the most rational option [10].
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One way of representing several closed convex sets of probability functionsW1, . . . ,Wn

weighted respectively by λ1 > 0, . . . , λn > 0,
∑n
i=1 λi = 1, is to minimise the sum

n∑
i=1

λi KL(w(i)‖v),

subject to (w(1), . . . ,w(n)) ∈ W1 × . . .×Wn and v ∈ DJ . To shorten the notation and
to be more explicit, we will denote the set of these representatives by

ΘKL
~λ

(W1, . . . ,Wn) =
{

arg min
v∈DJ

n∑
i=1

λi KL(w(i)‖v); (w(1), . . . ,w(n)) ∈W1 × . . .×Wn

}
,

which is a nonempty closed convex set [1, Theorem 12].
Looking at the definition above, ΘKL

~λ
can be considered as a probabilitic merging

operator acting on closed convex sets W1, . . . ,Wn ⊆ DJ given a fixed ~λ = (λ1, . . . , λn).
Note that the operator produces a single closed convex set as the representation of the
given W1, . . . ,Wn. The properties of this operator were investigated in [5], where it was
denoted by ∆̂KL

~λ
. The notation we use in this paper is from [1].

Additional probabilistic merging operators can be defined by replacing KL with a
different convex Bregman divergence, or by swapping the two arguments of the di-
vergence. Unlike in the case of representing a single closed convex set of probability
functions where maximising the Shannon entropy is widely preferred, exploring various
probabilistic merging operators is still an ongoing effort into which the present paper
contributes.

Among a few existing results, we mention here a practical application of ΘKL
~λ

: In [3]
it was argued that this operator is optimal when we combine several heterogeneous
studies that present us with complex knowledge, assuming that the heterogeneity cannot
be explained. A particular implementation discussing meta–analysis of several studies
concerning the one–year incidence of cancer among patients with unprovoked venous
thromboembolism was introduced in [4].

An idea to connect ΘKL
~λ

with similarly defined ΘE
~λ

(where the KL–divergence is

replaced by the squared Euclidean distance) using a spectrum of probabilistic merging
operators, originally suggested by George Wilmers in 2013, was mentioned in [2]. This
was to be done by using a divergence from v to w given by

Dr(w‖v) =

J∑
j=1

[(wj)
r − (vj)

r − r(wj − vj)(vj)r−1],

where 2 ≥ r > 1, but with no progress reported since then. This special Bregman diver-
gence, which is illustrated in Figure 1, is related to the Rényi entropy 1

1−r log
∑J
j=1(wj)

r

[17], although the corresponding Rényi divergence is usually defined differently [6]. On
the other hand, it is essentially the β divergence [7], which is defined as

βr(w‖v) =
1

r(r − 1)

J∑
j=1

[(wj)
r − (vj)

r − r(wj − vj)(vj)r−1],
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where 2 ≥ r > 1. The β divergence is already known to satisfy a limiting theorem that
relates it to the Kullback–Leibler divergence, and it is well established and investigated
in information theory [6].

The proof that

ΘDr

~λ
(W1, . . . ,Wn) =

{
arg min

v∈DJ

n∑
i=1

λiDr(w
(i)‖v); (w(1), . . . ,w(n)) ∈W1 × . . .×Wn

}
,

is well defined; in particular, that Dr, 2 ≥ r > 1, is a convex function, is in [2, Theo-
rem 2.1.18]. Note that D2 = E, the squared Euclidean distance. In this paper we will
prove the following theorem, which suggests that there could be a spectrum of proba-
bilistic merging operators between operators ΘE

~λ
and ΘKL

~λ
. This provides a perspective

on the ongoing discussion about probabilistic merging operators, and, for those who
prefer the standard minimisation based on the squared Euclidean distance, it provides
a connection to what seems to be (in a context of meta–analysis) a somewhat justified
probabilistic merging operator.

Theorem 1.1. For any W1, . . . ,Wn ⊆ DJ that are closed, convex and nonempty, and
for any ~λ such that

∑n
i=1 λi = 1, λi > 0 for 1 ≤ i ≤ n, we have that

∅ 6= lim
r↘1

ΘDr

~λ
(W1, . . . ,Wn) ⊆ ΘKL

~λ
(W1, . . . ,Wn).

To better explain the statement of the theorem, it does not mean that every sequence

{v(k)}∞k=1, v(k) ∈ Θ
Drk

~λ
(W1, . . . ,Wn), where rk ↘ 1 as k → ∞, is convergent. In fact,

one can come up with a simple counterexample where W1 = . . . = Wn are not singletons,
in which case ΘDr

~λ
(W1, . . . ,Wn) = ΘKL

~λ
(W1, . . . ,Wn) = Wi, for all r > 1, and simply

let v(k) alternate. Instead, we define limr↘1 ΘDr

~λ
(W1, . . . ,Wn) as the set of all existing

limits of such sequences: limk→∞ v(k) exists if and only if

lim
k→∞

v(k) ∈ lim
r↘1

ΘDr

~λ
(W1, . . . ,Wn).

Theorem 1.1 can be then reformulated:

1. There exists a convergent sequence {v(k)}∞k=1, v(k) ∈ Θ
Drk

~λ
(W1, . . . ,Wn), where

rk ↘ 1 as k →∞.

2. If a sequence {v(k)}∞k=1, v(k) ∈ Θ
Drk

~λ
(W1, . . . ,Wn), where rk ↘ 1 as k → ∞, is

convergent then
lim
k→∞

v(k) ∈ ΘKL
~λ

(W1, . . . ,Wn).

It is still an open problem whether or not we can place the equality in the expression;

lim
r↘1

ΘDr

~λ
(W1, . . . ,Wn)

?
= ΘKL

~λ
(W1, . . . ,Wn),

which would be necessary for the spectrum of probabilistic merging operators to be
well defined. An additional open problem is to create a similar spectrum of probabilitic
merging operators related to the social entropy operator [5] originally introduced by
George Wilmers [19].

Before proving Theorem 1.1, some examples and several auxiliary results now follow.
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x

f(x)

vw

T (x) = f(v) +∇f(v) · (x− v)

E(w‖v)

Dr(w‖v)

KL(w‖v)

w − v

Fig. 1. A single–dimensional impression of divergences E, Dr and KL

is depicted below. Each divergence is defined as a Bregman

divergence f(w)− [f(v) +∇f(v) · (w − v)], where the strictly convex

and differentiable function f(x) is respectively
∑n
i=1[(xj)

2 − xj ],
1
r−1

∑n
i=1[(xj)

r − xj ] and
∑n
i=1 xj log xj . The hyperplane

T (x) = f(v) +∇f(v) · (x− v), where ∇f(v) is the gradient and ‘·’ is

the dot product, is in this single–dimensional impression the tangent

line to f at v. The divergence from v to w is then given by the

difference f(w)− T (w), which is explicitly shown below for E, Dr and

KL, respectively.

2. EXAMPLES

A probabilistic merging operator is usually expected to represent closed convex sets
of probability functions W1, . . . ,Wn weighted respectively by λ1 > 0, . . . , λn > 0,∑n
i=1 λi = 1, in a rational way; in [5] several principles were suggested. Among those,

the consistency principle asserts that whenever
⋂n
i=1Wi 6= ∅ then the resulting set of

representatives is equal to
⋂n
i=1Wi. It is obvious directly from their definitions that ΘE

~λ
,

ΘDr

~λ
and ΘKL

~λ
satisfy the consistency principle. Having this in mind, we can introduce

the following trivial example illustrated in Figure 2.

Example 2.1. Let W1, . . . ,Wn be such that
⋂n
i=1Wi 6= ∅, and λ1 > 0, . . . , λn > 0,∑n

i=1 λi = 1, be arbitrary. Then in this case

lim
r↘1

ΘDr

~λ
(W1, . . . ,Wn) = lim

r↘1

n⋂
i=1

Wi =

n⋂
i=1

Wi = ΘKL
~λ

(W1, . . . ,Wn).
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DJ

W1 W2

W3

Fig. 2. W1, W2 and W3, which are closed and convex sets in a

simplex DJ , are represented below as circles to make an impression of

convexity. The shaded area W1 ∩W2 ∩W3 corresponds to both

ΘDr
~λ

(W1,W2,W3), 2 ≥ r > 1, and ΘKL
~λ

(W1,W2,W3). This is because

Dr(v‖v) = KL(v‖v) = 0, and Dr(w‖v) > 0 and KL(w‖v) > 0

whenever w 6= v.

Although ΘDr

~λ
, 2 ≥ r > 1, and ΘKL

~λ
in general produce sets, if at least one of

W1, . . . ,Wn ⊆ DJ is a singleton then so are ΘDr

~λ
(W1, . . . ,Wn) and ΘKL

~λ
(W1, . . . ,Wn) [1,

Theorem 18]. We will use this in the following non–trivial example illustrated in Figure 3.

Example 2.2. Let J = 3, W1 = {( 3
6 ,

1
6 ,

2
6 )} be a singleton, and W2 = {( 4

6 − x,
1
6 +

x, 16 ); x ∈ (0, 16 )} be a line segment. Let us weight the two closed convex sets equally:
λ1 = λ2 = 1

2 . Then, after rounding to four decimal places,

ΘD2

~λ
(W1,W2) =

{(
0.5417, 0.2083, 0.25

)}
,

ΘD1.5

~λ
(W1,W2) =

{(
0.5518, 0.1982, 0.25

)}
,

ΘD1.1

~λ
(W1,W2) =

{(
0.5604, 0.1896, 0.25

)}
,

ΘD1.01

~λ
(W1,W2) =

{(
0.5623, 0.1877, 0.25

)}
,

ΘDKL

~λ
(W1,W2) =

{(
0.5625, 0.1875, 0.25

)}
.

This illustrates that in this case

lim
r↘1

ΘDr

~λ
(W1,W2) = ΘKL

~λ
(W1,W2).

Finally, let us repeat that it is an open question whether or not there is an example
showing that the inclusion discussed in the theorem could be strict;

lim
r↘1

ΘDr

~λ
(W1, . . . ,Wn)

?
⊂ ΘKL

~λ
(W1, . . . ,Wn).



Rényi entropy and a spectrum of merging operators 611

v1

v2

v3

1

1

1

W1

W2

D3

Fig. 3. Two sets W1 = {( 3
6
, 1
6
, 2
6
)} and

W2 = {( 4
6
− x, 1

6
+ x, 1

6
); x ∈ (0, 1

6
)} to represent are shown in the

two–dimensional simplex D3 below, which is an object in a

three–dimensional space R3. The arrow indicates the direction in

which the unique points inside ΘDr
~λ

(W1,W2), 2 ≥ r > 1, converge to

the unique point inside ΘKL
~λ

(W1,W2), with the actual points shown

directly below the arrow. This figure is to scale.

3. AUXILIARY RESULTS

First, we will need the following lemma from [1, Lemma 2].

Lemma 3.1. Let D be either Dr or KL, W1, . . . ,Wn be closed convex and nonempty
sets of probability functions, and λ1 > 0, . . . , λn > 0 satisfy

∑n
i=1 λi = 1. Then the

following are equivalent:

1. Probability functions w(1), . . . ,w(n),v minimise the sum

n∑
i=1

λiD(w(i)‖v),

subject to (w(1), . . . ,w(n)) ∈W1 × . . .×Wn and v ∈ DJ .

2. Probability functions w(1), . . . ,w(n) minimise the sum

n∑
i=1

λiD
(
w(i)

∥∥∥ n∑
k=1

λkw
(k)
)

,
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subject to (w(1), . . . ,w(n)) ∈W1× . . .×Wn, where
∑n
k=1 λkw

(k) ∈ DJ is in every

coordinate defined by a weighted arithmetic mean
∑n
k=1 λkw

(k)
j , 1 ≤ j ≤ J ; and

the corresponding v from Part 1 of this lemma is uniquely determined by

v =

n∑
k=1

λkw
(k).

Second, Peter Hawes has shown [9, Page 62] that xr−1
r uniformly converges to log x

as r ↘ 0 if 0 < δ ≤ x ≤ 1. This is equivalent to saying that y x
r−1−1
r−1 uniformly converges

to y log x as r ↘ 1 if 0 < δ ≤ x ≤ 1. (In Figure 1 one could imagine this as the middle
curve being transformed uniformly from the top curve to the bottom curve.) His proof
was the inspiration for the following straightforward modification, which is the key to
prove Theorem 1.1.

Lemma 3.2. Let there be a δ > 0 such that v and w are confined to [δ, 1]. Then

wr

r − 1
− vr

r − 1
− r

r − 1
(w − v)vr−1 − v + w,

where r ∈ (1, 2], uniformly converges to

w log
w

v

as r ↘ 1.

P r o o f . We can rewrite the first expression (with the parameter r) using

−
∫ 1

w

wxr−2 dx+

∫ 1

v

wryr−2 dy −
∫ 1

v

vryr−2dy +

∫ 1

v

vyr−2 dy, (1)

which is equal to

−
[
w
xr−1

r − 1

]x=1

x=w
+
[
wr

yr−1

r − 1

]y=1

y=v
−
[
vr
yr−1

r − 1

]y=1

y=v
+
[
v
yr−1

r − 1

]y=1

y=v

=
[
− w

r − 1
+

wr

r − 1

]
+
[ r

r − 1
w − r

r − 1
wvr−1

]
+
[
− r

r − 1
v +

r

r − 1
vr
]

+
[ v

r − 1
− vr

r − 1

]
=

wr

r − 1
− vr

r − 1
− r

r − 1
wvr−1 +

r

r − 1
vr

− r

r − 1
v +

v

r − 1
− w

r − 1
+

r

r − 1
w.

Since − r
r−1v + v

r−1 = −v and − w
r−1 + r

r−1w = w, the above becomes

wr

r − 1
− vr

r − 1
− r

r − 1
(w − v)vr−1 − v + w.
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Our aim is to show that (1), as r ↘ 1, uniformly converges to

−
∫ 1

w

wx−1 dx+

∫ 1

v

wy−1 dy −
∫ 1

v

vy−1dy +

∫ 1

v

vy−1 dy, (2)

which then would be equal to

−[w log x]x=1
x=w + [w log y]y=1

y=v = w logw − w log v = w log
w

v
.

To this end, and without loss of generality, we consider the difference∣∣∣ ∫ 1

v

wryr−2 dy −
∫ 1

v

wy−1 dy
∣∣∣

=
∣∣∣ ∫ 1

v

wryr−2 − wy−1 dy
∣∣∣. (3)

Now, by the assumption of the lemma, there is δ such that y ∈ [δ, 1]. Therefore,∣∣∣wryr−2 − wy−1∣∣∣,
as a function of y, has its maximum over [δ, 1] actually at δ, given δ > 0 is sufficiently
small. See Figure 4 for further explanation. Hence, (3) is less than the area of a rectangle
having one side equal to this maximal value and the other side equal to one;∣∣∣wr(δ)r−2 − w(δ)−1

∣∣∣,
and we may establish that

lim
r↘1

∣∣∣ ∫ 1

v

wryr−2 dy −
∫ 1

v

wy−1 dy
∣∣∣ ≤ lim

r↘1

∣∣∣wr(δ)r−2 − w(δ)−1
∣∣∣

=
∣∣∣w(δ)−1 − w(δ)−1

∣∣∣ = 0.

The argument above is nearly identical for all four integral pairs, so we have indeed
that (1) uniformly converges to (2) as r ↘ 1, and the statement of the lemma follows.

�

4. PROOF OF THEOREM 1.1

Notice that for a fixed r; 1 < r ≤ 2, ΘDr

~λ
(W1, . . . ,Wn) =

{
arg min

v∈DJ

n∑
i=1

λi

J∑
j=1

[(w
(i)
j )r − (vj)

r − r(w(i)
j − vj)(vj)

r−1];

(w(1), . . . ,w(n)) ∈W1 × . . .×Wn

}
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y

f(y)

δ 1

Fig. 4. f(y) = |wryr−2 − wy−1| for r = 1.1 is plotted below. The

function has its maximum at y = δ as y−1 − ryr−2 is actually strictly

decreasing over [δ, 1]. This can be observed by considering
d
dy

[y−1 − ryr−2] = −y−2 − r(r − 2)yr−3 = −y−2(1 + r(r − 2)yr−1).

The expression is negative since, for r > 1 and y ∈ [δ, 1], we have

r(r − 2) > −1 and 0 < yr−1 ≤ 1. Finally, for sufficiently small δ > 0,

clearly f(δ) > f(1) = w(r − 1).

is equivalent to

{
arg min

v∈DJ

n∑
i=1

λi

J∑
j=1

[ (w
(i)
j )r

r − 1
− (vj)

r

r − 1
− r

r − 1
(w

(i)
j − vj)(vj)

r−1 − vj + w
(i)
j

]
;

(w(1), . . . ,w(n)) ∈W1 × . . .×Wn

}
. (4)

This is because
∑J
j=1 vj = 1 and

∑J
j=1 w

(i)
j = 1 for every 1 ≤ i ≤ n (see the definition

of DJ), and scaling by a fixed r − 1 > 0 does not make any difference to the resulting
set of minimisers.

Since we assume that all W1, . . . ,Wn are closed sets, each w(i) ∈ Wi, 1 ≤ i ≤ n, is
bounded away from zero in every coordinate. Due to Lemma 3.1 every

v ∈ ΘDr

~λ
(W1, . . . ,Wn)

is given by

vj =

n∑
i=1

λiw
(i)
j , 1 ≤ j ≤ J ,

for some w(1) ∈W1, . . . ,w
(n) ∈Wn so ΘDr

~λ
(W1, . . . ,Wn) is likewise bounded away from

zero. Therefore, given W1, . . . ,Wn, there is a constant δ > 0 such that confining (4)
into [δ, 1]J ⊆ DJ makes no difference to the resulting set of minimisers. This, together
with the fact that finite summing preserves uniform convergence, will allows us to use
Lemma 3.2 in what follows.
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First, let M be the minimal value of

n∑
i=1

λi KL(w(i)‖v)

subject to (w(1), . . . ,w(n)) ∈ W1 × . . . ×Wn and v ∈ DJ . Let also w(i,k), 1 ≤ i ≤ n,
minimise

n∑
i=1

λiDrk(w(i,k)‖v(k))

subject to (w(1,k), . . . ,w(n,k)) ∈ W1 × . . . ×Wn, for a fixed v(k) ∈ Θ
Drk

~λ
(W1, . . . ,Wn).

(They are unique since Dr is strictly convex in the first argument; as is every Bregman
divergence.) Presume that there is a sequence {v(k)}∞k=1,

v(k) ∈ Θ
Drk

~λ
(W1, . . . ,Wn),

where rk ↘ 1 as k →∞, such that for all k

n∑
i=1

λi KL(w(i,k)‖v(k)) > M + ε,

for some fixed ε > 0. Due to the uniform convergence discussed above, there is k0 such
that for all k > k0∣∣∣ n∑

i=1

λi KL(w(i,k)‖v(k))−
n∑
i=1

λiDrk(w(i,k)‖v(k))
∣∣∣ < ε

4

and ∣∣∣M − n∑
i=1

λiDrk(w(i)‖v)
∣∣∣ < ε

4
,

where w(1), . . . ,w(n),v specified in the last inequality jointly minimise

n∑
i=1

λi KL(w(i)‖v)

subject to (w(1), . . . ,w(n)) ∈W1×. . .×Wn and v ∈ DJ (they give the value M). Finally,
considering the last three inequalities together,

n∑
i=1

λiDrk(w(i,k)‖v(k)) >

n∑
i=1

λiDrk(w(i)‖v) +
ε

2
,

which is a contradiction with v(k) ∈ Θ
Drk

~λ
(W1, . . . ,Wn).

Since the above lead to a contradiction, we have that

lim
k→∞

n∑
i=1

λi KL(w(i,k)‖v(k)) = M
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for all sequences {v(k)}∞k=1, v(k) ∈ Θ
Drk

~λ
(W1, . . . ,Wn), where rk ↘ 1 as k →∞.

Assume that limk→∞ v(k) exists; and hence limk→∞ v(k) ∈ limr↘1 ΘDr

~λ
(W1, . . . ,Wn).

Even if every limit limk→∞w(i,k) does not exist, since we operate in the compact space
W1 × . . . ×Wn, there is a convergent subsequence {(w(1,kp), . . . ,w(n,kp))}∞p=1, and we

will denote its limit (w(1), . . . ,w(n)). Then, since KL(·‖·) is a continuous function over
the considered domain (bounded away from zero in every coordinate),

lim
k→∞

n∑
i=1

λi KL(w(i,k)‖v(k)) =

n∑
i=1

λi KL( lim
p→∞

w(i,kp)‖ lim
p→∞

v(kp))

=

n∑
i=1

λi KL(w(i)‖ lim
k→∞

v(k)) = M .

This means that
lim
r↘1

ΘDr

~λ
(W1, . . . ,Wn) ⊆ ΘKL

~λ
(W1, . . . ,Wn).

Since we operate in a compact space, some limits limk→∞ v(k) indeed exist so we have
that

∅ 6= lim
r↘1

ΘDr

~λ
(W1, . . . ,Wn).

Note that in the above proof we can in fact show that if limk→∞ v(k) exists then every
limk→∞w(i,k) must exist. If not, considering that an infinite number of members of the
sequence {w(i,k)}∞k=1 that do not belong to the above constructed convergent sequence,
we can find another convergent sequence. If its limit, say u(i), is distinct from w(i) for
some i, we have also

n∑
i=1

λi KL(u(i)‖ lim
k→∞

v(k)) = M .

In other words, we obtain one limk→∞ v(k) ∈ ΘKL
~λ

(W1, . . . ,Wn), but multiple KL–

projections of limk→∞ v(k) into Wi, for some i. However, that is a contradiction as such
projections are unique since KL(·‖·) is strictly convex in its first argument and Wi is
closed and convex.
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[1] M. Adamč́ık: The information geometry of Bregman divergences and some applications
in multi–expert reasoning. Entropy 16 (2014), 6338–6381. DOI:10.3390/e16126338

http://dx.doi.org/10.3390/e16126338
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