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POLE PLACEMENT AND MIXED SENSITIVITY OF LTI
MIMO SYSTEMS HAVING CONTROLLED OUTPUTS
DIFFERENT FROM MEASUREMENTS

Miguel A. Flores and René Galindo

Multi-Input Multi-Output (MIMO) Linear Time-Invariant (LTI) controllable and observable
systems where the controller has access to some plant outputs but not others are considered.
Analytical expressions of coprime factorizations of a given plant, a solution of the Diophantine
equation and the two free parameters of a two-degrees of freedom (2DOF) controller based on
observer stabilizing control are presented solving a pole placement problem, a mixed sensitivity
criterion, and a reference tracking problem. These solutions are based on proposed stabilizing
gains solving a pole placement problem by output feedback. The proposed gains simplify the
coprime factorizations of the plant and the controller, and allow assigning a decoupled char-
acteristic polynomial. The 2DOF stabilizing control is based on the Parameterization of All
Stabilizing Controllers (PASC) where the free parameter in the feedback part of the controller
solves the mixed sensitivity robust control problem of attenuation of a Low-Frequency (LF) ad-
ditive disturbance at the input of the plant and of a High-Frequency (HF) additive disturbance
at the measurement, while the free parameter in the reference part of the controller assures
that the controlled output tracks the reference at LF such as step or sinusoidal inputs. With
the proposed expressions, the mixed sensitivity problem is solved without using weighting func-
tions, so the controller does not increase its order; and the infinite norm of the mixed sensitivity
criterion, as well as the assignment of poles, is determined by a set of control parameters.

Keywords: stabilizing control, mixed sensitivity, pole placement, reference tracking, linear
systems, robust control, 2DOF control configuration
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1. INTRODUCTION

In control and mechatronic systems in addition to achieving stability, it is desired to meet
performance criteria even in the presence of uncertainties and disturbances. Robust
control theory (see [20]) gives us tools to achieve these goals. This theory bases its
criterion on the minimization of the H∞ norm of the functions that relate inputs to
outputs of bounded energy. Due to the relationships that exist between these functions,
it is sometimes not possible to satisfy several criteria at the same time, so there are
techniques such as loop shaping and mixed sensitivity (see [15] and [12], respectively),
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for an output feedback control. For controlled outputs different from the measured
outputs, a feedback configuration can be rearranged to meet the standard robust control
framework by separating the controller, getting an augmented plant with two sets of
inputs: the disturbance signals that are desired to be attenuated and the control inputs;
and two sets of outputs: the measured outputs and the signals of interest. The H∞
norm of the relationships between disturbance signals and the signals of interest is the
criterion to be minimized.

It is well known that the pole-placement approach for MIMO systems is non-unique
and can lead to unsatisfactory closed-loop performance. These problems are tackled
adding additional control design requirements. Work in this direction is the one of [13]
where a Linear Matrix Inequality (LMI) technique is described to perform robust pole
placement by proportional-derivative feedback on Linear Time-Invariant (LTI) Multi-
Input Multi-Output (MIMO) systems subject to polytopic or norm-bounded uncertainty.
In the work of [14], a robust pole assignment is presented, consisting of making exact
pole assignment finding optimal feedback gains by using recurrent neural networks,
guaranteeing closed-loop stability for a disturbed or uncertain plant state matrix. Also,
the possible undesired pole-zero cancellation of the mixed sensitivity designs proposed
by [12] was examined in the work of [18], it is pointed out that pole-zero cancellation
is dependent upon the choice of weighting functions and the particular construction of
weighting function is given to prevent the phenomenon. Two techniques are compared in
the work of [4] that prevent pole-zero cancellation of the Riccati-based mixed sensitivity
approach. In this paper, the proposed approach is to solve the closed pole placement
control problem using the static gains of the formulas of [16] for the Parameterization
of All Stabilizing Controllers (PASC) and the remaining free parameters solve a mixed
sensitivity problem.

The state-space solution for the standard control framework given by [3] consists of
solving two algebraic Riccati equations in an iterated way to find feedback gains for
the controller. With the LMI approach developed by [6], it is also possible to assign
the closed-loop poles in a prescribed LMI region (see for example [1]). Both solutions
require an augmented plant, which can include weighting functions to delimit frequency
bandwidths, that allows to minimize the criterion and implying an increase in the con-
troller order. An approach by soft computing techniques like Evolution Algorithms can
be found in the work of [17] that presents pole assignment and mixed sensitivity criterion
in a multi-objective function, following with an optimization procedure.

Different techniques, methods, and tools are used in the literature to obtain a con-
troller that satisfies several specifications. This paper extends the work of [5], that has
the specifications to track step input reference for controlled outputs different from feed-
back outputs, to place closed-loop real poles, and to solve a mixed sensitivity criterion.
These specifications are set-up in a 2DOF control configuration since each parameter
can be assigned for different specifications; in particular, the control scheme presented
in the work of [2] that was used for input-output decoupling, which consists on sepa-
rating the plant into two plants, one for the controlled output and other for feedback
output. The controller is based on the PASC (see [19]) that consists of coprime factor-
izations of the plant, a solution of the Diophantine equation, and two free parameters.
Analytical expressions of the PASC were obtained using the approach presented in the
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works of [7, 8, 9], where the expressions are in the frequency domain with elements of
the state-space representation of the given square LTI plant, i.e., the number of inputs
equals the number of outputs. In those works, first, coprime factorizations of the plant
are proposed and then the controller factorization is obtained algebraically by solving
the correspondent Diophantine equation to finally propose the two free parameters that
solve the mixed sensitivity criterion and the input reference tracking. Under this ap-
proach, different mixed sensitivity problems have been solved and one of its advantages
is that it does not require the use of weighting functions that can increase the controller
order.

In this paper, the improvements are to solve the problem of attenuating the most
common disturbances in a feedback system, which are, the additive disturbances to
the plant input at Low-Frequencies (LF) and disturbances in the measurement of the
output in High-Frequencies (HF) by a mixed sensitivity criterion to tracking the input
reference at LF, such as step or sinusoidal inputs, for controlled outputs different from
feedback outputs, and to solve pole placement by assigning poles at specific locations
in the complex plane to guarantee a satisfactory transient response. The analytical
expressions of the coprime factorizations of the plant and the controller are obtained by
using the formulas presented by [16] using proposed feedback gains that assign poles at
pre-specified locations.

The present work is organized as follows. Section 2 reviews the control scheme and
its PASC, the considered disturbances to establish a mixed sensitivity problem, and the
considered class of systems with two change of basis given by [9] to get the feedback
gains that will place the closed-loop poles, to finally presents the overall problem and the
procedure to solve it. In Section 3 we give the proposed feedback gains and factorizations
for the plant and the controller, elements of the PASC; and the expressions of the two
free parameters for solving a mixed sensitivity problem and an input reference tracking
problem. In Section 4 the results are applied to a two-cart system and a half-car active
suspension system.

Notation.
R denotes the set of real numbers; R(s) the set of all real rational functions in

the complex variable s with real coefficients; RH∞ the set of stable proper rational
functions in the complex variable s; Im the identity matrix of dimensions m ×m; and
Al := lims→0A(s) and Ah := lims→∞A(s) the asymptotic approximations of a matrix
A(s) ∈ <(s), in LF and HF, respectively.

2. PRELIMINARIES AND PROBLEM STATEMENT

In this section, the assumptions for the control system are considered and the problem
statement is presented.

Consider the feedback system shown in Figure 1, proposed by [2], where P is the given
nominal plant, K is the two-degrees of freedom (2DOF) controller to be designed, W3

and W4 are stable strictly proper weighting functions, yo is the output to be controlled,
ym is the measured output, yd is the reference, di, dm, and dh are disturbances additive
at the input, at the measurement and additive at the output of the plant, respectively;
with, P and K satisfying the following assumptions,
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A1 Let P ∈ R(s)(po+m)×m with the following right-coprime factorization (r.c.f.),

P =

[
Po
Pm

]
=

[
No
Nm

]
D−1 (1)

where, No ∈ RHpo×m∞ , Nm ∈ RHm×m∞ , and D ∈ RHm×m∞ is a common right
coprime denominator of Po and Pm, and,

A2 Let K ∈ R(s)m×(po+m) with the following left-coprime factorization (l.c.f.) ,

K = D̃−1K

[
Q ÑK

]
(2)

where D̃K ∈ RHm×m∞ is a common left coprime denominator of the feedback
and reference controller parts, Q ∈ RHm×po∞ is a free control parameter, and

ÑK ∈ RHm×m∞ .
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Fig. 1. Two-parameter control configuration.

Under assumption A1, the plant Pm is square, i. e., the signals ym and u in Figure 1

have the same dimensions. Also, from Figure 1 the outputs yo and ym are described by,

yo = Now +W3dh (3)

ym = Nmw +W4dh (4)

where

w =
(
D̃KD + ÑKNm

)−1 (
Qyd + D̃Kdi − ÑKdm − ÑKW4dh

)
. (5)

As can be seen from equations (3) to (5), with coprime factorizations of P and K
over RH∞, the system is internally stable if the Diophantine equation,

D̃KD + ÑKNm = Im (6)

is solved over RH∞ for D̃K and ÑK , which involves the given coprime factorizations
only of Pm and not Po. So, the role of K, in particular of the feedback part of K is to
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assure the stability of Pm through solving Eq. (6), and the overall system is stable since
Q and No belong to RH∞.

The next Theorem given by [19] gives the PASC for the feedback system shown in
Figure 1.

Theorem 2.1. Let P be a given plant on the feedback configuration shown in Figure 1

satisfying assumption A1. Suppose (Nm, D), (D̃m, Ñm), are any right and left-coprime
factorizations of Pm over RH∞, and that X, Y ∈ RH∞ satisfy XNm+Y D = Im. Then
the two-parameter controller that stabilizes P satisfying assumption A2 is given by,

K = D̃−1K

[
Q ÑK

]
(7)

where

D̃K := Y −RÑm (8)

ÑK := X +RD̃m (9)

with the free control parameters Q ∈ RHm×po∞ and R ∈ RHm×m∞ such that

det
(
Y −RÑm

)
6= 0.

Using the definitions given by equations (8) and (9), and the r.c.f and l.c.f. of

Pm = NmD
−1 = D̃−1m Ñm, the Diophantine equation given in Eq. (6), reduces to,

XNm + Y D = Im. (10)

The condition det
(
Y −RÑm

)
6= 0 of Theorem 2.1 is almost always satisfied for all s,

and if Pm satisfies the parity interlacing property then a stable controller exists among
the PASC (see [19]). The following is a standard assumption in robust control assuring,
by Parseval’s Lemma, that the energies of the outputs are bounded, when the H∞ norm
of the input-output relations are bounded.

A3 The energies of the disturbances di, dm and dh are considered to be bounded.

To attenuate the effects of di, dm, and dh over yo, we reduce the infinity norm of the
involved functions. Since W3 is a stable low-pass filter, the HF external disturbance dh
does not affect yo, also, since W4 is a stable low-pass filter, from equations (3) to (6),

dh is attenuated over yo, as ‖ÑK‖∞ is minimized. Thus, from equations (3) to (6) and
Theorem 2.1, to attenuate the effects of di, dm, and dh over yo corresponds to minimize
over R the mixed sensitive criterion,

J1 =

∥∥∥∥∥
[
W1NoD̃K

W2NoÑK

]∥∥∥∥∥
∞

(11)

where W1 and W2 are weighting functions that represent LF and HF bandwidths, re-
spectively, assuming that di is more significant at LF and dm and dh are more significant



198 M. A. FLORES AND R. GALINDO

at HF. So, in the same way, as in the works of [10] and [7], the criterion given in Eq.
(11) is transformed into,

J2 =

∥∥∥∥∥
[
NoD̃Kl

NoÑKh

]∥∥∥∥∥
∞

(12)

where NoD̃Kl is the approximation of NoD̃K at LF and NoÑKh is the approximation of
NoÑK at HF; i. e., NoD̃Kl = lims→0(NoD̃K) and NoÑKh = lims→∞(NoÑK). The cri-

terion given in Eq. (12) involves the simultaneous minimization of NoD̃Kl and NoÑKh,
this is, minimize over R,

J3 = ‖NoD̃Kl‖∞ + µ
(
‖NoD̃Kl‖∞ − ‖NoÑKh‖∞

)
(13)

where µ is a Lagrange multiplier; or equivalently, the criterion,

min
R

∥∥∥NoD̃Kl

∥∥∥
∞

(14a)

subject to
∥∥∥NoD̃Kl

∥∥∥
∞

=
∥∥∥NoÑKh∥∥∥

∞
. (14b)

Note that in minimizing the function ‖NoÑKh‖∞, if ‖ÑKh‖∞ is the function that is

most minimized, it implies to a certain extent that ‖NmÑKh‖∞, which correspond to an
output multiplicative unstructured uncertainty model of Pm (see [20]), is also minimized
at HF, where the unstructured uncertainties are more significant.

One of the advantages of using approximation is that it does not require the use of
filters that can increase the controller dimension.

The following is the class of rectangular systems considered for the nominal plant.
Consider that the state-space representation of the given nominal plant P satisfies,

A4 Let the state-space realization of P ∈ R(s)(po+m)×m be,{
ẋ = Fx+Gv

y = Hx
(15)

with y = [yTo yTm]T . Allow F ∈ Rn×n, G ∈ Rn×m and H ∈ R(po+m)×n be block
partitioned as,

F =

[
F11 F12

F21 F22

]
, G =

[
G11

G21

]
, H =

[
H1

H2

]
(16)

being

H1 =
[
H11 H12

]
and H2 =

[
H21 H22

]
(17)

where n = 2m is even, po ≤ m, H11, H12 ∈ Rpo×m and F11, F12, F21, F22, G11,
G21, H21, H22 ∈ Rm×m. Consequently, (F,G,H1) and (F,G,H2) are the state-
space realizations for Po and Pm, respectively, with Pm controllable and observable.
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Remark 2.2. In this paper, the proposed factorizations of the plant Pm and the con-
troller are based on the formulas of [16] and the change of basis proposed in the work
of [9]. Although, the formulas of [16] hold for pm 6= m, where pm is the dimension of
ym, the change of basis of [9] becomes self-involved for pm 6= m. The plant Po can be
non-square since this plant is involved only on the mixed sensitivity criterion. If pm > m
then we can use a left-inverse H+ such that H+H = In×n. Assumption A4 avoid using
pseudo-inverse matrices that both loss uniqueness of the solution and closed-loop sta-
bility can be lost, so, an analysis is required to integrate the kernel parameters of H+

into the design, as in [10] was done.

For a proper system, a proposed scheme presented in [8] for a 2DOF controller can
be used to work only with the strictly proper part of the system.

The formulas presented in the work of [16] allows obtaining coprime factorizations
for the given plant and a solution for the Diophantine equation given in Eq. (10) based
on feedback gains. The following formulas are based on the state-space representation
of the plant under assumption A4; i. e.,[

No
Nm

]
= H (sIn − F +GK)

−1
G (18)

D = Im −K (sIn − F +GK)
−1
G (19)

Ñm = H2 (sIn − F + LH2)
−1
G (20)

D̃m = Im −H2 (sIn − F + LH2)
−1
L (21)

X = K (sIn − F + LH2)
−1
L (22)

Y = Im +K (sIn − F + LH2)
−1
G (23)

with K and L such that the characteristic polynomials of F − GK and F − LH2 are
stable.

The works of [16] and [9] are based on the separation principle such that stability
is preserved for the whole system when K and L ensure separately the stability of the
characteristic polynomials of F − GK and F − LH2. Also, as mentioned in [20], the
PASC is an observer-based stabilizing controller.

The following transformations presented by [9] and updated in [8], are based on the
state-space representation of P given in assumption A4, giving us a special structure
that allows us to propose the feedback gains K and L.

Lemma 2.3. Consider P satisfying assumptions A1 and A4 with non-singular matrices
G21 and H22. Then, a change of basis ξ = T1x where,

T1 :=

[
Im −G11G

−1
21

V1Θ1 Im

]
T−11 =

[
∆−11 ∆−11 G11G

−1
21

−V1Θ1∆−11 Im − V1Θ1∆−11 G11G
−1
21

] (24)

with V1 :=
(
F12 −G11G

−1
21 F22

)−1
, Θ1 := F11−G11G

−1
21 F21 and ∆1 := Im+G11G

−1
21 V1Θ1;
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arrives at the following structure of the system realization in new coordinates,

Ak =

[
0 A12k

A21k A22k

]
, Bk =

[
0
Bm

]
, Ck =

[
C11k C12k

C21k C22k

]
. (25)

Consequently,
(
Ak, Bk,

[
C11k C12k

])
and

(
Ak, Bk,

[
C21k C22k

])
are state space real-

izations in new coordinates of Po and Pm respectively. Also, a change of basis η = T2x
where,

T2 :=

[
∆−12 −∆−12 Θ2V2

H−122 H21∆−12 Im −H−122 H21∆−12 Θ2V2

]
T−12 =

[
Im Θ2V2

−H−122 H21 Im

] (26)

with V2 :=
(
F21 − F22H

−1
22 H21

)−1
, Θ2 := F11−F12H

−1
22 H21 and ∆2 := Im+Θ2V2H

−1
22 H21;

arrives at the following structure of the system realization in new coordinates,

Ao =

[
0 A12o

A21o A22o

]
, Bo =

[
B1o

B2o

]
, Co =

[
C11o C12o

0 Cm

]
. (27)

Consequently,
(
Ao, Bo,

[
C11o C12o

])
and

(
Ao, Bo,

[
0 Cm

])
are state-space realizations

in new coordinates of Po and Pm respectively.

Remark 2.4. As discussed in [7] fully actuated Euler–Lagrange formulation, is a class
of non-linear dynamic systems that has a linearized realization of the form (Ak, Bk) given
in Eq. (25). In this case, T1 is not needed. Also, in Lemma 2.3 it is assumed without

loss of generality that G21 and H22 are non-singular matrices, that is, let
(
F̂ , Ĝ, Ĥ

)
be

a realization of P , where Ĝ and
[
Ĥ21 Ĥ22

]
have m linearly independent columns and

rows, respectively because the inputs of v and outputs of ym are linearly independent.
In case Ĝ21 and Ĥ22 are not invertible, then there are unimodular matrices U and V
such that,

G := UĜ =

[
0
G21

]
H := ĤV =

[
C11o C12o

0 H22

] (28)

with G21 and H22 being invertible; where U and V −1 play the role of transformations
that are applied before T1 and T2. As a consequence Bm and Cm are invertible. Also,
A12k and A21o are invertible because their rows are linearly independent; otherwise, the
rank of the controllability and observability matrices would be less than n, contradicting
that the realization of Pm is controllable and observable.

The tackled problem is.

Problem 1. To track the input reference to the desired output of P , yo, in the
configuration scheme of Figure 1, with transient response according to pre-specified
poles and diminish additive disturbances at the plant input, di, at LF, and in the
measurement, dm, and additive disturbances at the plant output, dh, at HF.

Steps to solve this problem:
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• Propose feedback gains K and L based on the change of basis given by Lemma 2.3
to solve a pole placement problem.

• Use the feedback gains to obtain coprime factorizations of the plant and controller
by the formulas given by [16].

• Obtain the mixed sensitivity criterion functions given in Eq. (14b) based on the
factorizations and propose the first free parameter R to solve it.

• Propose the second free parameter Q that relates the input reference and the
desired output, to solve the input reference tracking.

3. MIXED SENSITIVITY AND PARAMETRIZATION

The following Lemma presents feedback gains based on the state-space representation of
the plant with free constant parameters such that we can assign closed-loop poles. Also,
these gains simplify the closed-loop matrices F−GK and F−LH2 into equations (18) to
(23). With these gains, we develop the formulas of [16] to obtain analytical expressions
of the coprime factorizations of the plant and controller.

Lemma 3.1. Consider Pm under the assumption A4, the change of basis T1 and T2
given in Lemma 2.3 and 0 < a1, a2, b1, b2, c1, c2 ∈ R then,

K = K̄T1 (29)

L = T−12 L̄ (30)

where
K̄ := B−1m

[
A21k + c1

a1
A−112k A22k + b1

a1
Im
]

(31)

L̄ :=

(A12o + c2
a2
A−121o

)
C−1m(

A22o + b2
a2
Im

)
C−1m

 (32)

are state feedback gains such that the matrices F − GK and F − LH2 have stable
characteristic polynomials φm1 and φm2 , respectively, where φ1 := s2 + b1

a1
s + c1

a1
and

φ2 := s2 + b2
a2
s+ c2

a2
.

P r o o f . From equations (25), (29) and (31) the characteristic polynomial of the matrix
F −GK simplifies to,

sIn − F +GK = sIn − T−11 AkT1 + T−11 BkK
= T−11

(
sIn −Ak +BkK̄

)
T1

= T−11

[
sIm −A12k

c1
a1
A−112k

(
s+ b1

a1

)
Im

]
T1.

(33)

Applying the matrix decomposition formula [20, see p. 22–23][
M11 M12

M21 M22

]
=

[
I 0

M21M
−1
11 I

] [
M11 0

0 ∆

] [
I M−111 M12

0 I

]
(34)
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where ∆ := M22−M21M
−1
11 M12 is the Schur complement of M11; then, its determinant

is equal to det(M11)det(∆). So, we have that,

det (sIn − F +GK) = det
(
T−11

)
det

 sIm −A12k

c1
a1
A−112k

(
s+ b1

a1

)
Im

 det (T1)

= det

([
sIm −A12k

c1
a1
A−112k

(
s+ b1

a1

)
Im

])
= det (sIm) det

((
s+ b1

a1
+ c1

a1
1
s

)
Im

)
= φm1 .

(35)

Using Routh–Hurwitz criterion, with a1, b1, c1 > 0 we get a stable polynomial. In the
same way for sIn − F + LH2 using equations (27), (30) and (32), the characteristic
polynomial of the matrix F − LH2 is,

sIn − F + LH2 = sIn − T−12 AoT2 + L
[
0 Cm

]
T2

= T−12

(
sIn −Ao + L̄

[
0 Cm

])
T2

= T−12

[
sIm

c2
a2
A−121o

−A21o

(
s+ b2

a2

)
Im

]
T2.

(36)

Then,

det (sIn − F + LH2) = det
(
T−12

)
det

([
sIm

c2
a2
A−121o

−A21o

(
s+ b2

a2

)
Im

])
det (T2)

= φm2

(37)

with a2, b2, c2 > 0, by the Routh–Hurwitz criterion, we get a stable polynomial. �

The following Lemma gives an r.c.f. for P , an l.c.f. for Pm and a solution to the Dio-
phantine equation given in Eq. (10) based on the feedback gains proposed in Lemma 3.1.

Lemma 3.2. Consider K and a given nominal plant P under assumptions A1, A2 and
A4 on the feedback configuration shown in Figure 1, the change of basis T1 and T2 given
by Lemma 2.3 and the feedback gains given in Lemma 3.1 with a1, a2, b1, b2, c1, c2 > 0.
Let φ1 := s2 + b1

a1
s+ c1

a1
and φ2 := s2 + b2

a2
s+ c2

a2
. Then a right-coprime factorization of

P over RH∞ is, [
No
Nm

]
= 1

φ1

[
(C12ks+ C11kA12k)Bm
(C22ks+ C21kA12k)Bm

]
(38)

D = 1
φ1
B−1m (s2Im −A22ks−A21kA12k)Bm (39)

a left-coprime factorization of Pm is,

Ñm = 1
φ2
Cm(B2os+A21oB1o) (40)

D̃m = 1
φ2
Cm(s2Im −A22os−A21oA12o)C

−1
m (41)
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and a solution to the Diophantine equation XNm + Y D = Im is,

X = 1
φ2

[
K̃1 K̃2

][(A12o + c2
a2
A−121o

)
s+ b2

a2
A12o − c2

a2
A−121oA22o

]
C−1m[(

A22o + b2
a2
Im

)
s+A21oA12o + c2

a2
Im

]
C−1m

 (42)

Y = 1
φ2

[
K̃1 K̃2

] [B1os+ b2
a2
B1o − c2

a2
A−121oB2o

B2os+A21oB1o

]
+ Im (43)

where [
K̃1 K̃2

]
= K̄T1T

−1
2 (44)

being K̄ = B−1m

[
A21k + c1

a1
A−112k A22k + b1

a1
Im
]
.

P r o o f . From equations (33) and (36) given into the proof of Lemma 3.1, we have,

(sIn − F +GK)
−1

= T−11

[
sIm −A12k

c1
a1
A−112k

(
s+ b1

a1

)
Im

]−1
T1

(sIn − F + LH2)
−1

= T−12

[
sIm

c2
a2
A−121o

−A21o

(
s+ b2

a2

)
Im

]−1
T2

(45)

and,

(sIn − F +GK)
−1

= T−11
1
φ1

[(
s+ b1

a1

)
Im A12k

− c1
a1
A−112k sIm

]
T1 (46)

(sIn − F + LH2)
−1

= T−12
1
φ2

[(
s+ b2

a2

)
Im − c2

a2
A−121o

A21o sIm

]
T2 (47)

that clearly satisfies MM−1 = I with M = sIn − F +GK or M = sIn − F + LH2. By
using the formulas of the work of [16] given in equations (18) to (23) with T1 given in
Lemma 2.3 for P ; and substituting Eq. (46) into Eq. (18) we have,[

No
Nm

]
=

[
C11k C12k

C21k C22k

]
1
φ1

[
A12kBm
Bms

]
(48)

arriving at the result of Eq. (38). From T1 given in Lemma 2.3 for P , K is given in
Lemma 3.1, and substituting Eq. (46) into Eq. (19),

D = Im − 1
φ1
B−1m

[
A21k + c1

a1
A−112k A22k + b1

a1
Im
] [
A12kBm
Bms

]
(49)

reaching the result of Eq. (39). Through T2 given in Lemma 2.3 for Pm, and substituting
Eq. (47) into Eq. (20),

Ñm = 1
φ2

[
CmA21o Cms

] [B1o

B2o

]
(50)
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arriving at Eq. (40). By using T2 given in Lemma 2.3 for Pm, L is given in Lemma 3.1,
and substituting Eq. (47) into Eq. (21),

D̃m = Im − 1
φ2

[
CmA21o Cms

]
L̄ (51)

reaching the result of Eq. (41). Applying T2 given in Lemma 2.3 for Pm, K and L given
in Lemma 3.1, and substituting Eq. (47) into Eq. (22),

X = KT−12
1
φ2

[(
s+ b2

a2

)
Im − c2

a2
A−121o

A21o sIm

]
L̄ (52)

arriving at Eq. (42). By using T2 given in Lemma 2.3 for Pm, K and L are given in
Lemma 3.1, and substituting Eq. (47) into Eq. (23),

Y = KT−12
1
φ2

[(
s+ b2

a2

)
Im − c2

a2
A−121o

A21o sIm

] [
B1o

B2o

]
+ Im (53)

reaching the result of Eq. (43). �

Due to the l.c.f. and r.c.f. of Pm that are given in the above Lemma, the poles of all
the closed-loop transfer functions are determined by the roots of the polynomials φ1 and
φ2. So, the pole placement control problem (part of Problem 1) is solved by assigning
the desired poles into φ1 and φ2. Once, given in Lemma 3.2 l.c.f. and r.c.f. of Pm
and a solution for the Diophantine equation (10), the stabilizing controller is given by
Theorem 2.1. The following Theorem, presents a solution for Problem 1, giving explicit
formulas for the free parameters of the controller. Of course, any other election of R
and Q into RH∞ is possible. The proposed ones simplify the mixed sensitivity problem
and do not increase the order of the controller.

Theorem 3.3. Under assumptions A1 to A4, consider the parametrization of all stabi-
lizing controllers given in Theorem 2.1 for the feedback configuration shown in Figure 1,
with the coprime factorizations and the solution of the Diophantine equation given in
Lemma 3.2, the change of basis T1 and T2 given by Lemma 2.3, and the criterion given

in Eq. (12). Let
[
K̃1 K̃2

]
:= K̄T1T

−1
2 where K̄ is given by Eq. (31), 0 < r ∈ R, ωh

be a fixed frequency in the HF bandwidth of P and,

Yc := b2
a2
K̃1B1o − c2

a2
K̃1A

−1
21oB2o + K̃2A21oB1o + c2

a2
Im. (54)

Then,

1. If ‖Yc‖∞ > ‖Yc−CmA21oB1o‖∞ and
∥∥∥NoD̃Kl

∥∥∥
∞
≤
∥∥∥NoÑKh∥∥∥

∞
for some value of

r as shown in Figure 2, where,

‖NoD̃Kl‖∞ = a1a2
c1c2
‖C11kA12kBm (Yc − rCmA21oB1o) ‖∞ (55)

and
‖NoÑKh‖∞ = 1

ωh
r‖C12kBm‖∞ (56)
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choose the free parameter of the stabilizing controller,

R = rIm×m ∈ RH∞ (57)

with
r = dku

nku+dkl−dku
(58)

being

nku :=
1

ωh
α (59)

dku :=
a1a2
c1c2

β (60)

dkl :=
a1a2
c1c2

γ (61)

α := ‖C12kBm‖∞ (62)

β := ‖C11kA12kBmYc‖∞ (63)

γ := ‖C11kA12kBm (Yc − CmA21oB1o) ‖∞. (64)

The value of R ensures that,

‖NoD̃Kl‖∞ = ‖NoÑKh‖∞ = a1a2αβ
a1a2ωh(β−γ)+c1c2α . (65)

2. If CmA21oB1o is invertible, then choose

R = r Yc(CmA21oB1o)
−1 ∈ RH∞ (66)

where
r = dku

dku+nku
(67)

being

nku :=
1

ωh
α (68)

dku :=
a1a2
c1c2

β (69)

α := ‖C12kBmYc(CmA21oB1o)
−1‖∞ (70)

β := ‖C11kA12kBmYc‖∞. (71)

The value of R ensures that,

‖NoD̃Kl‖∞ = ‖NoÑKh‖∞ = a1a2αβ
a1a2βωh+c1c2α

(72)

where the norms of the LF and HF approximations of the functions ‖NoD̃K‖ and

‖NoÑK‖ are,

‖NoD̃Kl‖∞ =
(
a1a2
c1c2

)
β|1− r| (73)

and
‖NoÑKh‖∞ = 1

ωh
rα (74)

respectively.



206 M. A. FLORES AND R. GALINDO

Also, let rc the number of rows of C11k ∈ Rpo×m linearly independent. Then, the free
parameter Q guaranteeing that the rc controlled outputs of yo track rc input references
of yd at stationary state with time response determined by the poles of NoQ is,

Q = c1
a1

(A12kBm)
−1
Cq ∈ RH∞ (75)

being Cq such that

C11kCq =

[
Irc 0rc×(po−rc)

0(po−rc)×rc 0(po−rc)×(po−rc)

]
. (76)

P r o o f . First, we take the approximations of the functions NoD̃K and NoÑK in LF and
HF bandwidths, respectively, with the factorizations given in Lemma 3.2 and assuming
that R ∈ Rm×m.

With D̃K = Y −RÑm from Theorem 2.1, and Nm and Y are given by equations (38)
and (43) from Lemma 3.2 we have,

Nol = a1
c1
C11kA12kBm (77)

D̃Kl = a2
c2

(Yc −RCmA21oB1o) (78)

with C11kA12k 6= 0 then,

NoD̃Kl = a1a2
c1c2

C11kA12kBm (Yc −RCmA21oB1o) . (79)

With ÑK = X + RD̃m from Theorem 2.1, and D̃m and X are given by equations
(41) and (42) from Lemma 3.2 we have,

Noh = 1
wh
C12kBm

ÑKh = 1
wh
Xc +R

(80)

where
Xc = K̃1

(
A12o + c2

a2
A−121o

)
+ K̃2

(
A22o + b2

a2
Im

)
. (81)

In Eq. (80) it is assumed that ‖R‖∞ >> ‖ 1
wh
Xc‖∞ due to a high value of ωh. So, we

have
NoÑKh = 1

wh
C12kBmR. (82)

Next, we proof 1 and 2,

1 Equations (55) and (56) follows substituting R from Eq. (57) into Eq. (79) and Eq.

(82), respectively. Using R given by Eq. (57), the norms of the functions NoD̃Kl

and NoÑKh given by equations (55) and (56), are described as shown in Figure 2,

if for some value of r, ‖NoD̃Kl‖∞ ≤ ‖NoÑKh‖∞, ensuring the intersection of the
lines. The value for r given in Eq. (58) occurs when both infinity norms are equal.
Hence, using Eq. (58) into equations (55) and (56) follows the result of Eq. (65).
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2 Equations (73) and (74) follow substituting R from Eq. (66) into Eq. (79) and
Eq. (82), respectively. Using R given by Eq. (66) and assuming that the value of

r varies between 0 and 1; the norms of the functions NoD̃Kl and NoÑKh given by
equations (73) and (74) are described as shown in Figure 3. The value for r given
in Eq. (67) occurs when both infinity norms are equal. Hence, using Eq. (67) into
equations (73) and (74) follows the result of Eq. (72).

Finally, we proof the proposed Q in Eq. (75)

From equations (3) and (5), yo = No

(
D̃KD + ÑKNm

)−1
Qyd, that reduces to yo =

NoQyd applying the factorizations given by Lemma 3.2 that satisfies equations (6) and
(10). Then, with the proposed Q in Eq. (75),

yo = c1
a1φ1

(C12ks+ C11kA12k)Bm (A12kBm)
−1
Cqyd (83)

where φ1 = s2 + b1
a1
s + c1

a1
and the time response is determined by de poles of No

chosen with a1, b1 and c1. By approximating at LF bandwidth Eq. (83), we get yo =

C11kA12kBm (A12kBm)
−1
Cqyd. Since A12k and Bm are invertible (see Remark 2.4) we

get yo = C11kCqyd and with Cq satisfying equation (76)

yo =

[
Irc 0rc×(po−rc)

0(po−rc)×rc 0(po−rc)×(po−rc)

]
yd. (84)

�

If there are transmission zeros of Po that could cause unwanted effects in the transient
response, we can add to the free parameter Q extra poles with the term zi

s+zi
, this is,

Q = c1
a1

(A12kBm)
−1
Cq

zi
s+zi

(85)

where zi for i = 1, . . . ,m is the real part of the transmission zeros of Po. This new term
does not affect the reference tracking since the approximation at LF holds.

As ωh is increased, from Eq. (65) or Eq. (72), ‖NoD̃Kl‖∞ and ‖NoÑKh‖∞ are
minimized simultaneously, and criterion given by Eq. (12) is achieved. Parameters
a1, a2, c1 and c2 can also be used; however, the free location of the closed-loop poles
would be limited. Also, with this result, both functions will have the same norm and
therefore criterion given by Eq. (12), and not vice versa where first the corresponding
criterion norm is obtained, possibly reaching a different norm for each function.

The mixed sensitivity functions are obtained with the factorizations given in Lemma
3.2. They do not need to be a normalized factorization for solving the criterion as in
[12] or require filters to delimit the bands to be minimized.

The following procedure is proposed to synthesize the controller

1. Verify that P satisfies assumptions A1, A2, and A4; and obtain the state-space
representation of the given plant as in equations (25) and (27), using the transfor-
mations of Lemma 2.3.
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Fig. 3. Intersection function of case 2 of Theorem 3.3.

2. Select a performance level γ that meets the given closed-loop specifications and
such that γopt ≤ J2 ≤ γ, where J2 is given by Eq. (12) and the minimal value of
J2, γopt, can be gotten by the work of [12].

3. Select the desired closed-loop poles using the parameters a1, a2, b1, b2, c1 and c2
and obtain the factorizations given in Lemma 3.2,

4. Select a free parameter R from Theorem 3.3 and use the parameter ωh to minimize
J2 using equations (65) or (72). If the value of J2 is not satisfactory, i. e. J2 > γ
either return to step 3 selecting another value of a1, a2, b1, b2, c1 and c2, until
J2 ≤ γ, or return to step 2 selecting another value of γ, until J2 ≤ γ. Otherwise,
i. e., J2 ≤ γ, keep the value of R ∈ RH∞, and,

5. Get the free parameter Q given in Eq. (75). Modify it according to Eq. (85) to
cancel the unwanted dynamics of the zeros, if they exist.
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4. EXAMPLE

In this section, we present three examples to show how to apply the presented results to
solve Problem 1 by selecting the free constant parameters under assumptions A1-A4. In
the first example, it is shown how to minimize the criterion norm using the parameter
ωh, once the poles are selected in closed-loop, and how the second free parameter can be
readjusted when there are transmission zeros. The second example is a two-cart system,
where two selections of poles are proposed to show how they affect the bandwidth for
the closed-loop system, while in the third example, a controller is obtained for a half-car
active suspension system. All examples are subject to external disturbances and have
a square Pm, however, the two-cart system has a non-square Po with more inputs than
outputs.

Example 4.1. In this example P has unstable poles at 1, 2, 3 and 4; and Po trans-
mission zeros at −1.1232 and 13.8464 with a state space representation according to
equation (16) in assumption A4, being,

F11 =

[
−6 −11
8 16

]
, F12 =

[
3 −1
−4 2

]
, F21 =

[
9 26
2 12

]
, F22 =

[
−6 6
−4 6

]
(86)

G11 =

[
−1 2
−3 4

]
, G21 =

[
5 6
7 −8

]
(87)

H11 =

[
1 −2
−5 −6

]
, H12 =

[
3 −4
7 8

]
, H21 =

[
−9 10
13 −14

]
, H22 =

[
11 12
15 16

]
.

(88)

First, we select a performance level J2 ≤ 0.25 and propose all closed-loop poles at
−7. The characteristic closed-loop polynomial is φ21 = (s2 +14s+49)2 with a1 = a2 = 1,
b1 = b2 = 14 and c1 = c2 = 49 and then, the factorizations given in Lemma 3.2 are
obtained.

Next, we obtain the expressions of R given in Theorem 3.3.
Since ‖Yc‖∞ < ‖Yc − CmA21oB1o‖∞ and CmA21oB1o is invertible for the proposed poles,
we choose R given by equation (66).

Then we select the constant parameter ωh to reduce the infinity norm of the criterion
given in equation (72). From different values of ωh according to Table 1, we choose
ωh = 180, then J2 = 0.2070. Using Parseval Lemma this means that di and dm effects
are reduced about 80% over the output yo; measured by the 2-norm of di, dm and yo.

ωh

∥∥∥NoD̃Kl

∥∥∥
∞

=
∥∥∥NoÑKh∥∥∥

∞
100 0.3726
180 0.2070
300 0.1242

Tab. 1.
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Finally, we use Q given by equation (75). Under T1 the two rows of C11k are linearly
independent; then, we can track both references. The elements obtained for the two
parameter controller are,

Q =

[
0.2996 −0.1559
0.9103 −0.3609

]
R =

[
−0.4789 −0.1566
−0.4433 −0.4526

]
(89)

D̃K =
1

φ1

([
1 0
0 1

]
s2 +

[
132.6 −20.25
164.8 −10.6

]
s+

[
0.4609 −87.35× 10−3

0.5057 −15.59× 10−3

])
(90)

ÑK =
1

φ1

([
−0.4789 −0.1566
−0.4433 −0.4526

]
s2 +

[
1.086 −1.45
2.527 −2.966

]
s+

[
0.3044 −1.761
2.341 −4.27

])
. (91)

Figure 4 shows the maximum singular values of the function NoQ that relates the
input yd to the output yo and the mixed sensitivity functions NoD̃K and NoÑK with
their bandwidths in low and high frequency respectively; delimited by the norm value of
0.2070, which corresponds to −13.68dB. For this case the function NoQ is over 0dB al-
though closed-loop poles are not complex conjugate poles, this is due to the transmission
zero at −1.1232. This will cause an overshoot in the response as a consequence.
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Fig. 4. Maximum singular values.

So, we use the modified Q given by equation (85), to cancel the unwanted effects of
that transmission zero.

Q =
1.1232

s+ 1.1232

[
0.2996 −0.1559
0.9103 −0.3609

]
. (92)

Note that, in this case, the new pole is closer to the origin, becoming a dominant pole.

Figure 5 shows the output response for the input yd =
[
3 sin (0.1t)

]T
under di =

sin (0.001t) for t ≥ 15 s in low frequencies, and dm = sin (180t) for t ≥ 30 s in high
frequencies, with no overshoot for the step input and settling time according to the new
dominant pole.
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Fig. 5. Time response of the output yo with the modified function

NoQ.

In this example we chose the high frequency bandwidth with ωh. In the next example
ωh no longer determines the high frequency bandwidth since the criterion norm becomes
0 no matter which ωh we choose.

Example 4.2. A state-space description of the two-cart system shown in Figure 6 is
given by Eq. (15), with,

F =

[
0 I2
F21 F22

]
, G =

[
0
G21

]
, H =

[
H11 0
H21 H22

]
. (93)

k1

d1

m1k k
7−→

→u1(t)
→u2(t)

x1(t)

k2 m2k k
7−→ x2(t)

d2

Fig. 6. Two-cart system.

where

F21 =

[
−k1
m1
− k2

m1

k2
m1

k2
m2

−k2
m2

]
, F22 =

[
−d1
m1

0

0 − d2
m2

]
G21 =

[ 1
m1

0

0 1
m2

]
(94)

H11 =
[
1 0

]
, H21 =

[
3 6
7 8

]
, H22 =

[
1 5
2 9

]
(95)
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being m1 and m2 the masses of the carts, k1 and k2 the spring constants and d1 and d2
the damping coefficients with values shown in Table 2; x(t) = [x1(t) x2(t) ẋ1(t) ẋ2(t)]T

the state vector of positions and velocities of each centre of masses. The transformations
of Lemma 2.3 can be applied since G21 and H22 are non-singular matrices. Since Pm has
only stable poles and does not have zeros, its realization is minimal, and Pm satisfies the
parity interlacing property (see [19]). So, a stable compensator exists among the PASC.

Parameter Value Unit

m1 1 Kg
m2 1 Kg
k1 0.01 N/m
k2 0.01 N/m
d1 1 N·s/m
d2 1 N·s/m

Tab. 2. Parameters of the two-cart system.

In this example it is considered that only one position output tracks the input refer-
ence, and with G11 = 0, under transformation T1, C12k = H12, then we can track the
reference. Also C12k = 0. This implies that No has no transmission zeros according to
eq. (38) that could cause undesired effects on the output. Also, α from equations (62)

and (70) becomes zero, then ‖NoÑKh‖∞ = 0. Since there is no r in Eq. (55) such that

‖NoD̃Kl‖∞ ≤ ‖NoÑKh‖∞ = 0, and CmA21oB1o is invertible, we choose R given by Eq.

(66), then also ‖NoD̃Kl‖∞ = 0 = J2. In this case, ωh no longer determines at which HF
the norm corresponds.

Two cases are proposed, the first case, closed-loop poles with real part at −2.1 and
the second case with real part at −4.9; both cases with damping ratio of 0.7. The
characteristic closed-loop polynomials are; φ21 = (s2 + 4.2s + 9)2 with a1 = a2 = 1,
b1 = b2 = 4.2 and c1 = c2 = 9, and φ22 = (s2 + 9.8s + 49)2 choosing a1 = a2 = 1,
b1 = b2 = 9.8 and c1 = c2 = 49. The elements obtained for the 2DOF controller for the
first case are,

Q =

[
9
0

]
, R =

[
−9.2203 7.4805
9.9214 −4.2063

]
(96)

D̃K =
1

φ1

(
I2s

2 +

[
1.659 −21.22
−1.509 −4.351

]
s

)
(97)

ÑK =
1

φ1

([
−9.22 7.48
9.921 −4.206

]
s2 +

[
−49.9 29.58
17.42 −8.109

]
s+

[
−36 27
31.5 −13.5

])
(98)
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and for the second case are,

Q =

[
49
0

]
, R =

[
383.1975 −116.2293
238.8403 −88.3416

]
(99)

D̃K =
1

φ2

(
I2s

2 +

[
−132.1 −869.9
−62.16 −380.5

]
s

)
(100)

ÑK =
1

φ2

([
383.2 −116.2
238.8 −88.34

]
s2 +

[
−910.4 450.3
20.16 −28.06

]
s+

[
−1067 800.3
933.7 −400.2

])
. (101)

Figure 7 shows the maximum singular values of the mixed sensitivity functions NoD̃K

and NoÑK for both cases. Frequencies 9 rad/s and 50 rad/s corresponds to a magnitude

of 0.2 for the function NoÑK for the respective case, diminishing dm about 80%.
The controller is implemented in the feedback configuration of Figure 1, where dh = 0.

Figure 8 shows the output for an input yd = 2, under di = sin (0.01t) for t ≥ 5 s for
both cases, and dm = sin (9t) for t ≥ 5 s and dm = sin (50t) for t ≥ 5 s, for the
respective case.
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Fig. 7. Maximum singular values of NoD̃K and NoÑK .

Example 4.3. Consider the half-car active suspension system shown in Figure 9 where
the unsprung masses were neglected, m and J are the sprung mass and the moment
of inertia of the half-car vehicle body respectively, d1 and d2 are the distances of the
front and rear suspension locations from the centre of mass of the vehicle body, k1 and
k2 are the elasticity coefficients of the front and rear suspensions, and bs1 and bs2 are
the damping coefficients of the front and rear suspensions, Vm and wJ are the vertical
and angular velocities of the vehicle body at the centre of mass, Fact2 and Fact1 are
the front and rear active forces produced by the actuators, Fmasstransfer is the mass
transfer force due to braking or accelerating effects applied on the centre of mass, and
Vroad2 and Vroad1 are the vertical ground front and rear velocities, respectively, as seen
from the vehicle moving at speed V .
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Fig. 8. Time response of the masses positions.

Let x(t) = [xrel1 xrel2 JwJ mVm]T , where xrel1 and xrel2 are the relative positions
of the front and rear suspensions respectively; d = [Vroad1 Fmasstransfer Vroad2]T , where
Fmasstransfer and v = [Fact1 Fact2]T , and Vroad1 and Vroad2 are measurable and non-
mensurable external disturbance inputs, respectively. Then, an state-space description
of the system is,

ẋ =

[
0 F12

F21 F22

]
x+

[
0
G21

]
v + Edh

y =

[
H11 H12

H21 H22

]
x

(102)

with,

F12 =

[−1
m

1
J d1−1

m
−1
J d2

]
, F21 =

[
k1 k2
−d1k1 −d2k2

]
, F22 =

[
−(bs2+bs1)

m
−(d2bs2−d1bs1)

J
−(d2bs2−d1bs1)

m
−(d22bs2+d

2
1bs1)

J

]

(103)

G21 =

[
−1 −1
d1 −d2

]
, E =


1 0 0
0 0 1
bs1 1 bs2
−d1bs1 0 d2bs2

 , H11 = I2 (104)

H12 = 0 H21 =

[
3 6
7 8

]
, H22 =

[
1 5
2 9

]
(105)

and values that are shown in Table 3 given in [11]. As in example 4.2, G21 and H22

are non-singular matrices, and Pm satisfies the parity interlacing property since all the
poles of Pm are stable and Pm does not have transmission zeros.

The system is represented by equations (3) and (4) in the scheme of Figure 1, where
W3 = (F , E, [H11 H12]) and W4 = (F , E, [H21 H22]). Since W3 and W4 contain the
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Fig. 9. Half-car active suspension system.

Parameter Value Unit

m 1794.4 Kg
J 3443.05 Kg
k1 18615 N/m
k2 66824.4 N/m
d1 1.716 m
d2 1.271 m
bs1 1000 N·s/m
bs2 1190 N·s/m

Tab. 3. Parameters of the half-car active suspension system.

dynamics of the plant in open-loop, and this is stable, it does not affect the stability of the
closed-loop system. Also, W3 and W4 behave with low gain at HF and by minimizing
NoÑK at HF according to the criterion (12), the effects of dh on yo in HF will be

minimized since yo =
(
W3 −NoÑKPymdh

)
dh according to Eq. (3).

In this example it is considered to regulate xrel1 y xrel2; then, H11 = I2 and H12 = 0
and under T1 C11k = H11. As in the previous example, since CmA21oB1o is invertible,
we choose R given by Eq. (66), then ‖NoD̃Kl‖∞ = ‖NoÑKh‖∞ = J2 = 0, and ωh no
longer determines at which HF the norm corresponds. Poles are proposed in closed-
loop with real part in −4.9 and damping ratio of 0.7, obtaining the polynomial φ21 =
(s2 + 9.8s + 49)2, with a1 = a2 = 1, b1 = b2 = 9.8 ans c1 = c2 = 49. The elements
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obtained for the 2DOF controller are,

Q = 1× 104
[
3.4829 0.2595
0.2585 4.7928

]
, R = 1× 106

[
−2.3862 1.3506
−2.0357 1.1526

]
(106)

D̃K =
1

φ1

([
1 0
0 1

]
s2 +

[
−6.994× 104 6.001× 105

−6.434× 104 5.166× 105

]
s

)
(107)

ÑK =
1

φ1

(
1× 106

[
−2.386 1.351
−2.036 1.153

]
s2 + 1× 106

[
−2.632 1.495
−2.241 1.274

]
s

+1× 105
[
−7.092 5.478

8.57 −3.492

])
. (108)

Figure 10 shows the maximum singular values of the functions NoD̃K , NoÑK , NoQ
and W3 − NoÑKW4 which relate the inputs di, dm, yd and dh to the output yo, re-

spectively. Figure 11 shows the output for an input reference yd =
[
1 1.25

]T
, under

di = 0.5sin(0.1t), t ≥ 2, dm = 0.5sin(500t), t ≥ 4, Vroad1 = 0.1sin(300t), t ≥ 6,
Fmasstransfer = 1, t ≥ 8 and Vroad2 = 0.1sin(300t), t ≥ 10.
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Fig. 10. Maximum singular values of NoD̃K , NoÑK , NoQ and

W3 −NoÑKW4.

Although the assumptions for using R = rI given in Eq. (57) that guarantees

‖NoD̃Kl‖∞ = ‖NoÑKh‖∞ are not satisfied for the selected poles, with r = 1 we have

‖NoD̃Kl‖∞ = 3.6111 × 10−4 and together with ‖NoÑKh‖∞ = 0 that we already had,
we can reduce the effects of di, dh and dm. Figure 12 shows the output for the same
reference and disturbances previously given.

In the three examples, the system response is stable under the presence of disturbances
of LF and HF, and smooth according to the selected pole assignment. Also, the objective
of minimizing criterion given by Eq. (12) is achieved, that is, to attenuate ‖dm‖2 and
‖dh‖2 at HF, and ‖di‖2 at LF over ‖yo‖2, achieving stability and robust performance.
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Fig. 11. Time response of yo(t).

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

A
m

p
lit

u
d

e

 

 

yo1

yo2

Fig. 12. Time response of yo(t) for R = I.

5. CONCLUSION

Analytical expressions of coprime factorizations of the given plant, a solution of the Dio-
phantine equation and the two free parameters of the two-degrees of freedom stabilizing
control are presented solving a pole placement problem, a mixed sensitivity criterion
and tracking the input reference at LF. The 2DOF stabilizing control is based on the
parameterization of all stabilizing controllers where the first free parameter solves a
mixed sensitivity robust control problem, while the second free parameter assures that
the controlled output tracks the input reference at LF.

With the proposed expressions, a pole placement problem and a mixed sensitivity
problem, depends on a set of control parameters. The parameter that determines the
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infinite norm of the mixed sensitivity criterion delimits the high-frequency bandwidth.
The transient response can be affected for the established poles if undesired transmission
zeros are present and there is a correct input reference; nevertheless, the second free
parameter can be modified to reduce this effect.

A stable and smooth response is obtained according to the selected pole assignment,
despite the disturbances that are attenuated at the output of interest, to the extent
established by the mixed sensitivity criterion. With the given analytical expressions,
the controller has known dimension beforehand, are suitable for on-line implementation
or adaptive control in future works.

ACKNOWLEDGEMENT

This work was supported by the National Council of Science and Technology (CONACYT).

(Received June 21, 2018)

R E F E R E N C E S

[1] M. Chilali and P Gahinet: H∞ design with pole placement constraints: An LMI approach.
IEEE Trans. Automat. Control 41 (1996), 358–367. DOI:10.1109/9.486637

[2] C. A. Desoer: Decoupling linear multiinput multioutput plants by dynamic output
feedback: An algebraic theory. IEEE Trans. Automat. Control 31 (1986), 744–750.
DOI:10.1109/TAC.1986.1104391

[3] J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis: State-space solutions to
standard H2 and H∞ control problems. IEEE Trans. Automat. Control 34 (1989), 831–
847. DOI:10.1109/9.29425

[4] K. A. Folly: A Comparison of Two Methods for Preventing Pole-zero Cancellation in H∞
Power System Controller Design. IEEE Lausanne Power Tech (2007).

[5] M. A. Flores and R. Galindo: Robust control for outputs of interest different from the
measured outputs, based on the parameterization of stabilizing controllers. Control ro-
busto para salidas de interés diferentes a las medidas, basado en la parametrización de
controladores estabilizantes. In: XVI Latinamerican Congress of Automatic Control,
CLCA 2014.

[6] P. Gahinet and P. Apkarian: A linear matrix inequality approach to H∞ control. Int. J.
Robust Nonlinear Control 4 (1994), 421–448. DOI:10.1002/rnc.4590040403

[7] R. Galindo: Parameterization of all stable controllers stabilizing full state information
systems and mixed sensitivity. In: Proc. The Institution of Mechanical Engineers Part I:
J. Systems Control Engrg. 223 (2009), 957–971. DOI:10.1243/09596518JSCE703

[8] R. Galindo: Input/output decoupling of square linear systems by dynamic two-parameter
stabilizing control. Asian J. Control 18 (2016), 2310–2316. DOI:10.1002/asjc.1285

[9] R. Galindo and C. D. Conejo: A Parametrization of all one parameter stabilizing con-
trollers and a mixed sensitivity problem, for square systems. In: International Conference
on Electrical Engineering, Computing Science and Automatic Control (012, pp. 1–6.
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