
High-Throughput Transaction Executions on Graphics
Processors

Bingsheng He
Nanyang Technological University, Singapore

Jeffrey Xu Yu
The Chinese University of Hong Kong

ABSTRACT
OLTP (On-Line Transaction Processing) is an important
business system sector in various traditional and emerg-
ing online services. Due to the increasing number of users,
OLTP systems require high throughput for executing tens
of thousands of transactions in a short time period. En-
couraged by the recent success of GPGPU (General-Purpose
computation on Graphics Processors), we propose GPUTx,
an OLTP engine performing high-throughput transaction
executions on the GPU for in-memory databases. Com-
pared with existing GPGPU studies usually optimizing a
single task, transaction executions require handling many
small tasks concurrently. Specifically, we propose the bulk
execution model to group multiple transactions into a bulk
and to execute the bulk on the GPU as a single task. The
transactions within the bulk are executed concurrently on
the GPU. We study three basic execution strategies (one
with locks and the other two lock-free), and optimize them
with the GPU features including the hardware support of
atomic operations, the massive thread parallelism and the
SPMD (Single Program Multiple Data) execution. We eval-
uate GPUTx on a recent NVIDIA GPU in comparison with
its counterpart on a quad-core CPU. Our experimental re-
sults show that optimizations on GPUTx significantly im-
prove the throughput, and the optimized GPUTx achieves
4–10 times higher throughput than its CPU-based counter-
part on public transaction processing benchmarks.

1. INTRODUCTION
OLTP (On-Line Transaction Processing) is an important

business sector generating billions of dollars revenues for
database vendors, and even more for online service providers.
The market for OLTP is ever growing, as the volume of tra-
ditional applications such as credit card services, banking
and stock markets becomes larger, and emerging applica-
tions including Web 2.0 become popular. In those applica-
tions, tens of thousands of transactions are required to be
processed within a short period. Additionally, transactions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 37th International Conference on Very Large Data Bases,
August 29th - September 3rd 2011, Seattle, Washington.
Proceedings of the VLDB Endowment, Vol. 4, No. 5
Copyright 2011 VLDB Endowment 2150-8097/11/02... $ 10.00.

are usually implemented as stored procedures without any
user interaction stalls [18]. In those applications, system
optimizations are throughput oriented, instead of response
time oriented. This calls for a high-throughput transaction
execution engine. Most current CPU-based systems [18, 7]
adopt in-memory solutions, and utilize multiple CPUs or
multiple commodity machines to achieve the performance
requirement. Encouraged by the recent success of GPGPU
(General-Purpose computation on Graphics Processors), we
investigate whether and how we can design a transaction
execution engine on the GPU for high throughput.

GPUs (Graphics Processors) have evolved as many-core
processors for general purpose computation. They have over
an order of magnitude higher memory bandwidth and higher
computation power (in terms of GFLOPS) than CPUs. The
superb hardware resource enables a GPU to concurrently
execute tens of thousands of threads, which can effectively
hide the memory latency [8]. This massive thread paral-
lelism is an ideal hardware advantage for transaction execu-
tions, where data accesses are usually random and the over-
all performance is memory latency bounded. While current
GPGPU techniques accelerate various database tasks [8, 12],
they are mostly limited to a single task such as sort [4] and
joins [10], which perform read-only computation on a large
volume of data. In comparison, OLTP systems need to han-
dle many small transactions with random reads and updates
on the database. Moreover, transaction executions must
achieve isolation and consistency for correctness when they
perform concurrent updates to the database.

Unique features of transaction processing distinguish itself
from the existing GPGPU research. The massive thread
parallelism of the GPU poses technical challenges on the
correctness and efficiency of transaction executions. On the
GPU, executions with thousands of threads are organized
in the SPMD (Single Program Multiple Data) execution
model. The SPMD execution model has important impli-
cations to the efficiency of transaction executions. First,
ad-hoc transaction execution (i.e., handling one transaction
at a time) is not desirable, since it causes severe underutiliza-
tion of the GPU. Even with the support of concurrent task
(or kernel) executions on the future GPU, ad-hoc transac-
tion execution still causes underutilization, since each trans-
action occupies at least one multi-processor. Second, the
atomic operations supported in new generation GPUs en-
able us to implement locks for concurrency control. How-
ever, the performance of locking mechanisms should be re-
visited under the context of the SPMD execution and the
massive thread parallelism of the GPU.

314

To address these challenges, we propose the bulk execution
model for transaction executions on the GPU. In the model,
a transaction belongs to a specific transaction type. Each
transaction type is registered as a stored procedure with-
out user interaction, and the codes of registered transaction
types are combined into a single kernel. A transaction is an
instance of the registered transaction type with different pa-
rameter values. Thus, a set of transactions can be grouped
into a single task, namely a bulk. Transactions within a bulk
are concurrently executed on the GPU.

Such a simple execution model enables various optimiza-
tion opportunities for addressing the technical challenges.
First, the bulk execution model allows much more concur-
rent transactions than ad-hoc execution. The elimination of
user interaction latency tends to keep the processor busy.
Second, data dependencies and branch divergence among
transactions are explicitly exposed within a bulk. With
known data dependencies, the system can choose the suit-
able concurrency control strategy to execute the bulk, e.g.,
with and without locks. Considering branch divergence,
transactions with the same type can be grouped together
for execution, in order to minimize the overhead of branch
divergence. Third, transaction executions become tractable.
Instead of executing ad-hoc transactions, concurrent execu-
tions occur within a single kernel.

To capture the data dependency for the transactions in
the bulk, we propose a data structure called T-dependency
graph, where we augment the classic dependency graph with
the timing of the transaction submissions. The T-dependency
graph is a guide for the bulk execution model, ensuring that
the result of transaction executions in the bulk is equivalent
to that of sequentially executed the transactions in the bulk
according to their submission time. On the other hand, T-
dependency graph formally exposes the parallelism within
the bulk. For example, we can identify the set of trans-
actions that do not have any preceding conflicting transac-
tions. These transactions can be executed in parallel with-
out any complicated concurrency control.

Based on the bulk execution model and T-dependency
graph, we develop GPUTx, a transaction processing engine
prototype on the GPU for in-memory databases. We study
three strategies for bulk execution, one with traditional two
phase locking mechanism, or two lock-free algorithms. One
lock-free algorithm adopts the partition-based transaction
execution [18], and the other always executing the set of
transactions that do not have preceding conflicting trans-
actions according to the T-dependency graph. All these
execution strategies are optimized with the massive thread
parallelism and minimizing the branch divergence.

We conduct experiments on a NVIDIA GPU of 240 cores
with synthetic workloads and public OLTP benchmarks such
as TPC-C and TM1 [13]. We compare the performance of
GPUTx with our homegrown CPU-based counterpart. The
results show that: a) the optimization techniques improve
the transaction execution throughput, e.g., minimizing the
branch divergence can achieve up to an order of magnitude
throughput improvement; b) the bulk execution model im-
proves the throughput of GPU-based transaction execution,
16–146 times higher than ad-hoc transaction execution on
the GPU; c) GPUTx achieves a 4–10 times higher through-
put than its CPU-based counterparts on the quad-core CPU.

Organization. The remainder of this paper is organized
as follows. Section 2 reviews the related work on the CPU-

based transaction processing and the GPU-based query pro-
cessing. Section 3 gives an overview of the system design.
We present the T-dependency graph in Section 4, followed
by the implementation details in Section 5. We present the
evaluation results in Section 6, and discuss the limitations
of GPUTx in Section 7. Finally, we conclude in Section 8.

2. PRELIMINARY AND RELATED WORK
Transaction Processing on CPUs. Main memory

databases [7, 9] have recently attracted a significant amount
of attention due to the great increase of the memory capac-
ities. In-memory transaction engines such as H-Store [18]
and StagedDB [7] has become popular in recent years.

Efficient transaction executions on multi-core CPUs is a
hot research topic [18, 11, 16]. Harizopoulos et al. [6] per-
formed a detailed performance study on the components in a
memory-resident transaction processing system, and showed
that only a small portion of the total time is spent on the
useful work. H-Store [18] models a transaction as a stored
procedure. It uses data partitioning and single-threaded ex-
ecution to simplify concurrency control (e.g., removing two-
phase locking mechanism [17]). Jones et al. [11] studied the
concurrency control performance on a partitioned database.
Along the line of improving the efficiency of transaction ex-
ecutions, DORA [16] is a data-oriented execution engine,
re-designed for multi-core CPUs. In DORA, transaction ex-
ecutions are aligned to their target data items. This can
reduces the ad-hoc locking operations. All of these studies
adopt ad-hoc execution models on multi-core CPUs. Due
to the differences in hardware architecture and execution
model, these results need to be revisited, and new tech-
niques should be proposed for bulk transaction executions
on the GPU.

Query processing on the GPU. GPGPU has been a
fruitful research area in recent years. We refer the readers
to Appendix A for the preliminary on graphics processors,
and a survey [15] for the details on GPGPU applications.

The superb raw hardware power of the GPU has been ex-
ploited to accelerate various applications in databases [5, 10,
8, 2] and other data-intensive tasks [1]. All of these studies
focus on OLAP-like applications, each task usually process-
ing a large volume of data. In comparison, this study fo-
cuses on another important area in databases, OLTP, which
receives little attention in GPGPU. In an OLTP application,
we are facing tens of thousands of small tasks in a short time,
and a high-throughput engine becomes a necessity. One of
the possible reasons that OLTP receives little attention in
GPGPU is that OLTP is considered to be ad hoc due to
the latency in user interaction. However, in practice, many
OLTP applications (such as Web 2.0) become throughput
oriented, without user interaction latency [18]. GPUTx is
specially designed and optimized for such applications.

The recent hardware support for atomic operations on
the GPU enables us to explore concurrent transaction exe-
cutions with locks. To the best of our knowledge, there is
not yet any transaction processing engine on the GPU.

3. SYSTEM DESIGN

3.1 Bulk Execution Model
In the bulk execution model, a bulk is defined to be a

set of transactions. Bulk execution model only supports

315

pre-defined transaction types. Each transaction type is reg-
istered as a stored procedure without user interaction. A
transaction is an instance of a certain transaction type with
parameter values. That is, GPUTx supports the predefined
transaction:

Execute procedure_name (parameter list)

Each transaction is associated with a timestamp indicating
the time when it is submitted to the system.

Bulk execution is to execute the transactions within the
bulk according to a certain execution strategy. In addition
to the isolation and consistency requirement on individual
transactions, the bulk execution has its own requirement for
correctness. Specifically, we define the correctness of bulk
execution in Definition 1. While the timing constraint is
not necessary for serializability of transaction executions, it
ensures the correctness of executing a large bulk.

Definition 1. Given any initial database, a bulk execu-
tion is correct if and only if the result database is the same
as that of sequentially executing the transactions in the bulk
in the increasing order of their timestamps.

3.2 Overview of GPUTx
GPUTx is a transaction processing engine, specially de-

signed and optimized for the bulk execution model the GPU.
Our current focus is on the data when they can fit into the
GPU device memory.

Current GPUTx is implemented in NVIDIA CUDA [14].
A transaction type is implemented as a device function in
CUDA. All the registered transaction types form a kernel
function, connecting the stored procedure of each transac-
tion type with a switch clause as followed. type i is the type
identifier for the ith transaction type.

switch(type) {
case type_1:

//stored procedure for type_1;
break;
...
case type_N:

//stored procedure for type_N;
break;

}

If a new transaction type needs to be registered to GPUTx,
we add the stored procedure into the switch clause, and re-
compile the kernel function.

When transactions are submitted by users (e.g., via inter-
net), their signatures are temporarily stored in a transaction
pool. The transaction signature is represented in the form
of < id, type, parameter value list>, where id is an unique
and auto-increment identifier for each transaction, and type
is the transaction type. We use the transaction ID to repre-
sent its timestamp.

The system periodically generates a bulk by picking a set
of transactions from the transaction pool, and issues the
bulk to the GPU for execution. When the execution is done,
the results are copied from the GPU to the result pool in
the main memory, and then returned to individual users.

GPUTx use arrays in the device memory to store the re-
lation. For transactions with insertions, we allocate a tem-
porary buffer that is sufficiently large for the new inserted
data. After the kernel execution, we perform a batched up-
date with updates in the temporary buffer.

Data accesses in GPUTx are performed at the granularity
of data field, in order to maximize the parallelism on the

GPU. This is in contrast with the traditional CPU-based
approaches [16, 18], where the granularity is usually page-
or partition-level.

4. T-DEPENDENCY GRAPH

4.1 Definitions
A transaction consists of multiple basic operations and

their processing on databases. We define a basic operation
to be a read or a write on a data item in databases. Since
we assume there is no user interaction latency within the
transaction, we assume that basic operations have the same
timestamp as the transaction. We refer two basic operations
are conflicting if they target at the same data, and at least
one of them is write. We further define that two transactions
t1 and t2 are conflicting if there are two conflicting basic
operations o1 and o2 in transactions t1 and t2, respectively.

A correct bulk execution must take into account the con-
flicting transactions. Suppose two basic operations, o1 and
o2 from two transactions are conflicting. If o1 has a times-
tamp smaller than o2, a correct bulk execution should guar-
antee that o1 is performed before o2. This property is to
ensure the correctness of bulk execution, where the result
of the bulk execution is the same as the sequential execu-
tion for the transactions in the bulk. Additionally, while
this property confines the execution order of the conflict-
ing operations, it indicates the opportunity of parallelism
for identifying the transactions without any preceding con-
flicting transactions. These transactions can be executed in
parallel without any complicated concurrency control.

We propose a data structure named T-dependency graph
to explicitly capture the data dependency and correctness of
bulk execution. A T-dependency graph is a DAG (Directed
Acyclic Graph). Each vertex represents a transaction, and
an edge represents the data dependency between two trans-
actions. An edge is added to two vertexes (t1 → t2) if and
only if the following three conditions are all satisfied: (a)
t1 and t2 are conflicting transactions, (b) t1 has a smaller
timestamp than t2, and (c) there does not exist any trans-
action t with a timestamp between those of t1 and t2 such
that t is conflicting with both t1 and t2. Condition (a) is
to express the data dependency between two transactions.
Condition (b) is according to the correctness of bulk execu-
tion. It ensures that there is no cycle in the T-dependency
graph. Condition (c) ensures that an edge is added to two in-
termediate conflicting transactions. Figure 1 (a) illustrates
the T-dependency graph for four transactions, T1, T2, T3
and T4 (in the order of increasing timestamps). While T1
and T4 are conflicting transactions, there is no edge between
them, due to the violation on Condition (c).

After representing all the transactions in the transaction
pool as a T-dependency graph, the data dependency and
the timing relationship are explicitly exposed. For exam-
ple, the set of vertexes without any preceding vertexes in
the T-dependency graph indicates that their corresponding
transactions do not have any preceding conflicting transac-
tions. We define this kind of vertexes to be source. Based on
sources, we define the depth of a vertex v to be the length
of the longest path from a source vertex to v. A source
vertex has a depth of zero. We define the depth of the T-
dependency graph to be the maximum depth of all vertexes
in the graph. We further define k-set (k ≥ 0) to be the set of
vertexes with depth of k. Thus, all the source vertexes form

316

T1: Ra Rb Wa Wb

T2: Ra

T4: Rc Wc Ra Wa

T1

T2

T3

T3: Ra Rb T4

T1, T2, T3, T4 T1, T3

a b

0, 1, 1, 2 0, 1

Ranks:

(a)

(b)

0-set

1-set

2-set

T1

T2, T3

T4

T4

c

0

Time

Figure 1: The T-dependency graph. Rx and Wx
represent a read and a write on x, respectively.

the 0-set. In the example T-dependency graph of Figure 1,
the 0-set contains T1, the 1-set includes T2 and T3, and the
2-set contains T4.

By definition, we have the following two properties for the
k-sets. Property 1 indicates that transactions from the same
k-set are conflict-free, and a bulk consists of the k-set only
can be executed in parallel while preserving the correctness.
Property 2 indicates that we cannot execute the entire k-set
as a bulk, if there are undone transactions in 0-set, 1-set, ...,
(k − 1)-set.
Property 1. ∀tk ∈ k-set and ∀t′k ∈ k-set (k ≥ 0, tk 6= t′k),
tk and t′k are conflict-free.
Property 2. ∀tk ∈ k-set (k ≥ 1), there exists at least
one tk−1 in (k− 1)-set such that tk−1 and tk are conflicting
transactions.

The T-dependency graph is similar to the traditional de-
pendency graph in DBMSs [17], since both of them aim at
representing the data dependency among transactions. Our
definition of the T-dependency graph is specific to the bulk
properties. We consider the timestamp of a transaction in
the T-dependency graph. Moreover, there is no cycle in the
T-dependency graph, thus avoiding the deadlock in execu-
tion, whereas the traditional dependency graph may have
cycles.

4.2 Operations
We introduce some basic operations on the T-dependency

graph, including constructing T-dependency graph and cal-
culating k-set. The details of the T-dependency graph con-
struction can be found in Appendix B. We focus on the
k-set calculation.

If the T-dependency graph has already been constructed,
the k-set can be obtained by performing a topological sort
on the T-dependency graph. During the topological sort, we
evaluate the depth of a vertex n to be (1+d), where d is the
maximum depth of all the preceding vertexes of n. However,
the k-set calculation is a basic building block for bulk execu-
tion (see Section 5). The T-dependency graph construction
can become the bottleneck of the system. Thus, we develop
an efficient algorithm for calculating the k-set on the GPU,
without constructing the T-dependency graph.

Our algorithm is data oriented. We consider all the ba-
sic operations in the transaction pool. We first group the
basic operations according to their target data item. After
grouping, each group contains the potentially conflicting ba-
sic operations. Next, within each group, we further order the
basic operations in the ascending order of their timestamps,
and analyze the data dependency within the group. We as-
sign a rank value for each basic operation in each group.
The first basic operation in each group is assigned with a

rank zero. For the ith basic operation (i ≥ 1), we will look
for the conflicting operation with a smaller ID in the group.
We denote r to be the rank value of the (i− 1) transaction.
If the current basic operation is a write, the rank value of
the ith operation is (r+1). Otherwise, if (i− 1)th operation
is a read, we assign the rank value of the ith operation to be
r. Otherwise, we assign the rank value of the ith operation
to be (r+1). We calculate the k-set according to the rank
values of the basic operations in the transaction. A transac-
tion belongs to k-set if and only if the maximum rank value
of its basic operations is k.

Figure 1(b) demonstrates the process of calculating the
k-set for the four example transactions. First, transactions
form three groups according to their accesses to a, b and
c. Next, the ranks are given to the operations within the
group. Take the group for a as an example. Initially, T1 has
a rank of zero. Since T1 has a write and T2 has reads only,
the rank for T2 should be one plus the rank of T1, i.e., one.
For T3, since both T2 and T3 are read-only, they have the
same ranks. Thus, T3 has a rank of one. Finally, T4 has a
write on a, and its rank should be one plus the rank of T3,
i.e., two. With all the ranks in the three groups, we know
T1 belong to 0-set, T2 and T3 belong to 1-set and T4 belong
to 2-set.

We represent a basic operation in a transaction to be a
tuple (v, id), where v denotes an ID of the target data item,
and id is the transaction ID. Taken an array of such tuples
as input, the GPU-based implementation works in the fol-
lowing five steps.
1) We use a sort operation to perform grouping on the array,
firstly on v and then on id.
2) We use a map primitive to identify the boundary of the
groups.
3) We use a thread to evaluate the rank within each group.
This step outputs the result of an array with element (id,
r), where id represents the transaction ID and r denotes the
rank value of each operation.
4) A sort operation is performed on the output array of Step
3).
5) We use a map primitive to identify the boundary of the
groups. The ending element of each boundary represents
the maximum rank of a transaction, i.e., the depth of the
transaction in the T-dependency graph.

The implementation reuses existing efficient data-parallel
primitives on the GPU, and exploits the parallelism among
different groups.

5. IMPLEMENTATIONS
GPUTx takes transactions in the transaction pool as in-

put, generates the bulk, performs the execution on the GPU,
and outputs the results to the result pool. A bulk profiler
is to analyze the characteristics of the input transactions.
A bulk generator is to decide the suitable execution strat-
egy, and to generate a bulk for execution. Taking a bulk as
input, a bulk executor executes the bulk on the GPU, and
returns the results.

The current bulk executor of GPUTx supports the follow-
ing three basic execution strategies on a bulk.
• TPL: We adopt the classic two phase locking execution
method, where locks are implemented with atomic opera-
tions on the GPU.
• PART: We adopt the partitioned based approach in H-
Store [18], and a single thread is used for each partition.

317

Since it is single-thread execution, there is no locking mech-
anism within a partition.
• K-SET: K-SET is specially designed for bulk execution. It
is based on the concept of k-set of the T-dependency graph,
and identifies the transactions that do not have any preced-
ing conflicting transactions to execute in parallel.

All these three strategies achieve the correctness require-
ments of bulk execution. In Appendix G, we briefly discuss
the execution strategies of achieving the serializability only,
i.e., relaxing the timestamp constraint on bulk execution.

5.1 TPL: Two phase locking
Two phase locking is a basic and widely used concurrency

control method. According to the locking protocol, a trans-
action handles its locks in two phases: in the first phase,
locks are acquired and no locks are released; and in the sec-
ond phase, locks are released and no locks are acquired.

The naive method uses the GPU-based atomic operation
to implement a 0/1 spin lock. The details can be found in
Appendix C. With the spin lock, we can implement a two
phase locking algorithm for transaction executions. While
this implementation is simple, it inherits the obstacles of
two phase locking, i.e., deadlocks and non-determinism in
the execution order. On the GPU, we do not have explicit
control for thread scheduling. Thread executions are non-
deterministic with the simple 0/1 spin lock. For example, a
transaction with a larger timestamp may be executed ear-
lier than its conflicting transactions. Moreover, a deadlock
causes a never terminated kernel execution.

We address these two obstacles based on the T-dependency
graph. The non-determinism is caused by the mismatch be-
tween the execution order and the timestamp. To ensure
the execution order, we extend the spin lock with multiple
counter values. Before a basic operation accesses the shared
data, it is assigned a key value for the lock. Only when
the key value is equal to the counter value, the thread can
acquire the lock. Thus, the key values are used to gener-
ate an order among thread executions. In order to achieve
the correctness of the bulk execution, the key values are as-
signed as the rank of each group in the third step of the k-set
calculation (Section 4.2). Through assigning the key values
according to the rank value, the deadlock is avoided. This
is because, T-dependency graph is a DAG without cycles.
The detailed code lines are shown in Appendix C.

In the basic TPL, we need a spin lock for every data ac-
cess. This strict requirement has overhead in assigning the
key values to transactions, as well as runtime overhead in the
spin lock. We should eliminate unnecessary locks whenever
practical. For example, transactions in OLTP applications
tend to fetch a small number of tuples according to the pri-
mary key. Moreover, schemas of many OLTP applications
are tree shaped. The transactions, such as those in public
benchmarks, belong to this category. The primary key of
the root relation in the tree is used as the object for lock-
ing. A running example for TPC-B is shows in Figure 2(a),
where there are n bank branches, B1, B2, ..., Bn. Since
transactions update the balance of a branch, any two trans-
actions for the same branch are conflicting. In this case, the
T-dependency graph degrades to be multiple paths corre-
sponding to B1, B2, ..., Bn.

If we put a spin lock on the primary key value, we can
eliminate locks to conflicting operations on the data items
other than primary key. The script numbers in Figure 2(b)

T1,1

T2,1

Tn,1

T1,2

T2,2

Tn,2

B1

B2

Bn

0 1

(a) T-dependency graph (b) A bulk of TPL (d) Bulks in K-SET

T1,1

T2,1

Tn,1

T1,2

T2,2

Tn,2

0

0

1

1

(c) A bulk of PART

T1,1

T2,1

Tn,1

T1,2

T2,2

Tn,2

T1,1

T2,1

Tn,1

T1,2

T2,2

Tn,2

A bulk
Execution order within

a partition of PART

Figure 2: A running example for transaction execu-
tion strategies using TPC-B.

illustrate the key values assigned to the transactions in a
bulk. The key values for the transactions in the k-set are k.

5.2 PART: Partition based execution
On the partitioned database, a single thread is used to

handle the data operations to each partition. Since these op-
erations are done sequentially on the target partition, there
is no locking mechanism for the execution. This is particu-
larly ideal for single-partitioned transactions (accessing the
data entirely within a single partition), without complicated
multi-partition concurrency controls or locks.

The parallelism is achieved by the concurrent executions
on multiple partitions. In contrast with the CPU-based en-
gines (like H-store) that assign the transactions to the suit-
able worker threads (i.e., a push model), the GPU-based
execution is a pull model, where each GPU thread needs to
identify the set of transactions belonging to itself.

The basic process of PART is implemented as the follow-
ing three steps. First, we use a map primitive to calculate
the partition ID of each transaction. The results are stored
in the array P , where P [i] is a tuple with the partition ID
and the pointer in the input transaction fingerprint. Second,
we sort the P according to the partition ID with radix sort.
Third, each GPU thread picks the transactions from P . It
identifies the start and the end boundaries for its partition
in P with binary searches. Given the start and the end posi-
tions, the GPU thread sequentially executes the transactions
in the partition. Figure 2(c) shows an example of PART.
Each thread is responsible for a path in the T-dependency
graph, corresponding to a partition.

The partition size is a tuning parameter for the perfor-
mance of PART. If we increase the partition size, the num-
ber of partitions is reduced, and thus the sorting algorithm
in the second step is more efficient. Moreover, the cost of the
third step of picking the boundary can be reduced. However,
a large partition size increases the number of transactions
processed by a thread, which increases the length of the crit-
ical path of the entire kernel. We tune the suitable partition
size for the optimal performance in the experiment.

PART works correctly on single-partitioned transactions.
If there are cross-partition transactions, we use TPL for ex-
ecution, which can severely degrade the performance. A
more advanced concurrency control on cross-partition trans-
actions should be investigated in the future.

5.3 K-SET: k-set based execution
The K-SET algorithm is based on the k-set concept of

the T-dependency graph. It iteratively pick the 0-set as a
bulk for execution. Since transactions in the 0-set do not
have conflicts with each other, we do not need to use the
mechanisms in TPL or PART. All the transactions in the

318

Figure 3: Throughput comparison varying the num-
ber of branches in the switch clause.

Figure 4: Throughput of the three transaction exe-
cution strategies varying the bulk size.

bulk are executed in parallel on the GPU. If the bulk size
is sufficiently large, the GPU computation resource can be
fully utilized.

The k-set calculation has been presented in Section 4.2.
Incremental algorithms for the k-set calculation is adopted.
When new transactions are added to the pool, their basic
operations are merged into the sorted array. Next, we can
select the bulk for the transactions with the key value of
zero. The incremental algorithm is able to find the 0-set
without computing the k-set from scratch.

Figure 2 (d) shows an example of running K-SET. We
pick 0-set as a bulk. After removing the transactions from
0-set, the transactions in 1-set become the 0-set in the new
T-dependency graph.

5.4 Optimization Issues
GPUTx embraces a number of optimization issues. In ad-

dition to the general optimization techniques (such as those
on the memory locality and the thread parallelism [8]), we
discuss the techniques that are mostly relevant to the bulk
execution model and transaction processing. The details of
these optimization issues can be found in Appendix D.
• In order to reduce the branch divergence, we group the
transactions in a bulk according to their transaction types.
The number of groups is tuned for the tradeoff between the
grouping overhead and the gain of reduced branch diver-
gence.
• Choosing the suitable execution strategy is important for
the system throughput. We analyze the strength and weak-
ness of the three execution strategies and use a rule-based
method to determine the suitable execution strategy.
• Logging as well as the recovery overhead are eliminated in
the system whenever practical.

6. EVALUATIONS

6.1 Experimental Setup
We run our experiments on a machine with four NVIDIA

C1060 GPUs and one Intel Xeon CPU E5520. While the

Figure 5: The time breakdown of the three transac-
tion execution strategies.

Figure 6: Throughput of the three transaction exe-
cution strategies varying the workload distribution.

machine has four GPUs, they are independent in the sys-
tem and we use only one of them for evaluating the perfor-
mance of GPUTx. A detailed experimental setup is found
in Appendix E.

Our experiments include two parts. The first part is to
develop micro benchmarks to conduct controlled studies on
the key design of GPUTx. The second part is to provide an
end-to-end comparison of GPUTx to its CPU-based counter-
part with three benchmarks namely TM1 [13], TPC-B, and
TPC-C. These benchmarks represent different characteris-
tics to assess the optimization opportunities of GPUTx. We
mainly measure the long-running system throughput (ktps,
or thousands of transactions per second).

In the micro benchmarks, we have varied the number of
branches in a switch clause, T , and varied the amount of
computation in each branch to evaluate branch divergence.
Transactions are evenly assigned with a transaction type.
We have examined the complied code, and made sure the
branches are not eliminated by code optimization. Each
transaction reads a tuple, and performs computation, and
then writes the result back to the tuple. The amount of com-
putation is simulated with calling the sinf function (100·x)
times. The default values for T and x are eight and 16, re-
spectively. We further generated a skewed distribution on
the lock acquisition among transactions. The skewedness
is according to the α value, where transactions acquire the
first lock with a probability of α, and the probabilities of ac-
quiring other locks are the same. A larger α value means a
more skewed distribution, and thus a deeper T-dependency
graph.

We present the key results on GPUTx. More experimental
results can be found in Appendix F.

6.2 Micro benchmarks
Branch divergence. Figure 3 shows the throughput

of transaction execution with and without grouping on the
transaction types. The bulks are generated for advance, and
transactions are executed in parallel. We vary the number
of transaction types (i.e., the number of branches in the
switch clause). We denote “ L” and “ H” to be transac-

319

 (a) TM-1 (b) TPC-B (c) TPC-C

Figure 7: Normalized throughput for the public benchmarks.

tions with low and high computational costs (x = 1 and
x = 16, respectively). Note that both x- and y-axis are
given in the log scale. The measurement for the grouping
method is obtained with the tuning on the number of radix
partitioning passes. By grouping the transactions according
to their branch, branch divergence in the SPMD execution
is minimized. Thus, we observe that grouping reduces the
branch divergence in the SPMD execution model of the GPU
and improves the throughput, especially when the amount
of computation is high and the number of branches is large.

We also find a cross point between the basic execution
and the grouping method in the low-cost transactions, and
there is no cross point in the high-cost transactions. For the
low-cost transactions, when the number of branches is small,
the impact of the sequential execution resulted from the di-
vergent branches is small. The grouping overhead (typically
with one pass of radix partitioning) further offsets this rela-
tively small performance gain. In contrast, for the high-cost
transactions, the grouping method is a clear winner even
when the number of branches is two.

Execution strategies. Figure 4 shows the throughput
of the three execution strategies as the bulk size varied. The
number of tuples is fixed to be eight millions. As the num-
ber of transactions increases, the throughput of TPL de-
creases due to the increased contention of locks. In con-
trast, PART and K-SET achieve a stable and comparable
throughput. The gap between TPL and the other two ex-
ecution strategies increases. K-SET is slightly faster than
PART, because PART has a larger runtime overhead (e.g.,
reading the boundary of partitions).

Figure 5 shows the time breakdown of executing around
16 million transactions. The total elapsed time is divided
into two parts, sort for bulk generation, and execution for
bulk execution. The bulk generation is a significant part for
PART and K-SET, contributing 66% and 70% of the total
elapsed time. In contrast, the transaction execution is a
bottleneck for TPL, which contributes to 70% of the total
execution time.

Figure 6 shows the throughput of the three execution
strategies varying the transaction skewedness. TPL and
PART naively pick the transactions in the transaction pool
as a bulk, which generates a deep T-dependency graph. By
extracting the 0-set continuously from the transactions in
transaction pool, K-SET achieves a stable throughput. This
significant improvement in throughput of K-SET has two
reasons. First, the 0-set is sufficiently large for K-SET exe-
cution, as new transactions are submitted. Second, the GPU
utilization of TPL and PART is lower than that of K-SET,
due to the long critical path in the bulk execution.

Figure 8: Throughput of the three execution strate-
gies on TM-1.

Figure 9: Response time vs. throughput in TM-1.

6.3 Public benchmarks
We simulate the ad-hoc transaction executions on the

GPU by evaluating the transaction sequentially using one
GPU core. The CPU-based counterpart adopts the design
of H-Store [18]. Figure 7 shows the normalized throughput
for GPUTx. All the measured throughput are normalized
to the CPU-based engine on the single core. GPUTx on a
single GPU core achieves a throughput of 25–50% as that
of the CPU-based counterpart on a single CPU core. This
is because, a single CPU core has a higher frequency as well
as a higher memory bandwidth than a single GPU core.
Devoting the major die size to cores, the GPU has much
more cores than the CPU. While a single core has a lower
throughput, the GPUTx has a much higher throughput than
its CPU-based counterparts. Specifically, GPUTx achieves
4–10 times higher throughput than the CPU-based coun-
terpart. Moreover, the improvement increases as the scale
factor increases in the benchmark.

We further study the cost efficiency of GPUTx and its
CPU-based counterpart. The unit prices of the NVIDIA
GPU and the Intel CPU used in this experiment are US$1,
699.00 and US$ 649.00, respectively1. We define the cost
efficiency to be the throughput per dollar. While the GPU is
more expensive than the CPU, GPUTx achieves 52%, 214%,

1http://www.dell.com/, Nov-15, 2010

320

and 98% on average higher throughput per dollar than the
CPU-based implementation on TM-1, TPC-B and TP-C,
respectively. Moreover, the GPU is an integral component
in modern machine, and utilizing the GPU is able to increase
the cost efficiency of the entire machine.

We study some detailed results for GPUTx with TM-1.
We have obtained similar results on the three benchmarks.

Figure 8 shows throughput of the three execution strate-
gies on TM-1. As the scale factor increases, the 0-set be-
comes large, and K-SET achieves a higher throughput than
the other two methods. TPL underperforms the other two
methods for all the tested scale factors.

Figure 9 shows the average response time and the through-
put of GPUTx on TM-1 with the scale factor 80. We con-
sider the scenario of 1 million transactions per second to
assess the capability of GPUTx. Transactions are submit-
ted to the system uniformly in time. After a fixed time
interval t, we generate a bulk from the transaction pool for
execution. As the time interval increases, both the average
response time and the throughput increase. The through-
put increases sharply at the beginning. If the application
can tolerate an average response latency of 534 ms, GPUTx
achieves the best throughput on TM-1.

7. LIMITATIONS
Current GPUTx has many limitations, including:
Support for pre-defined stored procedures only:

Current GPUTx does not allow users to compose the trans-
actions command by command. It is suitable for applica-
tions with transactions, which can be described as a rela-
tively static set of stored procedures.

T-dependency graph construction: The efficiency of
bulk execution strategies in GPUTx depend on the paral-
lelism exposed in T-dependency graph. The current method
of constructing the T-dependency graph exploits the deriva-
tion on the affected data items. If transactions become more
complicated [3], more advanced algorithms should be devel-
oped for the applicability of GPUTx.

Sequential workload: If the transaction workload is
inherently sequential, e.g., the database with a single parti-
tion, only a limited number of cores on the GPU are utilized.
As a single core on the GPU is slower than that on the CPU,
GPUTx underperforms its CPU-based counterpart. A co-
processing scheme may be helpful to leverage the advantages
of both the CPU and the GPU.

Database fitting into the GPU memory: Current
GPUTx works correctly on the database fitting into the de-
vice memory. If the database cannot fit into the GPU mem-
ory, the data need to be copied on demand.

GPUs without atomic operation support: TPL re-
quires GPUs with atomic operation support. Most desktop
and laptop GPUs manufactured after 2009 have these capa-
bilities. Nevertheless, PART and K-SET can work correctly
for the GPUs without atomic operation.

Portability to other many-core architectures: Our
current implementation is based on CUDA. It is our future
work to evaluate our design and implementation on other
many-core architectures such as AMD GPUs and Fusion.

8. CONCLUSIONS
The productivity of OLTP systems becomes an important

performance factor for traditional and emerging online ser-

vices. High-throughput transaction processing techniques
are definitely beneficial to the user experiences and pro-
ductivity in those applications. In this paper, we propose,
GPUTx, a high-throughput transaction execution engine on
the GPU. The design and implementation of GPUTx tar-
gets at optimizations of the massive parallelism of the GPU.
We study three basic execution strategies for the bulk exe-
cution, with and without locks. Experimental results show
that GPUTx achieves a 4–10 times higher throughput than
its CPU-based counterpart on a quad-core CPU. As for fu-
ture work, we are addressing the limitations of GPUTx for
a complete transaction processing engine on the GPU.

Acknowledgements
The authors thank the anonymous reviewers for their in-
sightful suggestions. This work was supported by an AcRF
Tier 1 grant from Singapore, an NVIDIA Academic Partner-
ship (2010–2011), and a grant No. 419008 from the Hong
Kong Research Grants Council.

9. REFERENCES
[1] N. Bandi, C. Sun, D. Agrawal, and A. E. Abbadi. Hardware

acceleration in commercial databases: a case study of spatial
operations. In VLDB, pages 1021–1032, 2004.

[2] W. Fang, B. He, and Q. Luo. Database compression on
graphics processors. Proc. VLDB Endow., 3:670–680, 2010.

[3] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha.
Making snapshot isolation serializable. ACM Trans. Database
Syst., 30, 2005.

[4] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
Gputerasort: High performance graphics coprocessor sorting for
large database management. In SIGMOD, pages 325–336, 2006.

[5] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations using
graphics processors. In SIGMOD, pages 215–226, 2004.

[6] S. Harizopoulos, D. J. Abadi, S. R. Madden, and
M. Stonebraker. Oltp through the looking glass, and what we
found there. In SIGMOD, pages 981–992, 2008.

[7] S. Harizopoulos and A. Ailamaki. A case for staged database
systems. In CIDR, 2003.

[8] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Relational query coprocessing on graphics
processors. ACM Trans. Database Syst., 34(4):1–39, 2009.

[9] B. He and Q. Luo. Cache-oblivious databases: Limitations and
opportunities. ACM Trans. Database Syst., 33:8:1–8:42, 2008.

[10] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander. Relational joins on graphics processors. In
SIGMOD, pages 511–524, 2008.

[11] E. Jones, D. Abadi, and S. Madden. Low overhead concurrency
control for partitioned main memory databases. In SIGMOD,
pages 603–614, 2010.

[12] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. Nguyen,
T. Kaldewey, V. Lee, S. Brandt, and P. Dubey. Fast: Fast
architecture sensitive tree search on modern cpus and gpus. In
SIGMOD, pages 339–350, 2010.

[13] Nokia. Network Database Benchmark.
http://hoslab.cs.helsinki.fi/homepages/ndbbenchmark/.

[14] NVIDIA CUDA.
http://developer.nvidia.com/object/cuda.html.

[15] J. D. Owens, D. Luebke, N. K. Govindaraju, M. Harris,
J. Kruger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. In
Eurographics 2005, State of the Art Reports, 2005.

[16] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamaki.
Data-oriented transaction execution. Proc. VLDB Endow.,
3:928–939, 2010.

[17] R. Ramakrishnan and J. Gehrke. Database Management
Systems (3rd edition). McGraw-Hill, 2002.

[18] M. Stonebraker, S. R. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era
(it’s time for a complete rewrite). In VLDB, pages 1150–1160,
2007.

321

APPENDIX
A. PRELIMINARY ON GPUS

GPUs, originally designed for graphics rendering tasks,
have evolved into massively multi-threaded many-core co-
processors for general-purpose computing. The GPU con-
sists of many SIMD (Single Instruction, Multiple Data) mul-
tiprocessors, all sharing a piece of device memory. The exe-
cution on multi-processors is further organized in the SPMD
execution model.

NVIDIA CUDA, a popular GPU programming framework,
exposes the hierarchy of GPU threads. Warps, each of which
consists of the same number of threads, are basic schedul-
ing units across multiprocessors. Within a multiprocessor,
warps are further grouped into thread blocks. CUDA also
exposes the memory hierarchy. Multiprocessors share the
device memory, which has a high bandwidth and a high ac-
cess latency.

Branch divergence is an important performance factor.
If threads of a warp diverge via a conditional branch, the
warp sequentially executes each branch path taken. When
all paths complete, the threads converge back to the same
execution path. In the SPMD model, branch divergence
occurs only within a warp; different warps execute indepen-
dently regardless of their code paths.

B. T-DEPENDENCY GRAPH CONSTRUC-
TION

The T-dependency graph is constructed by adding trans-
actions one by one in the increasing order of their times-
tamps. Upon adding a new transaction, we add a vertex
to the T-dependency graph and edges to the vertex. We
denote the new transaction as t and the new created vertex
as n. Since t’s timestamp is larger than the ones in the T-
dependency graph, we need to add an edge from a vertex
in the T-dependency graph to n, if they satisfy the three
requirements.

To facilitate the process of identifying the conflicting trans-
actions, we introduce a data-oriented approach to speedup
the search. The basic idea is to examine the transactions
only when they access the same data item. We maintain a
map to associate a data item with a list of transaction IDs
in the ascending order, representing the list of transactions
accessing the data item. For adding a new transaction, we
need to check the transaction lists associated with all its
basic operations. For the target data item of each basic op-
eration, if the transaction list is empty, we simply add the
transaction ID to the list and no edge is added. Otherwise,
the checking process depends on whether the basic opera-
tion is a read or a write. If it is a write, we scan from the
tail of the list until we meet a transaction tw with a write
on the data item. If tw is the tail, we simply add an edge
tw → t. Otherwise, we add an edge t′ → t, where t′ is a
transaction (with a read on the data item) between the tail
and tw (exclusive). If the basic operation is a read, we sim-
ply need to add an edge tw → t, no matter whether tw is
tail or not.

The T-dependency graph construction requires the knowl-
edge of the affected data item. This is particularly suitable
for transactions with primary key accesses and for appli-
cations with tree-shaped schema, e.g., transactions in the
public benchmarks. We consider transaction rewrites such

bool leaveLoop=false;
while(!leaveLoop)
{

int lockValue=atomicCAS(lockAddr, 0, 1);
if(lockValue==0)
{

leaveLoop=true;
//processing on the shared data
*lockAddr=0;

}
__threadfence();

}

Figure 10: The kernel code for a basic 0/1 spin-lock.

/*initialize the values of all the lock to be zero. */
/*a GPU thread holds a <keyValue> for a tuple. */
bool leaveLoop=false;
while(!leaveLoop)
{

volatile int lockValue=*lockAddr;
if(lockValue==keyValue)
{

leaveLoop=true;
//processing on the shared data
if(flag==marked)

atomicAdd(lockAddr, 1);
}
__threadfence();

}

Figure 11: The kernel code for a counter-based lock.

as split [3] to transform the transactions suitable for T-
dependency graph construction whenever practical. In the
worst case, if the transaction conflicting relationship can-
not be determined on the data item level, we determine the
conflict at a coarser granularity, e.g., column or table.

C. IMPLEMENTATION OF SPIN-LOCK ON
THE GPU

Figure 10 shows the source of the kernel code for a ba-
sic spin-lock implemented with atomic operations in CUDA.
We use two APIs in CUDA for synchronization: (a) atomic-
CAS(addr, compare, val) is a compare-and-swap operation.
It reads addr (let the value be old), computes (old == com-
pare ? val : old), and stores the result back to memory at
the same address. The function returns the old value. (b)
threadfence() is a barrier to ensure the data updates in

the memory are visible to all the threads on the GPU. The
problem of the basic lock is that it may have deadlock and
non-deterministic execution.

Figure 11 shows the source of the kernel code for the spin-
lock with deterministic execution. We use one API and one
variable type qualifier for the implementation: (a) atomi-
cAdd(lockAddr, val) increases the value in lockAddr by value;
(b) volatile indicates the compiler that the variable value can
be changed at any time by another thread and therefore any
reference to this variable compiles to an actual memory read
instruction.

D. OPTIMIZATION ISSUES IN GPUTX
Branch divergence. Transactions of different types take

different branches in the combined kernel, causing branch di-
vergence on the GPU execution. Since the SPMD execution
model limits the branch divergence within a warp, we can
group the transactions in the bulk according to their trans-

322

action type such that the branch divergence does not occur
within the group. A naive grouping is to perform a radix
sort on the transaction type ID. For T transaction types, the
bulk after sorting generates T groups of transactions with
the same type. Radix sort is a multi-pass algorithm, where
each pass uses b bits for sorting. The naive grouping method
takes log2 T

b
passes of radix partitioning.

The naive algorithm is not designed to be aware of the
different performance gains of each pass. As more passes
are performed on the bulk, the performance gain on branch
divergence reduction diminishes. We can stop the radix par-
titioning earlier for the optimal performance. Since all the
transaction types are known in the system, we run calibra-
tion to determine the number of passes of radix partitioning.
This calibration is sufficient, demonstrating performance im-
provement on the naive algorithm.

Choosing the suitable execution strategy. These
three execution strategies have their own strength and weak-
ness. TPL is a general method, with a relatively high run-
time overhead, and the bulk size generated for TPL depends
on the transaction coming rate. In contrast, K-SET has lit-
tle runtime overhead, and the bulk size depends on the 0-set
of the T-dependency graph. PART is in the middle, but the
efficiency is subject to the single-partition requirement. All
the three methods require sort operations, and TPL and
K-SET has a relatively high bulk generation cost.

In particular, we identify the following three structural
parameters of the T-dependency graph, as important indi-
cators for the performance of bulk execution:

1. The depth of the T-dependency graph, d;

2. The number of transactions in 0-set, w0;

3. The number of vertexes that have more than one pre-
ceding vertex (e.g., cross-partition transactions), c.

The w0 value is an important indicator for the parallelism.
Since each core on the GPU can execute one transaction at
a time, executing a k-set of smaller than M transactions is
likely to underutilize the GPU computation resource (M is
the number of processors on the GPU). The depth of the
T-dependency graph is the length of the critical path of the
bulk execution, which is used as a good indicator on the
elapsed time.

We develop a rule-based method to decide the suitable ex-
ecution strategy, as described in Algorithm 1. If the number
of transactions in the 0-set is so large that their executions
can fully utilize the GPU resource (the threshold denoted as
w̄0), K-SET is preferable, since it is with little overhead in
run time and the load tends to be more balanced through
fine-grained threading on the GPU. On the other hand, if
the number of transactions in the 0-set is very small, we con-
sider TPL and PART. The choice between TPL and PART
depends on the number of cross-partition transactions and
the depth. If the depth is larger than d̄ or the number
of cross-partition transactions is smaller than c̄, we choose
PART. Otherwise, TPL is chosen.

Logging. Logging is an important performance factor in
transaction execution. Clearly, logging should be eliminated
whenever practical. Re-do logging is the key for durability.
Durability is not our focus in this study, and applications
may achieve durability with non-logging methods, such as
replications on multiple machines.

As for un-do logging, we plan to distinguish the trans-
action types with and without requirement on un-do log-

Algorithm 1 Choosing the suitable execution strategy

1: Obtain the number of transactions in 0-set (let it be w0);
2: if w0 ≥ w̄0 then
3: Return K-SET;
4: else
5: Let c be the total number of cross-partition transac-

tions in the bulk;
6: Let d be the depth of the T-dependency graph of the

bulk;
7: if c ≤ c̄ or d ≥ d̄ then
8: Return PART;
9: else

10: Return TPL;

ging. Similar to H-Store [18], we write two-phase transac-
tions when applicable for eliminating the undo log. In the
first phase, it contains read-only operations. The transac-
tion may be aborted, based on the result of these operations
(e.g., record does not exist). In the second phase, the trans-
action performs a collection of operations without abortion.
Since it performs abortion before updating the database, no
un-do logging is required.

If there exists a transaction type that is not two-phase, we
identify the set of transaction types that can be conflicting
with it. We write un-do logs for the transactions belonging
to those types. The log is written to in the GPU memory,
and is discarded when the transactions commit.

When the transaction aborts, GPUTx runs the log-based
recovery. The recovery process rolls back the updates from
the aborted transactions as well as from the transactions
in the sub-DAG of the T-dependency graph rooted at the
transaction. For PART and K-SET, the recovery affects the
transaction itself, since the conflicting transactions have not
been executed in PART, or there are no conflicting transac-
tions in the bulk of K-SET. For TPL, data operations from
some conflicting transactions can be executed concurrently.
We mark the transaction that requires recovery. After the
bulk execution completes, the system rolls back the updates
sequentially for those marked transactions. This recovery
process is very costly for TPL.

E. DETAILS ON EXPERIMENT SETUP
The CPU has 8MB shared L3 cache and four cores, each

running at the frequency 2.26 GHz. Each GPU has 240
cores, each running at 1.3 GHz, and 4GB DDR3 device
memory at 800 MHz. The measured peak memory band-
width of device memory is 73GB/sec. The GPU is connected
to the host machine with a PCI express, with a measured
peak bandwidth of 3.4 GB/sec. We use NVIDIA CUDA
v3.1 to implement GPUTx.

The database are initially loaded into the GPU memory,
and the initialization cost is excluded for the throughput
measurement. The throughput measurement includes the
data transfer between the device memory and the main
memory for the input transaction signatures and result out-
put.

Public benchmarks. TM-1 is a telecom workload bench-
mark originally developed by Nokia. It consists of seven pre-
defined transactions that insert, update, delete and query
tuples from four large tables in the database. The subscriber
ID is used as the partitioning key. In transactions UP-
DATE LOCATION, INSERT CALL FORWARDING, and
DELETE CALL FORWARDING, the subscriber is accessed

323

with the string representation of the subscriber ID. The
mapping from the string representation and the subscriber
ID is static. We split each of these transactions into two:
one searching the subscriber ID using the string represen-
tation, and the other for the remainder logic in the original
transaction.

TPC-B is a database stress test consisting of a single
transaction type. The branch ID is used as the partitioning
key.

TPC-C approximates the workloads in an online transac-
tion processing database for a retailer. It consists of five
kinds of transactions, which model the process of customer
orders from the initial creation to the final delivery and pay-
ment. The combined key of the warehouse ID and the dis-
trict ID is used as the partitioning key. The payment and
ostat transactions may search the customer using the last
name. We split these two transactions into two: one search-
ing the customer ID using the last name, and the other
for the remainder logic in the original transaction. Fekete
et al. [3] have provided a complete static analysis on the
conflicts between transactions in TPC-C. We adopt their
analysis in the T-dependency graph construction.

These benchmarks represent different characteristics to
assess the optimization opportunities of GPUTx. They have
different numbers of transaction types for assessing branch
divergence. Moreover, transactions in TPC-B and TM-1
are short, usually accessing only 1-4 database rows, whereas
those in TPC-C can access dozens of tuples. Finally, these
benchmarks have different abortion rates. TM-1 has a higher
abortion ratio than TPC-B and TPC-C.

Given the scale factor f in the public benchmark, the
maximum number of partitions in PART is f million, f ,
and f ×10 for TM-1, TPC-B and TPC-C, respectively. The
actual number of partitions used for bulk execution is tuned
according to the partition size. The suitable partition size
is 128 in our experiment. We use (f million/128), f , and
f × 10 for TM-1, TPC-B and TPC-C, respectively.

Implementation. We apply column-based stores as the
storage on the GPU, in order to minimize the data trans-
fer between the main memory and the device memory. Our
current column-based store adopts the simple format. If the
column is fixed-length, GPUTx stores the values of the col-
umn in an array, and the column-wise information such as
the length of the column are stored in the system catalog.
Otherwise, GPUTx represents a tuple as the offset and the
length, where the offset points to the start position of the
tuple in an array storing the values. The column-based stor-
age allows copying only the required columns to the GPU.
Another benefit is that the GPU can support a larger scale of
the transaction workloads than that of the row-based store.

When GPUTx is up, the database data is loaded into the
main memory. Next, the necessary data columns and in-
dexes are copied from the main memory to the GPU mem-
ory, and GPUTx is ready to accept transactions. After a
bulk is generated, its parameter values are copied to the
GPU memory for the bulk execution. The result construc-
tion (usually projections) after the bulk execution is per-
formed on the main memory. The results of the bulk exe-
cution include the result record IDs and the values of the
columns that are not in the main memory. Based on these
results, we construct the results for the bulk based on the
columns stored in the main memory. Read-only columns are
stored in the main memory to facilitate result constructions.

Figure 12: Time breakdown for execution.

Figure 13: Throughput varying the partition size in
PART.

We attempt to reduce the amount of efforts for imple-
menting a specific application on GPUTx. Components like
k-set determination and the bulk execution strategies are
general-purpose ones for all applications. There are some
components in GPUTx required the expertise from DBA: (a)
annotations on whether the transaction is single-partition or
not, and the partitioning key; (b) transaction rewrites [3] to
facilitate the T-dependency graph construction; (c) domain-
specific rules on detecting whether two transactions are con-
flicting.

F. MORE EXPERIMENTAL RESULTS

F.1 More Results on Micro Benchmarks
Grouping on branch divergence. Figure 12 shows the

time breakdown of the grouping-based method (x = 32 and
T = 16) with varying the number of partitions. We divide
the elapsed time into two parts, grouping and execution on
transactions. As the number of partitions approaches to the
number of branches (i.e., more radix partitioning passes),
the execution time significantly reduces due to the reduc-
tion on the branch divergence, but the grouping overhead
increases as well. The optimal p value is four for this set-
ting.

Tuning the partition size in PART. Figure 13 shows
the throughput of PART transactions with x = 16. Con-
firming our cost analysis, the curve of the throughput is a
concave one, as the partition size increases. The optimal
partition size is 128 in this experiment, as a combined effect
from the amount of computation of each thread, the thread
parallelism as well as the overhead of the auxiliary structure
in PART.

Varying the number of tuples. Figure 14 shows the
throughput varying the number of tuples. The number of
transactions in the transaction pool is fixed to be 256 thou-
sands. As the number of tuples becomes large, the probabil-
ity of conflicting transactions becomes small. Therefore, as
the number of tuples increases, all the three execution strate-
gies achieve a higher throughput. However, the reasons for
the improved throughput are different. The improvement of
TPL is mainly due to the reduction in the lock contention.

324

Figure 14: Throughput of the three transaction ex-
ecution strategies varying the relation cardinality.

Figure 15: Response time vs. throughput in micro
benchmarks.

The improvement of PART is mainly due to the shorter
critical path of the bulk execution. As the number of tuples
increases, K-SET extracts a larger 0-set to achieve a better
utilization of the GPU resource.

Response time vs. throughput. Figure 15 shows the
average response time and the throughput of three execution
strategies. We consider the scenario of 4 million transac-
tions per second and transactions are submitted to GPUTx
uniformly in time. The throughput of the three strategies
reaches the peak when the average response time is larger
than 260 ms. The bulk size is small when the the interval is
small, which results in a small 0-set. In this case, TPL is the
best. As the interval increases, PART and K-SET achieves
a higher throughput than TPL.

F.2 More Results on Public Benchmarks
Column- vs. Row-based storage. The column-based

storage has its advantages over the row-based storage in
GPUTx. First, in TM-1, by storing only the necessary
columns on the GPU, the column-based storage reduces the
amount of GPU memory consumption by 27% for different
scale factors. In specific, when the scale factor is 80, the ta-
bles and indexes in the row- and the column-based storages
consume 1, 756 MB and 1, 279 MB, respectively.

Second, GPUTx with the column-based storage is around
10% faster than that with the row-based storage. The ma-
jor reason is that the column-based storage increases the
locality of memory accesses among different threads. Due
to the SPMD execution, a column tends to be accessed by
many threads at the same time. Basic memory operations
like gather and scatter have a higher memory performance
on the fine-grained column-based storage than those on the
row-based storage.

Memory transfer. Figure 16 shows the data transfer
cost between the GPU memory and the main memory of
running TM-1 on GPUTx. There are three cost compo-
nents: (1) “initialization”: during initialization of GPUTx,
database data (tables and indexes) are loaded into the GPU
memory; (2) “input”: before a bulk execution, the bulk pa-
rameter values are copied from the main memory to the
GPU; (3) “output”: after a bulk execution, the results are

Figure 16: Memory transfer cost between the GPU
memory and the main memory on TM-1.

Figure 17: The time breakdown without timestamp
constraint for micro benchmarks.

copied from the GPU memory to the main memory for fur-
ther result construction. The initialization is performed once
when the system is up. The latter two components are in-
cluded in the bulk execution, and they contribute to less
than 5% of the total execution time.

G. RELAXING TIMESTAMP CONSTRAINT
The correctness definition of bulk execution poses a times-

tamp constraint on the bulk execution. This timestamp con-
straint results in a sort operation on the bulk generation, and
also restricts the parallelism of the bulk execution. Some ap-
plications may require the basic serializability without the
timestamp constraint. Relaxing the timestamp constraint
offers the opportunities in reducing the runtime overhead
of bulk generation and execution. We briefly discuss our
preliminary efforts in revisiting the three basic execution
strategies without timestamp constraint.

Without the timestamp restriction, TPL uses the basic
spin lock (as shown in Figure 10). The dependency among
transactions is captured with the classic dependency graph.

The bulk generation of PART and K-SET can also be
simplified. Similar counter based methods are developed
for PART and K-SET, and we focus on PART. The PART
method is to assign a lock on each partition. Each lock has
a counter value (initially zero). During the bulk generation,
each transaction needs to acquire the lock for its partition,
get the counter value as its key value, and increases the
counter value by one. The final counter value of each spin
lock is the number of transactions for the corresponding par-
tition. A prefix sum is used to calculate the start position
of each group in an array. The key value of each transaction
is the relative position in the partition. Thus, transactions
can be grouped without sort.

Figure 17 shows the time breakdown of the three exe-
cution strategies without timestamp constraint for micro
benchmarks. The experimental setup is the same as that
of Figure 5. The cost for both bulk generation and execu-
tion significantly reduces. In this experiment, the locking
overhead is small, and TPL outperforms the other two exe-
cution strategies, which is in contrast with Figure 5.

325

