
274 Int. J. Autonomous and Adaptive Communications Systems, Vol. 5, No. 3, 2012

Process-driven biometric identification by means of
autonomic grid components

Thomas Weigold*

Department of Computer Science,

IBM Research - Zurich,

Rueschlikon, Switzerland

E-mail: twe@zurich.ibm.com
∗Corresponding author

Marco Aldinucci

Department of Computer Science,

University of Torino,

Torino, Italy

E-mail: aldinuc@di.unito.it

Marco Danelutto

Department of Computer Science,

University of Pisa,

Pisa, Italy

E-mail: marcod@di.unipi.it

Vladimir Getov

School of Electronics and Computer Science,

University of Westminster,

London, UK

E-mail: V.S.Getov@westminster.ac.uk

Abstract: Today’s business applications are increasingly process driven, meaning
that the main application logic is executed by a dedicate process engine. In
addition, component-oriented software development has been attracting attention
for building complex distributed applications. In this paper, we present the
experiences gained from building a process-driven biometric identification
application that makes use of grid infrastructures via the Grid Component Model
(GCM). GCM, besides guaranteeing access to grid resources, supports autonomic
management of notable parallel composite components. This feature is exploited
within our biometric identification application to ensure real-time identification of
fingerprints. Therefore, we briefly introduce the GCM framework and the process
engine used, and we describe the implementation of the application by means of
autonomic GCM components. Finally, we summarise the results, experiences and
lessons learned focusing on the integration of autonomic GCM components and
the process-driven approach.

Keywords: autonomic computing; grid component model; biometric

identification; parallel applications; distributed applications; process-driven

applications.

Copyright © 2012 Inderscience Enterprises Ltd.

Process-driven biometric identification 275

Reference to this paper should be made as follows: Weigold, T., Aldinucci,

M., Danelutto, M. and Getov, V. (2012) ‘Process-driven biometric identification

by means of autonomic grid components’, Int. J. Autonomous and Adaptive

Communications Systems, Vol. 5, No. 3, pp.274–291.

Biographical notes: Thomas Weigold received his PhD in Computer Science in

2010 from the University of Westminster, London. He is a Research Staff Member

in the Department of Computer Science, IBM Research - Zurich, Switzerland.

His research interests include workflow and business process management,

distributed computing and secure systems.

Marco Aldinucci received his PhD in Computer Science in 2003 from the

University of Pisa. He his an Assistant Professor in the Department of Computer

Science, University of Torino, Italy. His research interests include adaptive and

autonomic computing, languages and tools for parallel computing multi- and

many-core processing.

Marco Danelutto received his PhD in Computer Science in 1990 and is currently

an Associate Professor at the Department of Computer Science, University of

Pisa. His research interests include structured parallel programming models,

algorithmic skeletons and autonomic computing for parallel and distributed

architectures (multi/many-core, clusters and grids).

Vladimir Getov is a Professor of Distributed and High-performance Computing

at the University of Westminster, London. His research interests include parallel

architectures and performance, autonomous distributed computing, and high-

performance programming environments. He received a PhD and DSc in

Computer Science from the Bulgarian Academy of Sciences.

1 Introduction

Today’s businesses are increasingly process driven. Ideally, all actions within an enterprise

are explicitly defined as processes with the goal to improve control, flexibility and

effectiveness of delivering customer value. Additionally, business processes are oftentimes

supported or even fully implemented by software applications (zur Muehlen, 2004). In

many cases, the business processes are turned into software such that they are hidden

in the application’s source code. However, there is a trend towards separating the main

business logic from the functional code such that the resulting applications become more

transparent and more flexible. The approach is to embed a so-called process engine into the

application, which then executes process definitions representing the main control logic of

the application. Functional code is then triggered from the process engine in accordance

with the process definition. Such applications are called process- or workflow-driven

applications. The main advantages of this approach are the fact that the application logic

can be modified without re-compiling the application, even at runtime, the business logic

is more evident and monitoring features of the process engine can be explored.

Besides the trend towards process-driven applications, enterprises seek ways to

benefit from resources available from computing Grids/Clouds, in particular in all those

cases were parallel computing is required to guarantee fair performances. Within the

plethora of programming environments targeting grids, (the Grid Component Model GCM

276 T. Weigold et al.

developed within CoreGRID Project (2007) and whose reference implementation has

been provided by GridCOMP Project (2008)) supports Grid programmers in designing

parallel/distributed grid applications. In particular, GCM provides pre-defined autonomic

composite components modelling standard parallel/distributed computation patterns.

In this work, we discuss a process-driven application, which makes use of GCM

autonomic components to solve the problem of large-scale biometric identification, which

has been developed as a part of the activities of the GridCOMP Project (2008). In particular,

we discuss how process-driven application development exploits the autonomic features

provided by the underlying grid software as well as the results, experiences and lessons

learned during application development focusing on the integration of autonomic GCM

components and the process-driven approach.

This paper is organised as follows: Section 2 discusses related work with respect to the

process-driven approach and autonomic Grid components. Section 3 introduces GCM and

behavioural skeletons (BSs). Section 4 introduces the process engine used to implement the

biometric identification application presented in Section 5. Eventually, Section 6 discusses

the overall results achieved and Section 7 drafts the conclusions of this paper.

2 Related work

With the recent hype around business process management (BPM) (Smith and Fingar,

2006) interest in building process-driven applications with the goal to arrive at more

flexible IT systems that can keep up with a very agile business environment is increasing.

However, implementing the process-driven approach in diverse application domains

requires generic and easily embeddable process engines. While many of the contemporary

process frameworks are rather domain specific and monolithic, a few developments into

providing such generic engines can be observed (Bukovics, 2007; Faura and Baeyens,

2007; Weigold et al., 2007). Nevertheless, the majority of the work focuses on mapping

higher-level process modelling languages such as BPEL, XPDL or BPMN (Ryan, 2009) to

executable code interpreted by the process engine (Freeman and Pryce, 2006). Furthermore,

most of the application scenarios are rooted in the traditional workflow domain, e.g.

document and human task management. Therefore, in this paper we apply a generic process

engine to the problem of distributed biometric identification with the goal to evaluate how

the process-driven approach integrates with advanced distributed computing frameworks

supporting autonomic features, such as GCM.

The idea of autonomic management of parallel/distributed/grid applications is presented

in several programming frameworks, although in different flavours. ASSIST (Aldinucci

and Danelutto, 2006; Vanneschi, 2002), AutoMate (Parashar et al., 2006), K-Components

(Dowling, 2004), SAFRAN (David and Ledoux, 2006) and finally GCM (CoreGRID

Project, 2007) all include autonomic management features. The latter two are derived from a

common ancestor, i.e. the Fractal hierarchical component model (Bruneton et al., 2003). All

the named frameworks, except SAFRAN, are targeted to distributed applications on grids,

and all except ASSIST are component based. Though these programming frameworks

considerably ease the development of an autonomic application for the grid (to various

degrees), all of them but GCM fully rely on the application programmer’s expertise for the

set up of the management code, which can be quite difficult to write since it may involve the

management of black-box components, and, notably, is tailored to the particular component

or to a particular component assembly. As a result, the introduction of dynamic adaptivity

and self-management might enable the management of grid heterogeneity, dynamism and

Process-driven biometric identification 277

uncertainty aspects but, at the same time, decreases the component reuse potential since it

further specialises components with application specific management code.

While component models provide a suitable way to spatially compose the parts of a

applications, whereas workflow models have been mainly developed to support composition

of independent programs (usually loosely coupled and named tasks) by specifying temporal

dependencies among them (and defining a temporal composition, in fact), to support

efficient scheduling onto available resources, e.g. sites, processors and memories (Fox

and Gannon, 2006). Recently, various attempts to merge components and workflow models

into a spatio-temporal model have been undertaken, e.g. in the Spatio-Temporal Component

Model (Bouziane et al., 2008).

As we shall see, GCM mainly differentiate from other frameworks because it provides

programmers with skeletons (i.e. high-level programming patterns) that substantially ease

non-functional management of applications. It is worth noticing that the introduction the

skeleton concept could equally have built upon K-Components or the AutoMate framework

as all provide distributed system-based component frameworks with autonomic capability.

3 The GCM framework

The GCM is a component model explicitly designed within CoreGRID Project (2007) to

support component-based autonomic applications in distributed contexts. The main features

of this component model can be summarised as follows:

• Hierarchical: GCM components can be composed in a hierarchical way in composite

components. Composite components are first class components and they are not

distinguishable from non-composite components at the user level. Hierarchical

composition greatly improves the expressive power of the component model and is

inherited by GCM from the Fractal component model (Bruneton et al., 2003).

• Structured: in addition to standard intra-component interaction mechanisms

(use/provide ports (Armstrong et al., 1999)) GCM allows components to interact

through collective ports modelling common structured parallel computation

communication patterns. These patterns include broadcast, multicast, scatter and

gather communications operating on collections of components. Also, GCM provides

data and stream ports, modelling access to shared data encapsulated into components

and data flow streams. All these additional port types, not presented in other

well-known component models, increase the possibilities offered to the component

system user for developing efficient parallel component applications.

• Autonomic: GCM specifically supports implementing autonomic components in two

distinct ways: by supporting the implementation of user-defined component

controllers and by providing BSs. Component controllers can be programmed in the

component membrane (the membrane concept, as the place where component control

activities take place, is inherited from Fractal (Bruneton et al., 2003)) and controllers

can be components themselves. This provides a substantial support to the

development of re-usable autonomic controllers. BSs, thoroughly discussed in

Section 3.1, are composite GCM components modelling notable parallel/distributed

computation patterns and supporting autonomic managers, i.e. components taking

care of non-functional concerns affecting parallel computation.

278 T. Weigold et al.

Due to the presence of controllers and autonomic managers, GCM components implement

two distinct kinds of interfaces: functional and non-functional ones. The functional

interfaces host those ports concerned with the implementation of the functional features

of the component. The non-functional interfaces host the ports related to controllers

and autonomic managers. These ports are the one actually supporting the component

management activity in the implementation of the non-functional features, i.e. those features

contributing to the efficiency of the component in obtaining the expected (functional) results

but not directly involved in result computation.

GCM has been designed within the Institute on Programming model of the CoreGRID

NoE (2009) and a reference implementation of the component model has been developed

within the GridCOMP Project (2008). Within the same GridCOMP project, a Grid

integrated development environment (GIDE) has been developed to support development

and maintenance of GCM programs.

3.1 Behavioural skeletons

BSs represent a specialisation of the algorithmic skeleton concept for component

management (Cole, 2004). Algorithmic skeletons have been traditionally used as a vehicle

to provide efficient implementation templates of parallel paradigms. BS, as algorithmic

skeletons, represent patterns of parallel computations (which are expressed in GCM as

graphs of components), but in addition they exploit the inherent skeleton semantics to

design sound self-management schemes of parallel components.

BS are composed of an algorithmic skeleton together with an autonomic manager (see

Figure 1). They provide the programmer with a component that can be turned into a running

application by providing the code parameters needed to instantiate the algorithmic skeleton

parameters (e.g. the code of the different stages in a pipeline or the code of the worker in a

task farm) plus some kind of service level agreement (SLA, e.g. the expected parallelism

degree or the expected throughput of the application). The code parameters are used to

build the actual code run on the target parallel/distributed architecture, while the SLA is

used by the autonomic manager who will take care of ensuring this SLA (best effort) while

the application is being computed.

Figure 1 Behavioural skeleton rationale (see online version for colours)

Process-driven biometric identification 279

The choice of the skeleton to be used as well as the code parameters provided to instantiate

the BS are functional concerns: they only depend on what has to be computed (i.e. on the

application at hand) and on the qualitative parallelism exploitation pattern the programmer

wants to exploit. The autonomic management itself is a non-functional concern. The self-

management and self-tuning activities taking place in the manager to ensure user supplied

SLA both depend on the application structure (the one defined by the algorithmic skeleton)

and on the target architecture at hand. The implementation of both the algorithmic skeleton

and the autonomic manager is in the charge of the ‘system’ programmer, i.e. the one

providing the BS framework to the application user.

In the programming model provided by BS, the application programmers are in charge

of picking up a BS (or a composition of BS) among those available and of providing the

corresponding parameters and SLA. The system, and in particular the autonomic managers

of the BS instantiated by the application programmer, is in charge of performing all

those activities needed to ensure the user supplied SLA. These activities, in turn, may

include varying some implementation parameters (e.g. the parallelism degree, the kind of

communication protocol used among different parallel entities or scheduling/mapping of the

parallel activities to the target processing elements) as well as changing the BS (composition)

chosen by the application programmer (e.g. using ‘under the hoods’ an equivalent,

but more efficient (with respect to the target architecture and user supplied SLA) BS

(composition)).

Autonomic management of non-functional concerns is based on the concurrent execution

(with respect to the application ‘business logic’) of a basic control loop such as that

shown in Figure 2. In the monitor phase, the application behaviour is observed, then in

the analyse and plan phases the observed behaviour is examined to discover possible

malfunctioning and corrective actions are planned. The corrective actions are usually

taken from a library of known actions and the chosen action is determined by the result of

the analysis phase. Finally, the actions planned are applied to the application during the

execute phase (Kephart and Chess, 2003; Danelutto, 2005; Aldinucci and Danelutto, 2006;

Aldinucci et al., 2007, 2009a,b). Currently, two kind of BS are implemented in GCM: a

task farm BS and a data parallel BS (see Figure 3). The former models embarrassingly

parallel computations processing independent items xi of an input stream to obtain items

f (xi) of the corresponding output stream. The latter models data parallel (DP) computations

by computing for each item of the input stream xi an item f (xi, D) of the corresponding

output stream, where D represents a read only data structure and the result of f (xi, D) can

be computed as a map of some function f ′(xi) on all the items of D followed by a reduce

of the different f ′(xi, Dj) with an associative and commutative operator g.

Figure 2 The classical control loop implemented within AMs in GCM BSs

280 T. Weigold et al.

Figure 3 BSs currently implemented in GCM (see online version for colours)

Both BS implement an AM taking care of the performance of the parallel computation

at hand. In particular, the AM may ensure contracts stating the expected service time (or

throughput, i.e. the time between the delivery of two consecutive items on the output stream)

of the BS (both task farm and DP BS) or the expected partition size of data structure D

(DP BS only). Currently, the contracts must be supplied to the BS AMs through the BS

non-functional ports as a (n ASCII string hosting a) set of JBoss rules defined in terms of the

operations provided by the ABC controller bean. In fact, the AM control loop is implemented

by running an instance of the JBoss business rule engine at regular intervals of time. At each

time interval, all the pre-condition-action rules supplied to the AM are evaluated and those

that turn out to be fireable (e.g. whose with the pre-condition holding true) are executed

ordered by priority (or salience according to JBoss jargon). Actually, the pre-conditions

are evaluated using values provided by the monitoring system implemented in the ABC

controller beans. The period used to run the JBoss engine is determined in such a way it is

neither too fast (reacting when it was not the case to react to small changes in the system,

thus increasing overhead to the autonomic management) nor too slow (poorly reacting to

actual changes in the system, thus decreasing efficiency of autonomic management).

The AMs taking care of performance in BSs manage the contracts varying the parallelism

degree of the BS, i.e. the number of worker instances actually used to implement the

BS. The variation of the number of worker instances happens adding/removing a fixed

amount of workers. This fixed amount is a BS user configurable constant (�w). Rules

supplied to the AM in the BS also consist in specific rules avoiding to perform (probably)

useless adaptations (e.g. avoiding to adapt BS parallelism degree immediately after another

adaptation took place) as well as rules default actions basically only taking care of updating

monitored values when no other, more significant actions turn out to be fireable.

Recently, the BS framework has been extended in such a way:

• The BS set has been extended, introducing a pipeline BS, modelling computations

organised in stages.

• BS may be nested to model more and more complex applications. This implies that

managers belong to a manager hierarchy reflecting the BS nesting used to model the

application.

Process-driven biometric identification 281

• A procedure has been developed to derive local contracts for all the BS used to

implement a given application from the initial, application directed, user

supplied performance contract. The top level AM manages to split the user supplied

contract in subcontracts that are then passed to nested BSs. The procedure is

recursively applied in such a way eventually each BS in the BS tree has its own

subcontract. The subcontracts are derived in such a way if all of them are ensured, the

unique, application performance contract supplied by the user is also ensured.

• Policies and contracts have been experimented that allow an AM to inform its

ancestor AM and to enter a passive state in all those cases where no local action may

be taken to enforce the local contract. The upper level manager is expected to

eventually provide the ‘passive mode’ AM with a new contract, such that this AM

can start again is usual (active mode) control loop.

This improved BS framework has been proven to be able to suitably handle complex

autonomic management policies, such as those where manager actions on BSi are de facto

triggered by another autonomic manager BSj (Aldinucci et al., 2009a). As an example, in

this extended framework, an AM of a farm being the ith stage in a pipeline could report a

contract violation to the pipeline AM, not being able to sustain its throughput due to a poor

input task inter-arrival rate. Therefore, the pipeline AM may send a new contract to stage i

aimed at increasing its output rate, such that eventually the farm can succeed fulfilling its

contract. Despite the fact these new features are not necessary to support the case discussed

in this paper, it is worth pointing out that applications more complex – in terms of the

structure of parallelism exploited – of the one used in this paper may be targeted.

4 The ePVM process engine

The embeddable process virtual machine (ePVM) is a research prototype process engine

basically built upon two core concepts. Firstly, a process model i.e. rooted in the theoretical

framework of communicating extended finite state machines (CEFSM). Secondly, whereas

many efforts have been made to create the ultimate process language, ePVM provides

in contrast a low-level run-time environment based on a JavaScript interpreter where

higher-level domain specific process languages can be mapped to.

The idea of ePVM can be considered to follow a bottom–up or micro-kernel type of

approach for building process-driven applications, BPM systems, or workflow systems.

This means that ePVM is a basic framework for building such systems rather than a

complete off-the-shelf application that can run stand-alone. It consists of a library including

a lightweight, generic and easily programmable process execution engine. Lightweight

hereby means that the engine is small in size and imposes minimum requirements on its

environment, namely the host application it is embedded in. ePVM has its own process

model resembling networks of communicating state machines running in parallel, which

makes it an inherently asynchronous, event-driven run-time system. Every state machine is

implemented by one JavaScript function, has an associated thread executing it, has a state

object which is passed every time the function is invoked, and can communicate with other

processes as well as entities external to the process engine via some messaging system.

An arbitrary number of external entities, so-called host processes, can be attached to the

engine to become visible for ePVM processes. The ePVM programming model based on

the theory of CEFSM combines the simplicity of JavaScript with an easy and powerful way

of defining complex concurrent business processes. More details can be found in Weigold

et al. (2007).

282 T. Weigold et al.

5 Process-driven distributed biometric identification

In recent years, biometric methods for verification and identification of people have become

very popular. Applications span from governmental projects like border control or criminal

identification to civil purposes such as e-commerce, network access or transport. Frequently,

biometric verification is used to authenticate people meaning that a 1:1 match operation of

a claimed identity to the one stored in a reference system is carried out. In an identification

system, however, the complexity is much higher. Here, a person’s identity is to be

determined solely on biometric information, which requires matching the live scan of his

biometrics against all enrolled (known) identities. Such a 1:N match operation can be quite

time-consuming making it unsuitable for real-time applications. To tackle this challenge, a

distributed biometric identification system (BIS), which can work on a large user population

of up to millions of individuals, has been developed. It is based on fingerprint biometrics

and allows real-time identification within a few seconds period by taking advantage of the

Grid, in particular via GCM components.

5.1 Application architecture

The BIS can be considered as a process-driven application, as it is centrally driven by the

ePVM process engine. Figure 4 outlines its high-level architectural design.

A number of ePVM process definitions describing the main control flow for operations

such as starting up the system or identifying a person are loaded into the process engine.

These processes cooperate with external entities such as the GUI, the database (DB) of

known identities, and the distributed GCM component system via a number of host processes

to implement the overall functionality of the BIS.

Figure 4 BIS high-level architecture

Process-driven biometric identification 283

5.2 Process engine/GCM interfacing

The actual distributed fingerprint matching functionality is implemented via a set of GCM

components deployed within a Grid/Cloud infrastructure as indicated in Figure 4. Processes

running within the process engine must be able to create, deploy, configure and interact

with these components. For this purpose, a dedicated host process named GCM adapter (c.f.

Figure 4) has been developed, which receives messages from ePVM process instances, turns

these messages into method invocations on GCM framework methods or GCM components,

and generates appropriate reply messages returned to ePVM. The GCM adapter represents

the main interface between ePVM and GCM. As ePVM process definitions are implemented

in JavaScript and the GCM framework is available as a Java library, the GCM adapter

essentially converts between JavaScript messages and Java method invocations.

An alternative option would have been to export the GCM components as web services,

as supported by the GCM implementation, and invoke them from within the GCM adapter.

However, this would have increased the number of required type conversions going from

Java Script over SOAP to Java and vice versa. Also, the GCM framework only supports

exporting GCM components as web services. Other framework services, e.g. functionality

for deployment and component creation, cannot be turned into web services automatically.

Finally, the ePVM process engine does not necessarily require working on web services

level like, for instance, process engines based on the Business Process Execution Language

(BPEL). Consequently, we decided not to use web services as interfaces between the process

engine and GCM.

The functionality provided by the GCM adapter includes:

• activate a given GCM deployment descriptor to start the nodes available in the Grid

• modify architecture description language (ADL) files describing the GCM

components used

• create GCM components within the Grid

• Invoke methods on GCM components, e.g, to configure the quality of service (QoS)

contract, distribute the DB of known identities or submit the biometrics of a person

for identification.

The GCM adapter is triggered by ePVM process instances to implement the overall

application logic. As an example, the activity flow chart shown in Figure 5 illustrates

the control logic implemented within an ePVM processes as it is executed during BIS

initialisation. For each of the activities a message is being sent to a host adapter which

implements the functionality. Some of the activities execute in parallel, for instance, activity

1.1 to 1.3, some are sequential.

5.3 Using autonomic GCM components

The problem of biometric identification can be considered as a search problem where the

compare function is a biometric matching algorithm, here fingerprint matching. To distribute

the problem within a Grid infrastructure, the DB of known identities needs to be distributed

such that each Computing node in the Grid receives a partition of the overall DB and

can match a given identity against this partition. The time spent in matching the given

identity against the local portion of the DB is clearly proportional to the size of this local

DB portion. Therefore, considering that the distribution of the DB among the grid nodes

284 T. Weigold et al.

Figure 5 BIS initialization process flow

is performed once and for all, and considering negligible the time spent to broadcast the

fingerprint that has to be matched with those in the distributed DB, the ability to perform

fingerprint matching in real-time roughly depends on the ability to distribute local portions

of the database small enough to allow real-time matching of the broadcasted fingerprint.

More precisely, the time spent in matching a single fingerprint against the local database

also depends on the computing power and on the load of the machine used to perform the

matching. The machine power and the local database sizes are somehow static properties.

The load of the machine is instead a dynamic property. Thus, in order to keep the matching

time perceived by the application user within a given range (i.e. satisfying a given SLA or

performance contract), our BIS application should

1 properly dimension the number of distributed resources used to host database portions

2 dynamically adapt to the varying load of the grid resources involved in such a way a

user supplied performance contract (such as match fingerprint in less than 30 sec) is

ensured.

Both features are supported within the GCM BSs presented in Section 3.1: if the user

instantiates a BS to implement the BIS search process, and if he/she provides a contract

stating the expected latency of the fingerprint matching process, the AM of the BS will

start with a pre-defined number of workers (i.e. a pre-defined parallelism degree) and then

adapt this number to achieve the matching latency adding (removing) workers from the BS

composite component. In case of overload of some of the resources used in the matching, the

AM of the BS will also manage to increase the number of resources recruited to the parallel

matching, in such a way the contract can be ensured again. In this case, the recruitment

of a new processing resource induces a physical redistribution of the database among the

resources. This redistribution is completely implemented/managed by the BS AM.

To implement our BIS application, we used a data parallel (DP) BS. Referring to Figure 3

(right), the DP skeleton is a composite component which includes an autonomic behaviour

controller (ABC) and an AM. The AM periodically evaluates certain monitored properties

of the skeleton to ensure that a given QoS contract is satisfied. If this is not the case,

it triggers appropriate reconfiguration operations provided by the ABC. To apply the DP

skeleton for our application scenario, it must be parameterised with a worker component

and a QoS contract. The worker component, here named IDMatcher, implements the actual

fingerprint matching functionality and the skeleton allocates one instance of this worker

Process-driven biometric identification 285

component per node. The QoS contract consists of a set of rules interpreted by the JBoss

Drools rule engine.

For our BIS prototype, we chose to implement a QoS contract requiring to keep the

partition size of the workers constant, independently of the size of the database presented to

the BS through port D. The contract is provided before starting the computation through the

non-functional server port attached to the BS AM. The AM, in this case, adds or removes

workers from the BS in case the partition size exceeds or is less than the value supplied by

the user within the contract provided through the non-functional BS ports.

Before identification requests can be processed, the identity DB is distributed across the

worker components using port D. As a consequence, the DB is partitioned on the inner W

components. The identity DB holds information such as name, address and fingerprints of

all enrolled (known) people.

Once the skeleton has been initialised, identification requests can be submitted via the

second port provided by the BS, port S, the so-called broadcast port. Fingerprints of a

person to be identified are broadcasted via this port to all worker components and each

worker matches them against its partition of the DB. Results are returned synchronously

via method return values.

If the AM triggers reconfiguration via the ABC, e.g. to increase the number of worker

components, the AM collects all DB partitions from the workers, modifies the number of

workers and finally re-distributes the DB to the workers. In this way the DB is re-distributed

during each re-configuration operation.

The submission of the contract through non-functional interfaces, the DB through BS

port D, and the fingerprints to be matched through port S are all interactions with the GCM

BS triggered by ePVM processes via the GCM adapter.

5.4 Application monitoring

Monitoring is one of the core features of every process engine and it is an important argument

for using one when building an application. The ePVM engine supports monitoring

processes by registering monitor objects for one or more process definitions. Furthermore, it

can be specified which events shall be monitored. Available are a number of standard events

such as a process instance being created, a message being processed or a process becoming

idle. Furthermore, custom events can be defined such that more fine-grained monitoring can

be implemented, e.g. multiple events can be triggered while a single message is processed.

In the BIS application, a monitor object is used to track the progress of ePVM process

instances, e.g. while the system initialisation process is executed (c.f. Figure 5). The monitor

object is triggered by the process engine whenever activities start or finish and it updates

the GUI to reflect the state of the system. Furthermore, it is desired to monitor the GCM

component system with the goal to visualise AM actions and the number of workers used

in the DP skeleton. A system administrator could observe this and, if required, trigger

re-configuration or add resources manually. For monitoring the skeleton, functionality

provided by the GCM framework can be used. However, monitoring in GCM is based

on a pull model where information about components and their states can be retrieved on

request. On the contrary, the ePVM approach can be considered a push model where a

monitor is registered and receives events. To integrate GCM monitoring with the event-

driven paradigm applied in ePVM some adaptation is necessary. A first solution is to create

a dedicated ePVM process which regularly retrieves information about the component

system via the GCM API and creates events for the monitor object. A second solution is

286 T. Weigold et al.

to instrument the component implementation to actively send events to an ePVM process.

The first approach is more generic with respect to distribution, as the GCM framework

handles remote method invocations required to query for component states automatically.

The second approach is more efficient, as communication only takes place if an event to be

monitored occurs. However, a component might not be able to easily communicate with

the process engine if it is running on a remote machine, since the process engine itself is

not a GCM component. In the BIS we used the first approach to implement monitoring the

number of workers, as the workers are typically distributed. For monitoring AM actions,

we use the second approach exploiting the fact that in our deployments the AM is always

colocated with the process engine such that no remote communication is necessary.

In general, the requirement to monitor actions within the DP skeleton to some extend

is contradictory to the idea of autonomic components. On one hand, the goal of using

the DP skeleton is to take advantage of its built-in functionality without taking care of

the implementation details. On the other hand, we still want to be able to monitor certain

internal details such as reconfiguration operations and the number of workers. From the

perspective of the process-driven applications paradigm all important actions which shall

be monitored should be centrally controlled by the process-engine. However, in real-world

applications a trade-off between central process control and autonomy must be made.

5.5 Automatic futures vs. message passing

When integrating process engines and distributed computing frameworks, it is very

important to be aware of their communication and synchronisation paradigms. The GCM

framework is based on Java RMI and implements the concept of automatic futures (Caromel

and Henrio, 2005). This means that method invocations always return immediately, whereas

results which are not yet available are represented by so-called future objects. Program

execution is then blocked automatically if a future object is being accessed as long as the

value represented is not yet available. The goal is to ease parallel programming by hiding

synchronisation details within a meta object protocol implemented in GCM. The ePVM

process engine, however, uses message passing for communication and synchronisation

between concurrent control flows. If these two paradigms are interweaved, as it is the case

in the BIS application, process flows can easily become distorted. For example, if a process

definition assigns two activities to be carried out sequentially (c.f. activities 2 and 3 in

Figure 5), it must be ensured that no more future objects resulting from the first activity

exist before the second is triggered.

This issue becomes obvious when an identification process is triggered within the BIS.

In this case, an ePVM process sends a message to the GCM adapter including fingerprints

of a person to be identified. The GCM adapter forwards this information to the component

system by invoking the broadcast interface of the DP skeleton (port S, Figure 3). This

interface is a so-called collective interface, which turns one method invocation into N

method invocations on all the bound IDMatcher components to broadcast the identification

request. The return value is a list of result objects, one from each IDMatcher component.

When the interface is invoked, it immediately returns a list of future objects, which at

the beginning are all unavailable and then by-and-by become available as the IDMatcher

components return their results. It is important that the GCM adapter waits for the futures

to become available and generates messages to be returned to the ePVM process instance

accordingly. It must not report the identification as completed before all futures are available.

Effectively, the GCM adapter retracts automatic synchronisation in order to make the actual

Process-driven biometric identification 287

progress visible to the process engine, which must to be informed whenever an IDMatcher

component has searched its part of the DB. Obviously, converting from one paradigm into

the other must be handled with care as the semantics of the process definitions can be broken

due to delayed synchronisation within GCM.

6 Results, experiences and lessons learned

The primary result of this work is the fully functional prototype of the BIS application, which

acts as a use case demo for the process engine as well as for the GCM framework. Additional

results have been gained by critically evaluating the application and experimenting with it.

Firstly, it has been successfully deployed on various hardware platforms ranging from one

multi-core PC to heterogeneous sets of clusters as provided by the Grid5000 project (The

Grid5000 Project, 2008). Switching hardware platforms did not require changing a single

line of functional code, only the infrastructure part of the XML deployment descriptor

required modification. The strict separation of concerns and the autonomic functionality

implemented within the GCM framework have turned out to be the main factors leading to

this flexibility. The former ensures that resources are never directly referenced in the source

code while the latter provides autonomic adaptation to the performance properties of the

hardware in use.

Secondly, functionality and autonomic behaviour of the application have been verified

using Grid5000. The BIS has been started using 50 workers (one per node), a DB

holding 50,000 identities (approx. 400 MB) and a QoS contract mandating a partition size

of 1,000 identities/worker. At run-time, the contract has been updated to 800 (±10%)

identities/worker. Thereupon, the AM has successfully detected 7 contract violations and

each time reconfigured the DP skeleton by adding 1 additional worker until a partition size

of 877 identities/worker was reached at 57 workers/nodes. During this experiment, every

reconfiguration operation took about 9 sec in which the complete DB has been redistributed

(from the node hosting the whole database to the nodes hosting the workers of the data

parallel BS) by the ABC. When identification requests were issued during reconfiguration,

they were queued automatically by the skeleton and processed as soon as reconfiguration

was completed. For the given DB size, each identification request required around 10 sec

to be processed. This means that each reconfiguration operation roughly decreases the

throughput of the BIS by one identification for any given timeframe. Therefore, if the

BIS is used in a very dynamic environment requiring frequent reconfiguration, the number

of occurrences of reconfigurations may be sensibly reduced by adopting more aggressive

parallelism degree variation policies, in such a way the overall overhead is reduced. Such

more aggressive policies at the moment consist in varying the constant �w that defines

the number of workers to be added/removed when reconfiguring the parallelism degree of

a BS. As shown in Aldinucci et al. (2009b), the evaluation of such �w can also take in

account the overhead and the delay of the reconfiguration itself by using historical data.

In the BS/GCM framework, we are currently investigating the possibility to use a kind

of exponential back-off increase/decrease protocol. All those cases, of course, rely on the

possibility to effectively monitor the increase/decrease achieved in the BS performance as

a consequence of the parallelism degree adaptation.

Finally, evaluating the application’s source code, including the deployment descriptor

required to run on 50 nodes of Grid5000, unveiled the source code breakdown illustrated in

Figure 6. The functional code mainly includes the host processes (c.f. Figure 4) providing

DB access, the GUI functionality and the interfacing to the GCM components. Its absolute

288 T. Weigold et al.

size is about 2,500 lines of code, which is very small considering the overall functionality

provided by the application. This is due to the fact that the GCM framework provides all

the functionality for distribution and autonomicity. Implementing this functionality from

scratch not using GCM would have been significantly more effort. In particular, adding

autonomic control to an application is virtually effortless if a matching BS is available. Only

the QoS contract must be provided and a few non-functional interfaces used by the controller

must be implemented within the worker component. In case of the BIS application, only

about 200 lines of code were necessary for that. Furthermore, it is to be noted that

more than a quarter of the source code (27%) consists of code interpreted at run-time.

This code, including the deployment descriptor, the process definitions, the QoS contract

and the GCM component definitions, contains the main control logic and infrastructure

definition of the application. As a result, the application can be adapted significantly without

recompilation – a very important property required for operation in today’s dynamic

business environments. Hard-coding this part of the application would clearly decrease

the applications flexibility as achieved through the combination of GCM and ePVM.

During application development, we have made a number of experiences with regards

to the integration of process technology and the GCM framework. The interfacing between

the two technologies went rather smoothly, since the ePVM engine is available as a Java

library and it does not dictate the use of web services. Also, the DP skeleton fits well to the

given biometric identification problem. However, application monitoring turned out to be

challenging. One must be aware that the idea behind components is hiding complexity and

this can be a problem if component internals need to be monitored. The GCM framework

supports querying the state of a component system, however, it does not support monitoring

activities within components, e.g. reconfiguration within a BS. Solving this problem

by instrumenting component implementations (c.f. Section 5.4) requires comprehensive

knowledge of the GCM framework. Furthermore, the monitoring support of GCM follows

a pull model while process engines are mostly event driven. Joining the two paradigms in

a sensible way requires an extra effort and can have a performance impact. For example,

regularly traversing component hierarchies to detect newly created components is not very

efficient.

Figure 6 BIS source code breakdown (see online version for colours)

Process-driven biometric identification 289

Another lesson we have learned is that the two different synchronisation paradigms applied

in GCM and ePVM can interfere if not handled with care. The concept of automatic futures

implemented in the GCM framework follows the wait-by-necessity idea. This means that

unavailable results are replaced by future objects such that synchronisation is delayed as

long as possible. Therefore, it must be carefully checked if results of activities within a

process flow include one or more future objects before the next activity of a sequence is

triggered, otherwise the process semantics can easily become distorted. In other words,

if a GCM component returns an object it does not necessarily mean that all the related

operations have completed.

Finally, we realised that working with the advanced features of both frameworks, ePVM

and GCM, require working with a large number of different development artefacts and

acquiring related skills. The Grid IDE (GIDE) (Basukoski et al., 2008), which consists of a

set of plugins to the famous Eclipse development environment eases this to some extend and

provides a jump start into GCM. Nevertheless, combining process technology with GCM

allows producing extremely flexible and complex distributed applications with minimum

effort.

7 Conclusions

Process-driven application development is increasingly gaining attention in the business

environment. At the same time, software development frameworks for the Grid/Cloud

are raising interest in the course of the Cloud computing wave. In this paper, we

have considered combining the two approaches to produce a process-driven distributed

biometric identification system. In discussing the application we have made the following

contributions:

• we provided a brief overview of the GCM framework, its support for autonomic

components and behavioural skeletons, and the ePVM process engine

• we described the architectural design and implementation of the process-driven

biometric identification system utilising the DP autonomic behavioural skeleton

available in GCM

• we presented the results, experiences and lessons learned while integrating both

technologies, the process engine and the GCM framework.

We believe that this use case application demonstrates that combining process technology

and autonomic Grid/Cloud components represents a powerful approach for developing

flexible distributed applications with minimum effort. Obviously, the application could

have been developed without using GCM and ePVM. However, the development effort

would have been much higher and the resulting application would have been less flexible

due to the hard-coded application logic and autonomic strategy.

References

Aldinucci, M., Campa, S., Danelutto, M., Dazzi, P., Kilpatrick, P., Laforenza, D. and Tonellotto, N.

(2007) ‘Behavioural skeletons for component autonomic management on grids’, CoreGRID

Workshop on Grid Programming Model, Grid and P2P Systems Architecture, Grid Systems,

Tools and Environments, Heraklion, Crete, Greece.

290 T. Weigold et al.

Aldinucci, M. and Danelutto, M. (2006) ‘Algorithmic skeletons meeting grids’, Parallel Computing

Vol. 32, No. 7, pp.449–462.

Aldinucci, M., Danelutto, M. and Kilpatrick, P. (2009a) ‘Autonomic management of non-functional

concerns in distributed and parallel application programming’, Proceedings of International

Parallel and Distributed Processing Symposium (IPDPS), IEEE, Rome, Italy, pp.1–12.

Aldinucci, M., Danelutto, M. and Kilpatrick, P. (2009b) ‘Towards hierarchical management of

autonomic components: a case study’, in F.S. Didier El Baz and T. Gross (Eds.), Proceedings of

International Euromicro PDP 2009: Parallel Distributed and Network-Based Processing. IEEE,

Weimar, Germany, pp.3–10.

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S. and Smolinski,

B. (1999) ‘Toward a common component architecture for high performance scientific computing’,

Proceedings of the 8th International Symposium on High Performance Distributed Computing

(HPDC’99).

Basukoski, A., Getov, V., Thiyagalingam, J. and Isaiadis, S. (2008) ‘Component-based development

environment for grid systems: Design and implementation’, in M. Danelutto, P. Frangopoulou and

V. Getov (Eds.), Making Grids Work. CoreGRID, Springer, chapter Component Programming

Models, pp.119–128.

Bouziane, H., Pérez, C. and Priol, T. (2008) ‘A software component model with spatial and temporal

compositions for grid infrastructures’, in Proceedings of the 14th International Euro-Par

Conference, Vol. 5168 of LNCS, Las Palmas de Gran Canaria, Spain: Springer, pp.698–708.

Bruneton, E., Coupaye, T. and Stefani, J-B. (2003) The Fractal Component Model, Technical

Specification. Paris, France: ObjectWeb Consortium.

Bukovics, B. (2007) Pro WF: Windows Workflow in .NET 3.0. Berkeley, CA, USA: Apress.

Caromel, D. and Henrio, L. (2005) A Theory of Distributed Object. Berlin, Germany: Springer-Verlag.

Cole, M. (2004) ‘Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel

programming’, Parallel Computing, Vol. 30, No. 3, pp.389–406.

CoreGRID Project (2007) Deliverable D.PM.04 – Basic Features of the Grid Component Model

(assessed). CoreGRID NoE deliverable series, Institute on Programming Model. Available at:

http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf.

Danelutto, M. (2005) ‘QoS in parallel programming through application managers’, Proceedings of

International Euromicro PDP: Parallel Distributed and Network-Based Processing. Lugano,

Switzerland: IEEE, pp.282–289.

David, P-C. and Ledoux, T. (2006) ‘An aspect-oriented approach for developing self-adaptive fractal

components’, in W. Löwe and M. Südholt (Eds.), Proceedings of the 5th International Symposium

Software on Composition (SC 2006), Vol. 4089 of LNCS, Vienna, Austria: Springer, pp.82–97.

Dowling, J. (2004) ‘The decentralised systems coordination of self-adaptive components for

autonomic computing systems’, PhD Thesis, University of Dublin, Trinity College.

Faura, M.V. and Baeyens, T. (2007) The Process Virtual Machine. Available at: http://www.onjava.

com/pub/a/onjava/2007/05/07/the-process-virtual-machi ne.html.

Fox, G.C. and Gannon, D. (2006) ‘Special issue: workflow in grid systems: editorials’, Concurrency

Computation: Practice Experience, Vol. 18, No. 10, pp.1009–1019.

Freeman, S. and Pryce, N. (2006) ‘Evolving an embedded domain-specific language in java’,

Proceedings of the International Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pp.855–865.

GridCOMP Project (2008) ‘Grid programming with components, an advanced component platform

for an effective invisible grid’. Available at: http://gridcomp.ercim.org.

Process-driven biometric identification 291

Institute on Programming model of the CoreGRID NoE (2009) Home page, CoreGRID NoE. Available

at: http://www.coregrid.net/mambo/content/blogcategory/13/292/.

Kephart, J.O. and Chess, D.M. (2003) ‘The vision of autonomic computing’, IEEE Computer, Vol. 36,

No. 1, pp.41–50.

Parashar, M., Liu, H., Li, Z., Matossian, V., Schmidt, C., Zhang, G. and Hariri, S. (2006) ‘AutoMate:

enabling autonomic applications on the grid’, Cluster Computing, Vol. 9, No. 2, pp.161–174.

Ryan, K.L.K. (2009) ‘A computer scientist’s introductory guide to business process management

(BPM)’, ACM Crossroads, Vol. 15, No. 4, pp.11–18.

Smith, H. and Fingar, P. (2006) Business Process Management: The Third Wave. Tampa, FL, USA:

Meghan-Kiffer Press, ISBN 0929652347.

The Grid5000 Project (2008) ‘An infrastructure distributed in 9 sites around France, for research in

large-scale parallel and distributed systems’. Available at: http://www.grid5000.fr.

Vanneschi, M. (2002) ‘The programming model of ASSIST, an environment for parallel and

distributed portable applications’, Parallel Computing, Vol. 28, No. 12, pp.1709–1732.

Weigold, T., Kramp, T. and Buhler, P. (2007) ‘ePVM an embeddable process virtual machine’,

Proceedings of the 31st International Computer Software and Applications Conference

(COMPSAC), Beijing, China, pp.557–564.

zur Muehlen, M. (2004) Workflow-based Process Controlling - Foundation, Design, and Application

of Workflow-Driven Process Information Systems. Berlin, Germany: Logos Verlag, ISBN

3-8325-0388-9.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

