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Abstract: Nowadays, hosting centres are widely used to host various  
kinds of applications (e.g., web servers or scientific applications). Resource 
management is a major challenge for most organisations that run these 
infrastructures. Many studies show that clusters are not used at their full 
capacity which represents a significant source of waste. Autonomic 
management systems have been introduced in order to dynamically adapt 
software infrastructures according to runtime conditions. They provide support 
to deploy, configure, monitor, and repair applications in such environments. In 
this paper, we report our experiments in using an autonomic management 
system to provide resource aware management for a clustered application. We 
consider a standard replicated server infrastructure in which we dynamically 
adapt the degree of replication in order to ensure a given QoS while minimising 
energy consumption. 
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1 Introduction 

Nowadays, medium or large-scale distributed infrastructures such as clusters and grids 
are widely used to host various kinds of applications (e.g., web servers or scientific 
applications). The development of cloud computing (Buyya et al., 2009) illustrates a 
general trend towards the emergence of large-scale hosting centres. 

Power consumption is becoming a major challenge for most organisations that run 
these infrastructures. According to the US Environmental Protection Agency, it is 
estimated that this sector consumed about 61 billion kilowatt-hours (kWh) in 2006  
(1.5% of total US electricity consumption) for a total electricity cost of about $4.5 billion. 
Moreover, energy consumption of these infrastructures is estimated to have doubled 
between 2000 and 2006 and the development of hosting centres will amplify this 
tendency. 

In clustered infrastructures, a classical structuring pattern is to replicate servers in 
order to enforce scalability. In this pattern, a given server is replicated statically at 
deployment time and a frontend proxy acts as a load-balancer and distributes incoming 
requests among the replicas. Such a design choice induces resource overbooking to face 
load peaks while guaranteeing quality of service. As there is relatively little difference in 
power consumption between an idle node and a fully used node, there is a penalty 
(regarding energy) for keeping an idle node powered on. Moreover, such hosting 
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infrastructures require large cooling systems which also consume a considerable amount 
of energy. 

Autonomic management systems (Kephart and Chess, 2003) have been proposed as 
one solution for the management of distributed infrastructures. Such systems can be used 
to deploy and configure applications in a distributed environment. They can also monitor 
the environment and react to events such as failures or overloads and reconfigure 
applications accordingly and autonomously. 

In this context, we aim at using an autonomic management system in order to 
dynamically adapt the degree of replication according to the received load. This 
adaptation is a mean to dynamically allocate or free machines, i.e., to dynamically turn 
cluster nodes on – to be able to efficiently handle the load imposed on the system – and 
off – to save power under lighter load. We implemented such a management policy for a 
clustered database server in a J2EE application, and evaluated the benefits for energy 
consumption. 

Instead of turning machines on and off which is quite costly and slow, we use an 
efficient suspension to RAM mechanism to quickly turn the machines in power saving 
mode. 

The rest of the paper is structured as follows: Section 2 presents the context of our 
work and our motivations. Section 3 describes our approach. Section 4 presents the 
experiments to evaluate our approach. After an overview of related works in Section 5, 
we conclude in Section 6. 

2 Context 

In this section, we first present the application case that we use to illustrate our approach. 
We then overview the autonomic management system that we used in our experiments. 

2.1 Clustered J2EE application 

As experimental environment, we made use of the J2EE, which defines a model for 
developing web applications in a multi-tiered architecture. Such applications are typically 
composed of a web server (e.g., Apache), an application server (e.g., Tomcat) and a 
database server (e.g., MySQL). Upon an HTTP client request, either the request targets a 
static web document, in this case the web server directly returns that document to the 
client; or it refers to a dynamically generated document, in that case the web server 
forwards the request to the application server. When the application server receives a 
request, it runs one or more software components (e.g., Servlets, EJBs) that query a 
database through a Java database connection driver (JDBC driver). Finally, the resulting 
information is used to generate a web document on-the-fly that is returned to the web 
client. 

In this context, the increasing number of internet users has led to the need for highly 
scalable and highly available services. To deal with high loads and provide higher 
scalability of internet services, a commonly used approach is the replication of servers in 
clusters. Such an approach (Figure 1) usually defines a particular software component in 
front of each set of replicated servers, which dynamically balances the load among the 
replicas. Here, different load balancing algorithms may be used, e.g., random,  
round-robin, etc. 
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Figure 1 Clustered J2EE servers (see online version for colours) 

 

In such an architecture, a difficult issue is to find the best degree of replication for each 
tier, which should be sufficient to tolerate load peaks, but not too high to prevent resource 
wasting. 

2.2 Component-based autonomic management systems 

In the area of autonomic computing, many studies have relied on a component model to 
provide an autonomic system support (Cheng et al., 2004; Hagimont et al., 2006; Oriezy 
et al., 1999). Component-based management aims at providing a uniform view of a 
software environment composed of different types of servers. Each managed server is 
encapsulated in a component and the software environment is abstracted as a component 
architecture. Therefore, deploying, configuring and reconfiguring the software 
environment is achieved by using the tools associated with the choose component-based 
middleware. 

In previous projects, we designed and implemented several prototypes of such an 
autonomic management system (Hagimont et al., 2009; Gadafi et al., 2010; Tchana et al., 
2010; Sharrock et al., 2010). In our approach, the component model is used to implement 
a management layer on top of the legacy layer composed of the actual managed software 
(Figure 2). 

In the management layer, all components provide a management interface for the 
encapsulated software, and the corresponding implementation is specific to each software 
(e.g., the Apache web server). These interfaces are used to control uniformly the 
components, they allow managing the component’s attributes or bindings with other 
components, and controlling its internal configuration state. 

These components interact with remote representatives for configuring the legacy 
software instances on the remote hosts of the cluster. 
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Figure 2 Management layer 

 

Relying on this management layer, sophisticated administration programmes can be 
implemented. However, we observed that the interfaces of a component middleware  
are too low level and are therefore not appropriate for administrators. This led us  
to the design of higher level language support for autonomic management policy 
specification. 

2.3 High level formalisms for policy specification 

In order to allow the administration by non-experts, we developed TUNe (Broto et al., 
2008), which is a component-based autonomic management system that provides high 
level formalisms for the description of the software architecture, its deployment and 
reconfiguration policies. These formalisms are inspired by Unified Modelling Language 
(UML) and are overviewed in the next sub-sections. 
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2.3.1 A UML profile for deployment scheme 

TUNe introduces a UML profile based on the class diagram for graphically describing 
deployment scheme. A deployment scheme describes the overall organisation of a 
software infrastructure to be deployed. At deployment time, the scheme is interpreted to 
deploy the component architecture. An example is depicted in Figure 3. 

Figure 3 Deployment schema for J2EE 

 

 



   

 

   

   
 

   

   

 

   

   60 A. Gadafi et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Each element of this diagram corresponds to a software which can be instantiated in 
several component replicas. A link between two elements generates bindings between the 
components instantiated from these elements. An element includes a set of configuration 
attributes for the software. Most of these attributes are specific to the software, but few 
attributes are predefined by TUNe and used for deployment, for example the initial 
attribute which indicates the number of instances that have to be deployed initially, thus 
each component may be replicated by adapting this attribute. 

2.3.2 A WDL 

Upon deployment, the above schema is parsed and for each element, the initial number of 
components are created. These components implement some wrappers for the deployed 
software, which provide control over the software. Each wrapper component is an 
instance of a generic wrapper which is actually an interpreter of a Wrapping Description 
Language (WDL) specification. 

A WDL description defines a set of methods that can be invoked to configure or 
reconfigure the wrapped software. The workflow of methods that have to be invoked in 
order to configure and reconfigure the overall software environment is defined thanks to 
an formalism introduced in Section 2.3.3. 

Usually, a WDL specification provides start and stop methods for controlling the 
activity of the software, and a configure method for reflecting the values of the attributes 
(defined in the UML deployment schema) in the configuration files of the software. Note 
that the values of these attributes can be modified dynamically at runtime. Other methods 
can be defined according to the specific management requirements of the wrapped 
software. 

The methods described in a WDL specification are implemented in Java. Most of 
these methods are generic and can therefore be reused, e.g., methods which access a 
configuration file in a particular format. 

2.3.3 A UML profile for (re)configuration procedures 

TUNe introduces a UML profile based on state diagrams. These diagrams are used to 
define workflows of operations that have to be performed during runtime for 
reconfiguring the managed environment. Reconfigurations are triggered by events that 
start the different workflows. An event can be generated by a specific monitoring 
component, or even by a wrapped legacy software itself if it includes its own monitoring 
functions. An operation in a state diagram can assign an attribute or a set of attributes of 
components, create, deploy and destroy components, or can invoke a method or a set of 
methods on components. 

The deployment scheme implicitly defines a designation scheme for addressing the 
deployed component instances. When an event is raised by a component (e.g., a probe), 
the this keyword identifies this component and the designation scheme allows navigation 
in the deployed architecture for invoking methods on components. 

2.4 Motivations 

One important autonomic management policy we target in this paper is the minimisation 
of energy consumption while meeting the end user needs (i.e., keeping response time 
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acceptable). This management system aims at autonomously increasing/decreasing the 
number of replicated resources used by the application when the load increases/decreases. 
This has the effect of efficiently maximising resource utilisation (i.e., no resource 
overbooking) and therefore minimising the overall energy consumption. Such a policy 
would aim at: 

• guaranteeing the performance of the application by adapting its size as needed 

• reducing energy consumption by shutting down the unused nodes. 

3 Autonomic approach to trading energy and QoS off 

In this section, we present two management policies that we implemented in order to 
manage energy consumption in a clustered J2EE architecture. These policies apply to the 
database tier in the J2EE architecture. 

3.1 Technical issues 

3.1.1 Management of the replicated database tier 

The load-balancer among replicated databases is MySQLProxy. The database load, 
arriving from the web server is distributed by MySQLProxy to the DB replicas that can 
be added and removed based on workload variations. In order to implement the 
integration of a new database backend in a pool of replicas, we have to consider two 
cases, according to whether the database can be modified or not. 

• Read-only access: In this simple case, all nodes (on or off) contain the same database 
content and do not require any special care when integrating a new database server in 
the database pool. 

• Read-write access: In this case, we have to take into account the current state of the 
replicated database. The technique we use leverages the logging facilities of 
MySQLProxy. For each new node activation, we execute a reconciliation operation 
on the node, thus bringing it in the same state as all the database replicas. To 
implement the reconciliation, the log file is used to replay all the SQL statements that 
have been recorded since the last synchronisation state. This is a relatively fast 
operation given the fact the read/write ratio is high; however it depends on the time 
between state synchronisations and the number of writes during this time. 

3.1.2 Suspension to RAM 

Turning machines off, and especially on is quite costly. Indeed, we measured that such an 
operation takes about 45 seconds on the average. Instead, we rely on suspension to  
RAM, which allows to suspend and resume the activity of a machine at a low cost  
(about four seconds on the average for resuming a machine) while saving as much energy 
as if it were turned off (Talebi and Way, 2009). Suspend-to-RAM stores information on 
the system configuration, the open applications, and the active files in main memory 
(RAM), while most of the system’s other hardware is turned off. When a machine is 
suspended, only the RAM and the network device are powered on. 
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3.2 Autonomic management policies 

We aim at minimising energy consumption of the cluster, while ensuring acceptable QoS, 
and being transparent to the end-users. As mentioned before, the management system 
autonomously increases/decreases the number of replicated resources used by the 
application when the load increases/decreases. 

The J2EE architecture is initially deployed with one database server (MySQL). We 
use probes to monitor some performance metrics on MySQL server nodes. These probes 
periodically collect the informations on all the nodes where MySQL servers are 
deployed. They compute a moving average of the collected data in order to remove any 
artefact. They finally compute an average across all nodes, so as to observe a general load 
indication of the whole replicated server pool. According to defined thresholds, the probe 
will eventually generate an event to add or remove a replica. 

We defined two different policies: the first provides the maximum QoS, while the 
second allows the degradation of the QoS to save more energy. 

• First policy, maximum QoS: In this policy, we aim at minimising the consumed 
energy while maintaining the maximum QoS that can be given by the system. 

Addressing the energy and QoS tradeoff, we give priority to performance by 
distributing the current workload onto a sufficient number of machines. This number 
must be enough to serve end-users without effecting the QoS, while turning off the 
unused machines to save energy. 

To ensure the best QoS, the MySQL servers should never be saturated, thus we 
monitor their status (i.e., CPU usage) and add more DB replicas to prevent 
saturation. 

From the end-users point of view, since there is no degradation of service, the 
process of adding or removing a replica is completely transparent. 

• Second policy, degraded QoS: Instead of looking at MySQL servers’ status, we are 
interested here in monitoring the QoS indicators, especially the response time. 

If we allow application performance to be somewhat degraded, much greater energy 
savings are possible. In this policy, the application’s performance is measured by a 
service level agreement (SLA) related to response time. This allows to reduce the 
amount of resources allocated to the applications to the point where the SLA goals 
are just being met. More precisely, the SLA specifies the range where the response 
time must be maintained. This range is obviously higher than the response time that 
is obtained with the previous policy (response time is degradated), and it allows 
managing the application with fewer DB servers. Figure 9 shows the occupancy rate 
of machines during the experiments with the two implemented policies. If we 
compare the occupancy rate of the static configuration with three database servers, 
and the occupancy rate in the dynamic cases, we observe that the CPU-based policy 
reduces the occupancy rate by 30%, while the latency-based policy reduces the 
occupancy rate by 47%. 
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3.3 Implementation with TUNe 

Figure 3 shows the deployment schema for the J2EE architecture, which includes a 
frontend web server (Apache), an application server (Tomcat), a database load-balancer 
(MySQLProxy) and a database server (MySQL). The MySQL server is monitored by a 
Probe programme which is parameterised by different attributes: 

• max: this parameter specifies the maximum threshold of the probed property  
(e.g., CPU usage or latency) that can be reached before triggering the addition of a 
replica 

• min: this parameter specifies the minimum threshold of the probed property that can 
be reached before triggering the removal of a replicas 

• maxServerCount: this parameter specifies the maximum number of replica 

• policy: this parameter specifies the used policy, i.e., the probed property  
(CPU usage or latency). 

The probe will eventually generate an event to add or remove a replica, as we describe in 
the next sections. 

3.3.1 Adding a new replica 

To add a new replica, we must ensure that the resulting load is higher than the value of 
the min parameter to prevent removing the replica just after adding it. The condition to 
add a new replica can therefore be formulated as: 

( )   and  
( 1)

CL min N maxServerCount
N

⎛ ⎞
> <⎜ ⎟+⎝ ⎠

 

where CL is the current load, and N is the number of currently used servers. 
When this event is generated, TUNe allocates a node from a list of available nodes for 

this server, turns the allocated node on via a Wake-on-LAN notification, and applies the 
reconfiguration diagram corresponding to the addition of a new server when the node is 
ready. 

Figure 4(a) shows the reconfiguration diagram for adding a new MySQL server. The 
event (upsizeMySQL) is generated by a Probe component instance, therefore the this 
variable is the name of this Probe component instance. Then: 

• this.stop invokes the stop method on the probing component to prevent the 
generation of multiple events. 

• new=this.MySQL++ creates a new MySQL instance. Note that in order to designate 
the component on which an operation should be performed, a dotted syntax allows to 
navigate through the component architecture, e.g., here to follow the link between 
the Probe and the MySQL elements. The ++ operator increases by one the number of 
instances of the MySQL element. 

• new.start invokes the start method on the newly created MySQL component instance. 
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• mysqlProxy.restart restarts the database load-balancer to take into account the newly 
created MySQL server. 

• this.start restarts the probe. 

Figure 4 State diagrams for adding/removing a MySQL server 

 
(a)    (b) 

3.3.2 Removing a replica 

To remove a replica, we must ensure that the resulting load is lower than the value of the 
max parameter to prevent adding a replica just after removing it. So the condition to 
remove a replica can be formulated as: 

   and  ( 1)
( 1)

CL max N
N

⎛ ⎞
> >⎜ ⎟−⎝ ⎠

 

When this event is generated, TUNe applies the reconfiguration diagram which removes 
a replica and frees the node (with a suspend-to-ram). 

Figure 4(b) shows the reconfiguration diagram for removing a MySQL server. 

4 Evaluation 

In this section, we present the evaluation of our solution. First we introduce the 
application we deployed (an auction website modelled over eBay), the software 
environment on which we deployed the application (the J2EE platform) and the hardware 
(a French grid). Then we describe the test configuration and how we evaluate the energy 
consumption. 
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Testbed application 

The evaluation has been realised with RUBiS (Amza et al., 2002), a J2EE application 
benchmark based on servlets, which implements an auction site modelled over eBay. It 
defines 26 web interactions, such as registering new users, browsing, buying or selling 
items. RUBiS also provides a benchmarking tool that emulates web client behaviours and 
generates a tunable workload. This benchmarking tool gathers statistics about the 
generated workload and the web application behaviour. 

Software environment 

The nodes run version 2.6.30 of the Linux kernel. The J2EE application has been 
deployed using open source middleware solutions: Jakarta Tomcat 6.0.20 for the web and 
servlet servers, MySQL 5.1.36 for the database servers, MySQLProxy 0.7.2 for the 
database load-balancer, Apache 2.2.14 for the application server load-balancer. We used 
RUBiS 1.4.3 as the running J2EE application. These experiments have been realised with 
Sun’s JVM JDK 1.6.0.05. We used the MySQL connector/J 5.1 JDBC driver to connect 
the database load-balancer to the database servers. 

Hardware environment 

The experimental evaluation was carried out using the Grid’5000 experimental testbed.1 
The experiments required up to 14 nodes: one node for TUNe management platform, one 
node for web server (Apache), six nodes for servlet servers (Tomcat), one node for 
database load-balancer (MySQLProxy), up to three nodes for database servers (MySQL), 
two nodes for RUBiS client emulators (which emulate up to 3,000 clients). The number 
of nodes actually used during these experiments varies, according to the dynamic changes 
of the workload, resulting in the dynamic resizing of the application. All the nodes are 
connected through a 100 Mbps ethernet LAN to form a cluster. 

Test configuration 

In this evaluation, we provide measurements for the database replicated tier only. The 
RUBiS benchmark is configured to send read-only queries. The parameters that control 
adding/removing servers are shown in Table 1. 
Table 1 Test configuration 

Parameter name CPU-based policy Latency-based policy 

max 80% 6,000 milliseconds 
min 30% 20 milliseconds 

Evaluation scenario 

We aim at showing that dynamic allocation and deallocation of nodes in response to 
workload variations allows energy saving. 

In our benchmark, the load increases progressively up to 3,000 emulated clients:  
50 new clients every 30 seconds. We configured RUBiS client to run for 31 minutes, so 
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the total time of the experiments is about one hour. During the experiment, the probe 
monitors the MySQL server nodes. 

The J2EE architecture is initially deployed with one database server (MySQL) and 
TUNe reacts to the load variation by allocating and freeing nodes, as described in  
Section 3.3 

We compare the QoS (e.g., latency) variable and the energy consumption  
(e.g., occupancy rate of machines) in two situations: 

• Static configuration of the J2EE architecture. We measure the performance 
(regarding QoS and energy consumption) with one, two and three database servers. 
Fewer servers will save energy but with a degradation of QoS. More servers will 
optimise QoS, but with energy wasting. 

• Dynamic configuration of the J2EE architecture. TUNe is used to dynamically adapt 
the number of database servers as described above. Therefore, quality of service is 
guaranteed without wasting energy. We then compare the two policies described in 
Section 3.2. 

Energy evaluation 

The first experiment we conducted was to measure the energy consumption of one node 
according to its load. To do this we used a framework that collects energy usage 
information in Grid’50002. This measurement is shown in Table 2. 
Table 2 Energy consumption for one node 

CPU usage (%) Energy consumption (watts) 

0% 204 
50% 211 
100% 224 

From these measurements, we can see that keeping a machine on when it is not used has 
a high cost. This means that powering off machines is the most effective way to save 
energy. 

4.1 Results 

4.1.1 Static configuration 

In a first evaluation, we measured the latency and the CPU usage of the J2EE application 
when it is statically configured with one, two and three MySQL servers. These 
measurements are given in Figures 5 and 6. 

We observe that when we use one database server, it becomes saturated between 
times 750 and 2,950 (Figure 5). This saturation has an impact on the quality of service as 
shown by Figure 6. Indeed, when the server is saturated, the latency increases at  
the same time. We observe the same behaviour when we used two servers (between times 
1,500 and 2,200). The configuration with three database servers can maintain the quality 
of service (the latency is not increasing) for all the experiment’s time. 
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Figure 5 CPU usage in static configuration (see online version for colours) 

 

Figure 6 Latency in static configuration (see online version for colours) 
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For the static configuration mode, we can see that maintaining the quality of service, 
particularly during the peak load, requires three database servers, but these three servers 
are not required during the whole experiment. Indeed, regarding the CPU usage in  
Figure 5 and the latency in Figure 6, only one server is required from time 0 to 600 and 
time 3,200 to 4,000. Only two servers are also required from times 600 to 1,400 and 
times 2,400 to 3,200. Therefore, up to two servers could be switched off to save energy. 

4.1.2 Dynamic configuration 

With TUNe, we dynamically turn cluster nodes on – to be able to handle load peaks – and 
off – to save power under lighter load. We only use nodes (and consume energy) when 
needed. 

Figure 7 shows the CPU load and the latency when using TUNe configured with the 
CPU-based policy. To ensure the best QoS we do not allow server saturation. We start 
with only one MySQL server, when this server approaches the saturation point (when the 
CPU load reaches 80%), TUNe adds a new server to the architecture. This occurs twice 
in our experiment: at times 690 and 1,400. We observe that using this policy ensures the 
maximum quality of service regarding the latency, which is relatively stable during all the 
experiment. 

Figure 8 shows the CPU load and the latency when using TUNe configured with the 
latency-based policy. Unlike the previous case, we allow QoS to be degraded in order to 
save more energy. We observe this performance degradation regarding the latency. When 
the latency reaches the predefined threshold (6,000 milliseconds) TUNe adds a new 
server to the architecture. This occurs twice at times 1,030 and 1,930. 

Figure 7 CPU-based policy (see online version for colours) 
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Figure 8 Latency-based policy (see online version for colours) 

 

Figure 9 Static configuration (see online version for colours) 
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Figure 9 shows the occupancy rate of machines during the experiments with the two 
implemented policies. If we compare the occupancy rate of the static configuration with 
three database servers, and the occupancy rate in the dynamic cases, we observe that the 
CPU-based policy reduces the occupancy rate by 30%, while the latency-based policy 
reduces the occupancy rate by 47%. 

5 Related work 

Many works have addressed the issue of power management. Most of them have 
focussed on energy management for electronic devices powered by electric battery, and 
few have addressed this issue in grid or cluster infrastructures. 

Many research works which aim at managing energy for a single processor system 
can be used to optimise energy consumption independently on each node of a cluster. It 
includes optimisations of the use of the processor, memory or input/outputs (disk or 
network). 

Most of the research that focuses on cluster-wide energy management deals with 
resource allocation. We can mention some examples of such works: 

• Load balancing: in this category, we can cite the work of Pinheiro et al. (2001) who 
developed an algorithm which makes load balancing decisions by considering both 
the total load imposed on the cluster and the power and performance implications of 
turning nodes off. 

• Virtualisation: in this category, we can cite the work of Hermenier et al. (2006) who 
developed a system which relies on virtual machine migration for transparently 
relocating any application in the cluster. The placement policy takes into account the 
CPU and memory usages, in order to concentrate the workload on fewer nodes of the 
cluster, thus allowing unused nodes to be shutdown. We are currently cooperating 
with them to integrate our autonomic management system with their work. 

• Simulation: we can here cite the work of Khargharia et al. (2008). They present a 
theoretical framework and methodology for autonomic power and performance 
management in data centres. They rely on simulation to apply their approach to two 
case studies, a multi-chip memory system and a high performance server cluster. 

Our work is orthogonal to these contributions. While most of the works made in this 
domain is specific to energy management, our autonomic computing approach is generic, 
as it can be used to define any management policy for any distributed software 
architecture. The field of energy management was not previously addressed by our 
autonomic management system, but the experiments reported in this paper show that our 
approach can by used to define a specific energy management autonomic policy. 

The closest work to our is that of Das et al. (2008) who proposed a multi-agent 
approach for managing power and performance in server clusters by turning off servers 
under low-load conditions. Instead of relying on components and architectures, their 
autonomic system follows a multi-agent paradigm. Our approach differs from this work 
in several respects. First, multi-agent paradigms are programmed to manage specifically 
the dynamicity of systems. Our approach focuses more on managing in a generic way 
legacy systems that are intrinsically static (for example web servers or database servers). 
Second, we differ from previous approaches that use multicriteria utility functions in that 
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we employ high level policies descriptions to dynamically reconfigure the managed 
systems. This allows multiple goals definitions and goals combinations like repairing or 
dynamic sizing. Because we offer a complete implementation of an autonomic manager 
that takes into account multiple goals, we show in this paper that both the application 
performance metrics and hardware power consumption metrics can be used to optimise 
the system. Finally, these reconfiguration policies are externalised (not related to a 
specific application but more generic and high level) and can be applied to other 
applications or changed easily, which is not the case with a multi-agent system. 

6 Conclusions and future work 

Nowadays, medium or large-scale distributed infrastructures such as clusters and grids 
are widely used to host various kinds of applications. Power consumption has become a 
major challenge for most organisations that run these infrastructures. Many studies show 
that they are not used at their full capacity and that there are therefore a significant source 
of wasted power. Autonomic management systems have been recognised as a convenient 
solution for management of distributed infrastructures. 

The experiments that we conducted show that the autonomic computing approach can 
be used for energy management in a distributed infrastructure. This approach meets the 
needs of energy aware computing, as it can minimise power consumption without 
affecting the performance of the system. In our experiments, we were able to obtain for a 
typical web application benchmark a reduction of the power consumption between 30% 
and 47% according to the used policy. 

This paper reported on preliminary work. In the near future, we aim at evaluating 
much deeply our prototype through more elaborated power management policies, which 
would include other parameters, for example, network traffic information. We also wish 
to integrate virtualisation techniques in our prototype, as it would enable transparent 
process (VM) migration between hardware nodes. 
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