EphemeralKeyReveal: Using automatic analysis to
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In the area of secure key agreement protocols many security models [2, 4, 5, 6,
12, 15] and protocols have been proposed. Many of the proposed protocols have
been shown to be secure in some particular security model, but have also shown
to be insecure in others. In order to determine the exact properties that are
required from such protocols, a single unified security model would be desirable.
However, given the recent works such as [15], it seems that a single model is
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Abstract

In the paper “Stronger Security of Authenticated Key Exchange” [11, 12],
a new security model for authenticated key exchange protocols (eCK)
is proposed. The new model is suggested to be at least as strong as
previous models for key exchange protocols, such as the CK model [5, 10].
The model includes a new notion of an EphemeralKeyReveal adversary
query, which is claimed in e.g. [11, 17, 18] to be at least as strong as the
Session-StateReveal query.

We investigate the relation between the two models by focusing on the
difference in adversary queries. We formally model the NAXOS protocol
and a variant of the eCK model, called eCK’, in which the EphemeralKey-
Reveal query is replaced by the Session-StateReveal query. Using Scyther,
a formal protocol analysis tool, we automatically find attacks on the proto-
col, showing that the protocol is insecure in the eCK’ model. Our attacks
prove that the Session-StateReveal query is stronger than the Ephemeral-
KeyReveal query and that the eCK security model is incomparable to the
CK model, disproving several claims made in the literature.

Introduction

still not agreed upon.



In this paper we focus on a specific aspect of security models for key agree-
ment protocols, namely, the ability of the adversary to learn the contents of the
local state of an agent. For example, when an agent chooses a random value,
or computes a hash function with certain input, the constituents of the compu-
tation reside temporarily in the local memory of the agent. It may be possible
for the adversary to learn such information, even though he cannot learn the
long-term private keys of the agent. A corresponding real-world scenario oc-
curs when the long-term private keys of an agent reside in, e.g., a hardware
security module (HSM), while the remainder of the protocol computations are
done in regular (unprotected) memory. The ability of an adversary to learn
the contents of the unprotected memory is captured in security models for key
agreement protocols by the Session-StateReveal query [5, 10].

A drawback of the Session-StateReveal query in current security models
is that it is underspecified in current models. For example, in the Canetti-
Krawczyk (CK) model [5], Session-StateReveal is defined as giving the adversary
the internal state of the Turing machine that executes the protocol. This inter-
nal state is not defined within the security model. Effectively, the definition of
the internal state is postponed to the proof of a particular protocol.

To illustrate some of the subtleties involved, consider a protocol step that
computes Ho(H1(sk,x)), where Hy and Hs are hash functions, sk a long-term
private key, and z is a freshly generated random bit string. Some constraints
on the session state follow from straightforward assumptions: If an HSM is
deployed, it should at least protect the long-term secrets, and we therefore
assume that sk resides only in protected memory. As a result, H; cannot be
computed in unprotected memory, because in that case its inputs, including
sk, could be exposed. In general, the contents of the session state strongly
depend on implementation details (which may be underspecified at design time):
If the HSM is capable of generating random numbers or computing hashes,
implementations may exist that respectively generate x or compute Hs inside
the HSM. If Hs is not computed inside an HSM, it may be that its input resides
only in a CPU register. Depending on the threat model, CPU registers may
or may not be considered part of the session state. Additionally, any partial
computations during the computation of H, may be considered part of the state.
Even if we ignore these partial computations, the session state could reasonably
be defined as any subset of {z, Hy(sk,x), Ha(H1(sk,x))}: each of these choices
would match to a particular implementation scenario and corresponding threat
model.

Despite this high level of flexibility in modeling, the vast majority of existing
proofs that use the Session-StateReveal query (e.g., [5, 10]) assume that the
session state only contains freshly generated random bit strings. In the example
above, this corresponds to defining the session state to be just {z}; a possible
real-world interpretation is that all computations are performed in an HSM
that does not generate fresh random numbers. Instead, the HSM retrieves the
random numbers from unprotected memory. Any intermediate computations
are assumed to be performed inside the HSM. Thus, though the query can be
used to model many practically relevant scenarios, it is mainly used to model



limited adversaries that cannot reveal the result of intermediate computations.

In [11, 12] a new security model is proposed that is claimed to be stronger
than existing AKE (Authenticated Key Exchange) security models. The model
is based on the CK model, and is referred to in [12] as the Extended Canetti-
Krawczyk (eCK) model. The main difference from the CK model is that in
the eCK model the adversary is allowed to reveal part of the local state of
participants for all sessions. A further difference is that the eCK model replaces
the Session-StateReveal query from the CK model by a new EphemeralKeyReveal
query.

Replacing the Session-StateReveal query by the EphemeralKeyReveal query in
the eCK model addresses the underspecification of the session-state in the CK
model, i. e., the eCK model explicitly defines what is revealed by the Ephemeral-
KeyReveal query. In particular, the ephemeral key is defined to contain all secret
session-specific information. The authors argue for the new EphemeralKeyReveal
query that “by setting the ephemeral secret key equal to all session-specific secret
information, we seem to cover all definitions of Session-StateReveal queries which
exist in literature” [11, p. 2]. Similar arguments can be found in [14, 17, 18, 20].
Within the resulting eCK model, the NAXOS protocol is proposed and proven
secure in [12].

Whereas most works argue that eCK is stronger than CK, it is informally
argued in [3] that strictly speaking the eCK and CK models are incomparable.
Regarding the difference between Session-StateReveal and EphemeralKeyReveal,
it is remarked that “The important point to note is that the ephemeral-key does
not include session state that has been computed using the long-term secret of
the party. This is not the case in the CK model where, in principle, the adversary
is allowed access to all the inputs (including the randomness, but excluding the
long-term secret itself) and the results of all the computations done by a party
as part of a session” [3, Section 3.1]. This observation in itself does not prove
that there is a practical difference, i. e., that there exists a protocol that is secure
in the eCK model but that is insecure in the CK model.

The aim of this work is to clarify the differences between the two queries
and their practical implications.

Contributions

e We formally model the NAXOS protocol and a variant of the eCK model,
called eCK’, in which we replace EphemeralKeyReveal by Session-State-
Reveal.

e We give a procedure to automatically determine the possible session-state
contents of a protocol.

e Using Scyther, [7], a formal protocol analysis tool, we analyze the NAXOS
protocol with respect to the eCK’ model and using the automatically
inferred session-state. The tool automatically finds two novel attacks on
the NAXOS protocol. The attacks show that NAXOS is insecure in the
eCK’ model as well as the CK model.



e We show that contrary to the claims in [11, 14, 17, 18, 20], the Ephemeral-
KeyReveal query is weaker than the Session-StateReveal query. Combined
with the fact that the CK model does not allow the compromise of the
ephemeral key of the tested session, we show that the CK and eCK models
are incomparable.

e Finally, we show how our attacks can be extended to the KEA protocol
and several of its descendants, and give practical interpretations of the
Session-StateReveal and EphemeralKeyReveal queries.

We proceed as follows. In Section 2 we introduce notational conventions, and
present the eCK security model and the NAXOS protocol. Then, in Section 3
we formalize the protocol and its session-state. We use the protocol analy-
sis tool to find two attacks on this protocol that use Session-StateReveal, and
discuss their implications. We provide some possible practical interpretations
of Session-StateReveal and EphemeralKeyReveal in Section 4, and we conclude
in Section 5. In the appendix we provide the full input files for the protocol
analysis tool.
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2 The eCK security model and the NAXOS pro-
tocol

2.1 Preliminaries

Let f be a function. We write dom(f) and ran(f) to denote f’s domain and
range. We write f[b <= a] to denote f’s update, i.e., the function f’ where
f'(z) = b when x = a and f'(z) = f(z) otherwise. We write f : X + Y to
denote a partial function from X to Y. For any set S, P(S) denotes the power
set of S and S* denotes the set of finite sequences of elements from S. We write
(80, ..., 8n) to denote the sequence of elements sy to s, and we omit brackets
when no confusion can result. For s a sequence of length |s| and i < |s|, s;
denotes the i-th element. We write s”s’ for the concatenation of the sequences
s and s’. For the sequence s = (sq,...,s,) we define set(s) = {so,...,Sn}
Abusing set notation, we write e € s to denote e € set(s) when s is a sequence.

Table 1 shows additional notational conventions used in protocol specifica-
tions and attack descriptions. We follow the notation from [12] where possible.

2.2 The eCK security model

The NAXOS protocol that we present in the next section was proven secure in
the eCK model from [11, 12]. We recall the definition of the eCK model below.



A, B The initiator and responder roles of the protocol.

a,b Agents (participants) executing roles of the protocol.

G A cyclic group of known prime order gq.

g A generator of the group G.

ska The long-term private key of the agent a, where ska € Z,.

pka The long-term public key of the agent a, where pky = g*a.

A A constant.

H,, H, Hash functions, where Hy : {0,1}* — Z, and H, : {0,1}* —
{0, 1}

eska,esky Two different ephemeral keys of the agent a, generated in dif-
ferent sessions.

o Written in place of a (bigger) term that is not relevant for the
explanation at that point.

&S The variable x is drawn uniformly from the set S.
T e The variable x is assigned the result of the expression e.

Table 1: Notation

The core ingredient of most AKE security models is the definition of the
security experiment. The experiment describes the possible interactions between
the adversary and regular agents performing the protocol. In the experiment,
the adversary should have a negligible advantage in distinguishing the session
key from a random key. Additionally, it is required that when the protocol is
executed among two participants in the absence of an adversary, the participants
compute the same key.

Participants can perform roles of the protocol (such as initiator, 4, or re-
sponder, B) multiple times, with various other partners. A single role instance
performed by a participant is called a session. Each session is associated with
a session identifier.

Definition 1. (Session identifier) The session identifier of a session sid is
defined as the tuple (role, ID,IDx,commy,...,comm,), where role is the role
performed by the session (here initiator or responder), ID is the name of the
participant executing sid, I D the name of the intended communication partner,
and commy, ...,comm,, the list of messages that were sent and received.

Based on the session identifiers, we can define when two sessions are match-
ing: when they are communicating as expected, i.e., without interference from
the adversary.

Definition 2. (Matching sessions for two-party protocols) For a two-
party protocol, sessions sid and sid’ are said to match if and only if there
exist roles role, role’ (role # role’), participants ID, 1D’ and message list L =
(commy, ..., comm,), such that the session identifier of sid is (role, ID,ID’, L)
and the session identifier of sid’ is (role’,ID’,ID, L).



We will later use the definition of matching for (1) defining the adversary
capabilities and (2) ensuring that the protocol computes the correct keys in the
absence of an adversary.

We now turn to defining the security experiment that forms the core of the
security model. As is common in AKE security models, security experiments
are defined from the point of view of the adversary. An experiment allows for
executions that are sequences of adversary queries. Such queries model both
the adversary behaviour as well as the actions of regular participants. There
are six different queries, which we classify into three categories.

Modeling normal participant behaviour There is a single query to model
the normal participant behaviour.

e Send(a,b,comm). The adversary sends a message comm to b on behalf
of a, and receives b’s response according to the protocol. Additionally,
this allows the adversary to order a party to start an AKE session with
another party.

Modeling indistinguishability of the session key The adversary can
choose to attack any completed session. We identify the session under attack
as the Test session. As we will later see, the adversary tries to distinguish the
session key of the test session from a random bit string. Therefore, we allow
the adversary to randomly get either the session key of this session or a random
string.

e Test(Test). Test must be a completed session. A bit is randomly drawn:
b & {0,1}. If b = 1, let C be the session key of session Test, otherwise
pick C' & {0,1}*. In both cases C is returned to the adversary.

e Guess(d'). The experiment ends after this query is made. If the guess b’ is
equal to b (as drawn in a previous Test query), return 1, otherwise return
0.

Modeling adversary capabilities The adversary is given additional capa-
bilities to reveal session keys, long-term keys, or ephemeral keys. As we will see
below, these queries can only be performed under certain conditions.

e Long-TermKeyReveal(a). The adversary reveals the long-term key of the
party a.

e EphemeralKeyReveal(sid). The adversary reveals an ephemeral key of the
session sid. Note that sid is not required to be completed.

e Reveal(sid). The adversary reveals a session key of the completed session
sid.

The above capabilities are restricted in the experiment by requiring that all
considered executions are clean.



Definition 3. (clean for eCK) In an AKE experiment (e.g. as defined in
Definition 4 below), let sid be a completed AKE session performed by a, sup-
posedly with some party b. Then sid is said to be clean in the eCK model if all
of the following conditions hold:

1. a and b are not adversary-controlled (the adversary does not choose or
reveal both the long-term and ephemeral keys of the participant and per-
forms on behalf of the participant.)

2. The experiment does not include Reveal(sid), i. e. the session key of session
std is not revealed.

3. The experiment does not include both Long-TermKeyReveal(a) and Ephemeral-
KeyReveal(sid).

4. If no session exists that matches sid, then the experiment does not include
Long-TermKeyReveal(b).

5. If a session sidx exists that matches sid, then

(a) the experiment does not include Reveal(sidx), i.e. the session key of
session sidx* is not revealed, and

(b) the experiment does not include both Long-TermKeyReveal(b) and
EphemeralKeyReveal(sidx).

In the eCK security model, the restriction that the test session is clean is
meant to exclude the cases in which all protocols are trivially insecure, e. g., by
performing a Reveal query on the test session or its partner.

Definition 4. (AKE security experiment for eCK) In the eCK AKE
security experiment, the following steps are allowed.

e The adversary may perform Send(a, b, comm), Long-TermKeyReveal(a), and
Reveal(sid) queries.

e The adversary may perform an EphemeralKeyReveal(sid) query.

e The adversary performs a Test(sid) query on a single clean session sid. A
coin is flipped: b <& {0,1}. If b = 0, the test query returns a random bit
string. If b = 1, the query returns the session key of sid. This query can
be performed only once.

e The adversary outputs a Guess(b’) bit o, after which the experiment ends.

Except for the final step Guess, steps may be performed in any order. Test and
Guess may only be performed once. The other steps may be performed any
number of times.

An adversary M wins the experiment if the Guess(b’) bit o’ is equal to the
bit b from the Test(sid) query.



Definition 5. (eCK security) The advantage of the adversary M in the eCK
AKE experiment with AKE protocol II is defined as

Advii*F (M) = Pr[M wins] — %

An AKE protocol is said to be secure in the eCK model if and only if
1. matching sessions compute the same session keys, and

2. no efficient adversary M has more than a negligible advantage in winning
the above experiment.

2.3 The NAXOS key exchange protocol

The NAXOS protocol, as defined in [11, 12], is shown in Figure 1. NAXOS
builds on ideas from the KEA and KEA+ protocols [13, 16]. The purpose of
the NAXOS protocol is to establish a shared symmetric key between two parties.
Both parties have a long-term private key, e. g. ska, and initially know the public
key of all other participants, e.g. pky. For full details of the protocol we refer
the reader to [11, 12].
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Figure 1: The NAXOS protocol. At the end of a normal execution we have that
K4 = Kp (recall that pk, = g**=).

The protocol is designed to be secure in a very strong sense: the adversary is
assumed to have the capability of learning long-term private keys, and also has
the capability of learning short term data generated during a protocol session
that does not include the private key.

The intuition behind the design of the protocol is that by hashing the long-
term private key together with the short term ephemeral key, the adversary
would need to have both of these elements to construct an attack. For example,
the protocol should be secure if the adversary either (a) learns the long-term
key of a participant during a session, or (b) learns the short-term data (except
for the long-term key) of a participant during a session. A typical scenario for
(b) is that the participant stores the long-term key on an HSM or tamper-proof
module, and computes other operations in unprotected memory.



Consider a normal execution where the attacker is passive. As depicted in
Figure 1, we have X = gffi(eskaska) and v = gfi(eskssks)  Based on the
properties of the modular exponentiation the following equivalences hold.

XskB — pkgl(ESkA,skA) (1)
YSkA — pk_jl(e.skg,sk:g) (2)
YHl(ESk?A7S]€A) — XH1(esk:5,skB) (3)

At the end of a normal protocol execution, the session key is computed by both
parties as

H2(9H1(€SkB,SkB)SkA7 ng(eskA,skA)sk57gH1 (eska,ska)H: (€5k873k8)7 A) B) (4)

The NAXOS protocol was proven secure in the eCK model in [11, 12].

3 Automatic analysis of NAXOS

NAXOS was proven secure in the eCK model, and it is therefore not vulnera-
ble to attacks based on EphemeralKeyReveal. To examine the relation between
EphemeralKeyReveal and Session-StateReveal, we define the eCK’ model that
allows the Session-StateReveal query instead of the EphemeralKeyReveal query.
Next we use formal analysis methods to establish that NAXOS is insecure in
the eCK’ model.

3.1 Security model eCK’

We define the eCK’ security model, which is similar to the eCK model. We re-
place the EphemeralKeyReveal query by the Session-StateReveal query through-
out the security definition, and add the restriction that the Session-StateReveal
query cannot be performed on the test session or its partner. This restriction
stems from [5] and is required because otherwise all protocols that store the
session key in the session-state would be trivially insecure.

The Session-StateReveal query reveals the current state of a session. For
the NAXOS protocol, we require that whenever Hy(z1,...,z,) is computed,
z1,...,T, are part of the session state just before the computation, and can
therefore be revealed by a Session-StateReveal query. An example of an execution
model where this condition holds, is an HSM setting in which Hy(z1,...,z,)
is computed in local memory, whereas all other computations (such as Hj(x)
and ¢®) are performed inside the HSM. In contrast, applying the EphemeralKey-
Reveal query to a session of the agent a in the eCK model (and original NAXOS
proof) from [12] reveals only the ephemeral key eska.

Definition 6. (clean for eCK’) In an AKE experiment, let sid be a completed
AKE session performed by a, supposedly with some party b. Then sid is said
to be clean in the eCK’ model if all of the following conditions hold:



1. a and b are not adversary-controlled (the adversary does not choose or
reveal both the long-term and ephemeral keys of the participant and per-
forms on behalf of the participant.)

2. The experiment does not include Reveal(sid), i. e. the session key of session
std is not revealed.

3. The experiment does not include Session-StateReveal(sid).

4. If no session exists that matches sid, then the experiment does not include
Long-TermKeyReveal(b).

5. If a session sidx exists that matches sid, then

(a) the experiment does not include Reveal(sidx), i.e. the session key of
session sidx is not revealed, and

(b) the experiment does not include Session-StateReveal(sidx).

Definition 7. (AKE security experiment for eCK’) In the eCK’ AKE
security experiment, the following steps are allowed:

e The adversary may perform Send(a, b, comm), Long-TermKeyReveal(a), and
Reveal(sid) queries.

e The adversary may perform a Session-StateReveal(sid) query. (This query
replaces EphemeralKeyReveal(sid) in the definition from [12].)

e The adversary performs a Test(sid) query on a single clean session sid. A
coin is flipped: b & {0,1}. If b = 0, the test query returns a random bit
string. If b = 1, the query returns the session key of sid. This query can
be performed only once.

e The adversary outputs a Guess(b’) bit o', after which the experiment ends.

Except for the final step Guess, steps may be performed in any order. Test and
Guess may only be performed once. The other steps may be performed any
number of times.

An adversary M wins the experiment if the Guess(b’) bit o’ is equal to the
bit b from the Test(sid) query.

Definition 8. (eCK’ security) The advantage of the adversary M in the
eCK’ AKE experiment with AKE protocol II is defined as

Advii*F(M) = Pr[M wins| — %

We say that an AKE protocol is secure in the eCK’ model if matching sessions
compute the same session keys and no efficient adversary M has more than a
negligible advantage in winning the above experiment.
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We prove a theorem for the eCK’ model that will simplify our automatic
analysis later.

Theorem 1. (Irrelevance of session-state erasure point for the eCK’
model) Let P be a protocol with a role R in which some element s of the
session-state is erased at some point during the session (and hence not used
afterwards). Let P’ be the same protocol as P, except that the s is erased from
the session-state as late as possible within R, i.e., as its last action. Then, we
have that P is eCK’-secure if and only if P’ is eCK -secure.

Proof. Proof of Theorem 1 We prove the theorem by showing that P is insecure
in eCK’ if and only if P’ is insecure in eCK’.

Assume that P’ is insecure in eCK’. There are two possible causes. If P’ is
insecure because matching sessions do not compute the same session key, then it
is trivial to see that P is insecure in eCK’ as well. We therefore consider the case
in which there exists an efficient adversary that can win the experiment with
non-negligible probability. Then there exists a run, i.e., a fixed execution of the
security experiment that occurs with non-negligible probability, in which the
adversary correctly guesses the bit b. Let 1 be such a run of P’. We will use r1
to construct a valid run r2 of protocol P in which the adversary correctly guesses
the bit, thereby showing that P is insecure in eCK’. In particular, we define r2
to be identical to 71, except where r1 includes a Session-StateReveal(sid) query
to reveal s, at a point in the session where s is already erased in P, but not yet in
P’. We will move the Session-StateReveal query of s to an earlier point in the run
and leave all other queries unchanged. In particular, we move the Session-State-
Reveal event of session sid from r1 to a position in 72 just before s is erased from
the session-state of sid in P. In case s is not the entire session-state but only
part of it, we don’t move the Session-StateReveal query. Rather, we remove s
from the Session-StateReveal query and add an additional (earlier) Session-State-
Reveal event that reveals the earlier state that does include s. Observe that
because the adversary guesses the bit correctly in the run r1, the test session
must be clean in r1 (as in Definition 6), and therefore sid cannot be the test
session or its matching session. Because we don’t change queries other than
Session-StateReveal and do not change the target session of Session-StateReveal,
sid is also not the test session or its matching session in run r2. Therefore,
the Session-StateReveal query is allowed on sid, and the test session is clean
in r2 as well. Consequently, r2 is a valid run of protocol P and occurs with
non-negligible probability, showing that P is insecure in eCK’.

Assume that P is insecure in eCK’. Because session-state is only erased
later in P/, any run of P in which the adversary guesses the bit correctly is also
a valid run of P’, and therefore P’ is also insecure in the eCK’ model. O

Note that a similar theorem and proof can be given for the CK model.
Intuitively, the condition under which a Session-StateReveal query is allowed
(in both the CK and eCK’ model) is only defined in terms of which session
is queried. The point at which the query is performed is irrelevant for this
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condition and therefore Session-StateReveal queries in a particular session can
be performed earlier or later as desired.

3.2 Automatic analysis

We use an automatic protocol analysis tool, Scyther, to analyze the security of
the Naxos protocol with respect to a symbolic version of the eCK’ model.

3.2.1 Background on the Scyther tool

The Scyther tool [7] is a formal protocol analysis tool based on an operational
semantics for security protocols [1]. In this framework, protocol messages are
modeled as abstract terms. The adversaries’ capabilities are explicitly modeled
as operations on terms. These operations abstract from cryptographic details
by assuming that cryptography is “perfect”. For example, the adversary learns
nothing from an encrypted message unless he knows the decryption key.

Because the capabilities of the adversary are explicitly modeled, all possible
interactions between protocol participants and the adversary can be modeled by
a (labeled) transition system, giving rise to a set of traces. Each trace represents
a possible execution history of the protocol. Security properties are modeled as
trace properties. For example, a message m is said to be secret if for all traces
of the protocol, the adversary never learns m.

This abstract model of cryptographic protocols, as used in the Scyther frame-
work, is a version of the standard Dolev-Yao model [9]. Any attacks found in
the abstract model can be translated to attacks on the protocol in computa-
tional models such as eCK or eCK’. The converse does not hold: the absence
of attacks in the abstract model does not imply that the protocol is secure in
a computational sense. However, this is not a concern here as we only use the
tool to establish attacks.

For full details on the Scyther tool, its underlying protocol model, and the
analysis method we refer the reader to [1, 7, 8].

3.2.2 Modeling the NAXOS protocol

We provide below an abstract protocol specification for readability; in Ap-
pendix A we provide the concrete input file in the input language of the Scyther
tool.

To specify the protocol and in particular the messages it sends and receives,
we define the set of terms Term. We assume given the infinite sets Agent, Role,
Fresh, Var, and Func of agent names, roles, freshly generated terms (nonces,
session keys, coin flips, etc.), variables, and function names.

Definition 9. Terms
Term := Agent | Role | Fresh | Var | (Term, Term)

| sk(Term) | Term™™ | Func(Term™)

12



For each X € Agent, sk(X) denotes its long-term private key. The nota-
tion t!" denotes modular exponentiation. The set Func is used to model other
cryptographic functions, such as hash functions. We model constants as 0-ary
functions.

Protocols are specified as a set of roles, where each role consists of a sequence
of protocol events.

Definition 10. Protocol events

Event ::= send(Term) | recv(Term)
| state(P(Term)) | sessionkey(Term)

The first two events are standard and model the basic agent actions, i.e.,
sending a message and receiving a message. The message in the send and
receive events does not include explicit sender or recipient fields although, if
desired, they can be given as subterms of the message. Note that we do not
explicitly specify any intermediate computations: it is the responsibility of the
protocol modeler to specify sent terms such that they can be computed during
protocol execution. Similarly, there is no explicit event to generate fresh terms.
Fresh terms, identified by their type, are generated upon first occurrence. The
parsing of messages is modeled as pattern matching: terms in protocol events
may contain variables, and terms in receive events are pattern matched against
any messages the adversary can produce during protocol execution.

The other two events are used to annotate the traces with information that
is relevant for the verification process. The state event marks a set of messages
as the contents of the session-state, which can possibly be compromised by the
adversary. The sessionkey event serves two purposes. It marks a term as the
session key and also specifies that this term should be secret, thereby specifying
the security property.

We model the NAXOS protocol by individually modeling its two roles, initia-
tor A and responder B, by the following role scripts, where esk.4, eskp € Fresh
and X,Y € Var.

Role description 1 NAXOS(A)
1: send(A, B, gfi(eskaska))
2: recv(B, A,Y)
3: sessionkey(Hg(YSkA,pkgl(ESk““’S’“““),YHl(*fs’ﬂ‘ftvslu),.,47 B))

Role description 1 specifies the A role of the NAXOS protocol. As in the
protocol description in Figure 1, A starts by implicitly drawing a fresh nonce
esk4. In the abstract protocol specification, the security parameter A is not
modeled. The first event is the sending of the message g1 (¢sk4:5k4) from A to
B. The second event models receiving a message Y. The third event encodes
both the computation of the session key and its security property. In step 3, A
computes the session key that should not become known to the adversary.

The B role is modeled similarly and is specified in role description 2.
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Role description 2 NAXOS(B)
1: recv(A, B, X)
2: send(BB, A, g1 (eski.sks))
3: Sessionkey(H2(pk‘gl(eSkB’SkB),XSkB,XHl(eSkB’SkB),-A’ B) )

3.2.3 Adversary model

The default adversary model in the framework of the Scyther tool is known
as the Dolev-Yao adversary model, i.e., the adversary learns all messages sent,
can generate any number of fresh values, and can inject any message that he
can infer from his knowledge, where the inference relation - - - is given as the
smallest relation satisfying

teM =Mt
MEt;AMEty= MF (t1,t2)
MbE (t1,t) = M bty AMF ity
MEFtAMEty=MFt"?

( N\ MEt)=MF f(to,....tn)

0<i<n

We write IK;,;; to denote the initial adversary knowledge, containing all public
knowledge of the protocol, such as the agent names, their long-term public keys,
and the generator g.

3.2.4 Protocol execution

In the execution model any number of instances of protocol roles can be executed
in parallel. Send events send(m) imply that the adversary learns the message
m. Receive events recv(m) can be executed if and only if the adversary can infer
a message m’ that matches the expected message m (i. e., by instantiating the
free variables occurring in m).

3.2.5 Specifying the eCK and eCK’ models in Scyther

Recent versions of the Scyther tool support protocol analysis with respect to
symbolic equivalents of Session-StateReveal, EphemeralKeyReveal and Reveal queries,
as defined in [1]. We describe one important difference between the eCK/eCK’
models and the model used in the automatic tool. To verify that the test session

is clean in the automatic analysis, we use a definition of matching sessions that
differs from the definition in the eCK model.

Definition 11. (Matching for two-party protocols in Scyther) Let
msg(sid) denote the sequence of messages (sent and received) by the session
sid in a security experiment. Let role(sid) denote the role (here A or B) per-
formed by the session sid in the security experiment. We say that two sessions
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sid, sid' are partners if and only if

role(sid) # role(sid') A msg(sid) # 0 A
msg(sid’) # O A 3. (msg(sid)"l = msg(sid) v
msg(sid')"l = msg(sid)).

Definition 11 deviates slightly from Definition 2 (which is part of eCK def-
inition given in [11, 12]). Definition 11 allows incomplete sessions also to be
partners of the test session. For example, if a session sid sends mi to the test
session, and the test session responds with my but this second message mo is
not (yet) received by session sid, we consider sid to be a partner of the test
session anyway. In contrast, Definition 2 does not consider sid to be a partner
in this case. Our definition is in line eCK follow-up works such as [18], in which

[k

a star “«” or cross “x” notation is used (instead of our !) in the list of exchanged
messages to match any unreceived messages with all possible sent messages.

3.2.6 Modeling the session-state

In the previously given role specifications, it is not defined what the session-
state is, as in the original protocol description. To analyze the protocol with
respect to the Session-StateReveal query we need to specify the session state. The
Scyther tool provides support for this query by allowing manual specification of
the session state by manually inserting state events. Still, this leaves the analyst
with the task of specifying the session state of a given protocol.

The Session-StateReveal query models an adversary capability, e. g., what an
adversary may learn from a side-channel attack. This depends not only on the
protocol specification (e.g., computing ¢g* or H(x)), but also on implementa-
tion details of cryptographic primitives (e. g., what are intermediate products of
computing H(x)?), as well as platform specifics (e. g., if a side-channel attack re-
quires data to be in memory for a certain amount of time, the possibly-revealed
data may depend on caching mechanisms, erasure/overwrite times, etc.)

In many cases, such implementation and platform details are not known at
design time. This is a common situation for many protocol proposals (including
NAXOS). We can however make a safe approximation of the possible session-
state contents in any implementation by extracting intermediate computation
products that are the result of the protocol design rather than its implementa-
tion.

We give a procedure for automatic session-state inference, which automati-
cally inserts state events in a given protocol description.

We start off by defining the auxiliary function unpair and relation C .

Definition 12. (Unpair) The function unpair : Term — P(Term) is defined
as

(1) 4 unpair(ty) U unpair(tz) if t = (t1,t2),
unpair(t) =
P {t} otherwise.
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We extend the domain of unpair to sets of terms, i.e., for T a set of terms, we
define

unpair(T) = U unpair(t).

Definition 13. (Subterms) The syntactic subterm relation C is defined as
the smallest relation satisfying:

tCt t1 C (t1,t2) tCf(t) t C "
to C (t1,12) t C sk(t) to C 112,

Our aim is to determine which terms are intermediate products of a com-
puted term. The main constraint from [5] is that the state does not contain any
long-term private keys. We assume that all terms that involve freshly generated
terms and variables must be computed locally.

We define a function v : Event® — P(Term) that identifies all subterms oc-
curring in a sequence of events that must be computed locally, and are therefore
possibly part of the session-state.

P(s) = unpair({t’ | 3T, ¢,t" ev . t" € Var U Fresh A
t"CH A CtAt € unpair(T) Aev(T) € s})

We define the function seen that identifies all terms in a sequence of events
that the adversary learns after the sequence is executed and the adversary per-
forms Session-StateReveal queries. We define seen as

seen(s) = unpair (IKW»t u{t’ ’ AT, tev . ' TtA
t € unpair(T) A ev # sessionkey A ev(T) € s})

The functions ¢ and seen are used to define the augmentation function ¢ :
Event™ — Event”. Given a sequence of events, i. e., a role description, it returns
a modified sequence of events that includes state events. The intuition is that
the state contains all terms given by 1), but we omit any terms the adversary
could have trivially learnt at any earlier point. Theorem 1 allows us to ignore
the details of the points at which session-state is erased.

Definition 14. (Automatic symbolic state inference) Let s be a sequence
of events. We define the augmented sequence by ¢(s), where ¢ is defined as

B(() =)
os™(€) = 6(5) " (e)" (state(v:((e)) \ seen(a(s)) ) )

Finally, any empty state events (i. e., events of the form state())) are removed
from the sequence.

For the NAXOS protocol, Scyther’s automatic state inference yields the
augmented role descriptions 3 and 4.
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Role description 3 NAXOS(.A) with automatically inferred state

send(A, 37 ng(eskA,sk'A))

state({eska, Hi(eska,ska)})

recv(B, A4,Y)

SeSSionkey(HQ(YSkA,pkgl(eSkA’SkA),YHI(ESkA’SkA),.A, B) )
State({YSkA,pkgl(eSkA’SkA)7 YHl(esij7sk;_A)7 HQ(YSkA,pkgl(eSkA’SkA),
Y*Hl(eskA,sk:A)7.A7 B)})

Role description 4 NAXOS(B) with automatically inferred state
recv(A, B, X)

state({eskp, H1(eskg, ski)})

send(B, A, g1 (esks,sks))

sessionkey(H2(pkfl(eskB’Sks), Xslm’XH1(esk:5,skB), A, B))
State({pkil(ESks’Sks),XSkB,XHl(eSkB’Sk5)7Hz(pkfl(ESks’Sks),XSkE,
XHl(eSk?B,Sk}B)7A7 B)})

3.3 Two attacks on the Naxos protocol

We used the Scyther tool to analyse the NAXOS protocol with automatically
inserted session-state events with respect to the eCK’ model. The protocol
description files provided to the tool are given in the appendix. The tool auto-
matically finds two attacks. One attack performs a test query on a session of the
initiator role and the other on the responder role. Finding both attacks takes
24.7 seconds on a dual core Intel Centrino, running at 1.2 GHz, using Scyther-
Compromise version 0.3. The appendix provides the information needed to
reproduce our results.

3.3.1 Attacking the initiator

In Figure 2 we show an attack for a test query on an initiator session of NAXOS.
The attack requires an active adversary capable of Session-StateReveal.

The adversary can compute K3 on the basis of the revealed information
(based on the algebraic properties of the group exponentiation, which are re-
quired for the core of the protocol).

The attack proceeds as follows.

1. a starts an initiator instance, wanting to communicate with b.

2. a chooses her ephemeral key eska, and sends out X3 = gH1(eska-ska)  The
adversary learns this message.

3. b also starts an initiator instance, wanting to communicate with a.

4. b chooses her ephemeral key esky, and sends out X = ng(es,Cb’Skb). The
adversary learns this message.
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Session 1 Session 2

A: a A: b
(talking to b) (talking to a)
test session does not match 1

eska <& {0,1}* esky, & {0,13*

Xa — ng (esky,sky)

X, = gH. (eskpskp)

Session-StateReveal (before Hy)
< X;kbypkfl(eskb k) X:Il(eskb,skb) >
Ka + b
<H2(th)lca$pkg11(eska ska) H1 (eska ska) b)> <H2 skb Hl(eskb skp) XHl(eskb,skb{ b,a)>
— —

Figure 2: Attacking an initiator session. Note that Ka # Kp. The adversary
can compute K3 after compromising the local state of b.

5. The adversary sends the message X}, to a.

6. a computes the session key K3 as

(5) H, (X;k:a ,pkgl (eskg 7sk:a), Xé_ll (eskg ,sk:a)7 a, b)

7. The adversary sends the message X3 to b.

8. b computes the session key Ky as

sk Hq(esky, sk Hi (esky,,sk
(6) Hy (X3 D phy T Mo )

During the computation of K}, the adversary uses Session-StateReveal

sk

to learn the input to Hs. In particular, the adversary learns X b
H,(esky,,sky,) Hi(esky,,sky,)

pkal b"b aLnan1 bbb,

9. The adversary now knows

Hy(esky, ,sk s eskl .s s
kal( bs*p) gkaHl( ki skp) kaa7
sk
Xa b ng(esk:a7ska)skb kéfl(eska,ska)’

X;‘Il (eskb,skb) _ X;II (esky,sky) )

The three terms on the right-hand side are the first three components of
the session key K from Formula 5
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10.

The adversary combines the elements with the names a and b, and applies
Hs, resulting in Kj.

The above sequence of actions forms an attack on the protocol, because the
adversary can learn the session key of the initiator a by revealing the local
state of the second session. Furthermore, the test session is clean according to
Definition 6 on page 9 because (1) neither a nor b are adversary-controlled, (2)
no Reveal queries are performed, (3) no long-term keys are revealed, and (4)
session 2 is not a partner to the test session 1. Therefore, the attack violates
security in the eCK’ model.
Some further observations regarding this attack:

e The sessions compute different session keys: Ka # K}, because the order

of the participant names a, b is reversed.

e The adversary does not need to learn any ephemeral keys for this attack.

e Even in other existing interpretations of the partner function (or fresh-

ness) from literature (matching conversations, external session identifiers,
explicit session identifiers, etc.) the two sessions are not partners. Conse-
quently, the NAXOS protocol is therefore also not secure in other models
that allow Session-StateReveal, such as the CK model [5].

3.3.2 Attacking the responder

Second, we show an attack for a test query on a responder session in Figure 3.
The attack proceeds as follows.

1.
2.

The adversary chooses an arbitrary bit string .

The adversary computes ¢ and sends the result to a responder instance
of a, with sender address b.

a receives the message and assigns X}, = g".

. a chooses her ephemeral key eska, and sends out Xa = g1(¢ska-ska)  The

adversary learns this message.

a computes the session key K3 as

(7) H, (pktl)-ll (eska,ska)7 th)k:a ’ th)fl (eska,ska)7 b, a)

which is equal to

(8) Hz(pkgl(GSkavSka),gka skg , gka H, (e‘ska,ska)7 b7 a).

The adversary redirects X3 to a responder instance of b. The adversary
can insert an arbitrary participant name in the sender field of the message,
which b takes to be the origin of the message.
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Ka <«
H2(pkéil(eska,ska)7X[;»lca7th;il(eska,ska)y b, a)

Session 1 Session 2

B:a B:b
(responding to b) (responding to anybody)
test session does not match 1

)(vb:‘(]N

eska & {0,1}*

Xa= ng (esky,sky)

eskp < {0,1}

o

Session-StateReveal (before Hy)
sk
X, P
I
Kb —
skb
Hj(0,X, P,0,0,0)
|

Figure 3: Attack on a responder session. We have Ka # K},. The adversary
can compute (and even contribute to) K5 after revealing the local state of b.

10.

11.

b computes his ephemeral secret, combines it with his long term key, and
sends out the corresponding message.

b computes his session key K}, (which differs from Kja). Before applying
k
Hsy, b computes the second component X ; b,

The adversary uses Session-StateReveal on the session of b directly before

sk
the application of H to learn X, b,

sk
The adversary knows x, X3, and X, b, Furthermore, as the public keys
are public, the adversary also knows pka. Hence the adversary also knows,
or can compute:

k
X; b _ ng(eska,ska)skb :pkgl(eska,ska)’ (9)
(pka)® = g*rar = Xp'2, (10)
(Xa)ﬁ — ng(eska,ska)n — X;h(eskaaska). (11)

The three terms on the right-hand side are the first three components of
the session key K3 from Formula 7.

The adversary combines the elements and applies Hs, resulting in Kj.
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This sequence forms an attack on the protocol, because the adversary can use
data revealed from session 2 in order to compute the session key of the test
session 1. The test session is also clean according to Definition 6. In practical
terms, this attack even allows the adversary to determine a part of the session
key of a.

Some observations with respect to this attack:

e The responder session of b is not a partner to the session of a in terms of
matching sessions. Also, in other partner existing interpretations from lit-
erature (external session identifiers, explicit session identifiers, etc.) they
would also not match.

e The adversary chooses x, and can therefore influence the session key.

e The adversary does not learn any long term private keys or ephemeral
keys in this attack.

e The attack is also valid in the CK model: the sessions are not partners
for a number of reasons, for example because their choice of agents dif-
fers. Session 1 has {a,b} and session 2 has {b, z} where z is an arbitrary
participant. Hence the adversary can choose z # a.

3.4 Implications of our attacks

Implications for the eCK model The existence of our NAXOS attacks
in the eCK’ model shows that the Session-StateReveal query models attacks
that the EphemeralKeyReveal query cannot: there exist attacks that strictly
depend on intermediate products (of non-partners) being revealed, and not only
their randomness. In that sense, the Session-StateReveal query is stronger than
EphemeralKeyReveal.

However, this does not lead to a direct conclusion about the relation between
the security models CK and eCK. In the security models there is a strong
interaction between the notion of a clean (or fresh) session and the queries
that the adversary is allowed to make. In particular, because the session state
may contain the session key, Session-StateReveal cannot be allowed on the test
session and its partner. Whereas the EphemeralKeyReveal query is allowed on all
sessions, the Session-StateReveal query is only allowed on non-partner sessions.
In that sense, and as shown in [12], attacks that exploit the randomness of the
test session or its matching session are not covered by, e. g., the CK model.

Theorem 2. The eCK security model is incomparable to the CK security
model: there exist protocols that are secure in CK but not in eCK, and con-
versely, there exist protocols that are secure in eCK but not in CK.

Proof. Proof The proof is based on the analysis of two protocols, one for each
direction of the proof.

First, consider the 2-message signed Diffie-Hellman protocol that was proven
secure in the CK model in [5] under the assumption that the session-state only
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contains the random numbers. All other intermediate products of the com-
putation (e.g. conform the state-inference procedure proposed here) are either
long-term private keys, which are by definition excluded from the session-state,
or public information during protocol execution. Therefore, adding these inter-
mediate products to the state does not give the adversary additional possibili-
ties. As a result, this protocol is secure in the CK model for any definition of
session-state. However, the protocol is insecure in the eCK model as shown by
the attack described in [12]: revealing the randomness of the test session allows
the adversary to reconstruct the session key.

Second, consider the NAXOS protocol, as proven secure in the eCK model
in [11, 12]. Assume that the session-state of the protocol contains the inputs to
H,. Then, the NAXOS protocol is insecure in the CK model, as shown by the
attacks presented earlier. O

Implications for the NAXOS protocol For our attacks we use the NAXOS
protocol exactly as specified in [11, 12]. We assume that the protocol is im-
plemented such that when a participant in the NAXOS protocol computes
Hy(x), where Hj is a particular hash function in the NAXOS protocol, then
x is in the session state just before the computation. As a result, performing a
Session-StateReveal query just before the computation of Ha(x) reveals z. This
assumption does not require changing the protocol. Rather, we make the con-
tents of the session state explicit, as would be required for a proof in the CK
model.

Our attacks are valid for a certain class of implementations of the NAXOS
protocol, in which the long-term private keys are protected by an HSM, but other
computations, in particular the computation of Hs, are done in unprotected
memory. If an adversary can get access to the unprotected memory of an honest
participant b, he can trigger the second attack at will with any agent, and
learn the session key. This effectively allows him to impersonate as b in the
communication even though he never learns b’s long-term private key and does
not reveal anything of the test session or its partner.

The attack is of a theoretical nature: from a practical point of view one may
wonder why an adversary capable of accessing b’s unprotected memory doesn’t
just compromise the partner to the test session, in which case all protocols that
store the session key in protected memory are trivially insecure.

3.5 Extending the scope of the attacks

The structure of our attacks can be generalized to attack some protocols that
were proven secure in the CK model [5].

In [13], the KEA+ protocol is proven secure in the CK model from [5].
KEA+ can be viewed as a predecessor of the NAXOS protocol, and uses a similar
setup. Two other variants of this protocol are KEA+C from [13] and KEA from
[16]. All three protocols compute the session key using a hash function, which
takes as inputs components built by the communication partners. Each of the
crucial inputs is a modular exponentiation that includes in the exponent both
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randomness and the long-term private keys of one of the participants. The proof
in [13] of the security of KEA+ in the CK model assumes that Session-State-
Reveal is defined such that only the ephemeral keys are revealed.

The attacks presented in this paper on the NAXOS protocol also work within
the CK model for the KEA, KEA+, and KEA+C protocols after minimal modi-
fications. The attacks use the same scenarios and exploit the same Session-State-
Reveal definition, in which the inputs to the final hash function are part of the
session state.

The existence of these attacks shows the importance of explicitly specifying
the definition of session state as it is used in a proof: e.g. KEA+ is not secure
in the CK model if the inputs to the final hash function are part of the session
state. It would be more precise to say that in [13] KEA+ is proven secure with
respect to the CK model if the session state only includes the ephemeral keys.

4 Interpreting the Session-StateReveal and Ephemeral-
KeyReveal queries

4.1 Practical interpretations of the Session-StateReveal query

Session-StateReveal allows the adversary to reveal the internal state of the pro-
tocol, which intuitively corresponds to an adversary with read-only access to
the memory of a participant. However, because the long-term private keys are
explicitly excluded from the session state, the access is of a special type, which
distinguishes between long-term keys and other session state. This suggests
that the long-term keys are stored at a different protection level than the ses-
sion state.

High protection level Low protection level
T |
HSM . Normal memory | Network
! I
L - 1
Long—term private keys (Part of the protocol

computation is
performed in normal
memory.)

Figure 4: Practical scenarios captured by Session-StateReveal. The contents of
the session-state specify which parts of the computation are stored at a lower
protection level.

Figure 4 depicts a typical scenario that can be modeled using Session-State-
Reveal. The long-term private keys are stored at a high protection level, e. g. in
an HSM. Other computations of the protocol are stored at a lower protection
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level, e.g. in normal client memory. In such a scenario, the definition of the
session-state models which parts of the computation are performed where. The
assumption is that it is easier for an adversary to retrieve the contents of the
memory stored at a lower protection level than to retrieve the contents of the
HSM.

Because the Session-StateReveal query models a strictly passive adversary
capability, it does not seem to correspond well to an adversary that actively
attacks the memory with a lower protection level. Rather, the Session-State-
Reveal query seems well suited to model a class of side-channel attacks.

4.2 Practical interpretations of EphemeralKeyReveal

In contrast to the Session-StateReveal query, the EphemeralKeyReveal query is
defined to exactly reveal the randomness generated within the session.

Low protection level High protection level
[ |

: | = —————— =

| RNG : Memory/HSM Network
Lo oo 1

Long—term private keys
(The entire protocol
computation is performed
at a high protection level.)

Figure 5: Practical scenarios captured by EphemeralKeyReveal. The adversary
can reveal data generated by the random number generator (RNG).

Figure 5 depicts a typical scenario that can be modeled well using Ephemeral-
KeyReveal. The data generated by the random-number generator (RNG) can
be revealed using a side-channel attack, but the adversary has no access to the
long-term private keys or any other intermediate computations.

In the context of the eCK model, the EphemeralKeyReveal query models
leakage of data of a random number generator that generates numbers in the
same way as a normal RNG. Furthermore, numbers can only be revealed after
they were generated, as also pointed out in [19]. As a result, predictable or
malicious random number generators are not well modeled by the eCK model’s
EphemeralKeyReveal query. Similarly, the loss of pre-computed randomness is
also not well modeled.

4.3 On extending the definition of EphemeralKeyReveal

In later works that use variants of the eCK model it has been suggested that
the ephemeral secrets, as revealed by the EphemeralKeyReveal query, can be
redefined to contain everything modeled by a state-reveal query. However, the
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session-state contents evolve during protocol execution. The timing of the query
is therefore relevant for the session-state contents. Defining the ephemeral se-
crets as the session-state at the end of a session, possibly involving computations
with received data, leads to modeling inconsistencies when the EphemeralKey-
Reveal query is performed on incomplete sessions.

5 Conclusion

In common definitions of AKE security the Session-StateReveal query is under-
specified. The definition of Session-StateReveal is only made explicit in particular
protocol proofs. This approach turns the exact definition of Session-StateReveal
into a parameter of the exact security provided by the protocol. As a result,
stating that two protocols are provably secure in e.g. the CK model does not
mean they meet exactly the same property.

In the eCK model [11, 12] the Session-StateReveal query is replaced by
the EphemeralKeyReveal query, which is claimed to be at least as strong as
Session-StateReveal. Thus, the notion of Session-StateReveal is reduced to Ephemeral-
KeyReveal. Reducing Session-StateReveal to EphemeralKeyReveal simplifies proofs
significantly: one does not need to define what exactly is part of the ephemeral
key, but one only needs to prove that no information about the ephemeral key
is revealed [12, 17, 18]. However, the validity of this reduction has not been
proven.

The validity of the reduction is informally argued in [11], and similar argu-
ments can be found in other works that use the eCK model [17, 18], e. g. in [18,
p. 333]: “In general, by specifying that the session specific private information
(the session state) is part of the ephemeral private key, the Session-StateReveal
and EphemeralKeyReveal queries can be made functionally equivalent”.

Here we have shown that the reduction is invalid, that is, a security model
with EphemeralKeyReveal (eCK) is not stronger than a model with Session-State-
Reveal (eCK’). The attacks presented here on the NAXOS protocol, which was
proven secure for EphemeralKeyReveal in [12], strictly depend on the use of the
Session-StateReveal query.

The attacks fall just outside the eCK security model, and they therefore do
not indicate a problem with the proofs in [12]. Instead, what the attacks indicate
is that the eCK security model, and similarly the property that is proved correct,
is not as strong as suggested in e. g. [12]. Furthermore, the attacks are also valid
in the CK model, which shows that the difference between CK and eCK is in
fact meaningful in practice. In particular, we have shown that one can prove
real protocols secure in eCK which are not secure in CK, and are vulnerable
to attacks where the session state is revealed. Consequently, the CK and eCK
models are not only theoretically, but also practically incomparable.

Our automatic analysis extends recent techniques from the formal protocol
verification field. This approach allowed us to efficiently find intricate attacks
that were previously unreported, and allowed us to show the incomparability of
the models.
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The structure of our attacks on NAXOS can be translated to attacks on
the KEA, KEA+, and KEA+C protocols from [13, 16]. As a result, also these
protocols are not CK-secure if the session state includes the inputs to the final
hash function.

The idea behind the NAXOS protocol (which is already found in KEA and
KEA+) is appealing: by strongly connecting the long- and short-term infor-
mation, the adversary would be required to know both elements to perform an
attack. However, in order to use the combination of these elements securely
in the protocol, in particular for transmission, there are further computations
needed. These subsequent computations often influence the session state. This
effect is not captured by the definition of EphemeralKeyReveal, which is the
ultimate problem with the reduction from Session-StateReveal to EphemeralKey-
Reveal, as was already noted in [3]. The attacks presented here exploit exactly
this difference.

A possible practical interpretation of the difference between the models is
the following. The CK model considers an HSM implementation, where parts
of the protocol are computed in unprotected memory, specified by the contents
of the session-state, but the long-term private keys are protected by the HSM.
The adversary may be able to learn the contents of the unprotected memory
at some point, but not necessarily all the time. In contrast, the eCK model
considers an information-leaking random number generator, which implies that
the adversary learns all ephemeral keys, but assumes the protocol computations
are performed at a higher protection level (e.g. in an HSM).

The guarantees provided by proofs in the CK, eCK, and similar models
would be significantly clearer if the proofs would be accompanied by (a) a clear
specification of the contents of the session state, and (b) a specification of im-
plementation restrictions under which the proof holds.
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A Protocol model

The protocol model below was analyzed in Scyther using the following command:

scyther-linux \
--SSR=1 --SSRinfer=2 --SKR=1 \
--LKRaftercorrect=1 --LKRactor=1 \
--max-runs=4 \
naxos.spdl

where naxos.spdl is the filename of the protocol description given below.

The first five switches set up the correct security model abstraction for the
eCK’ model, see [1] for details. In particular, the first two switches enable the
Session-StateReveal query and trigger the automatic inference of state. The third
switch, SKR, enables the Reveal query. The LKRaftercorrect switch enables
long-term key reveal after a session in which the adversary did not interfere,
modeling weak Perfect Forward Secrecy. The LKRactor switch enables detection
of key-compromise impersonation attacks.

The max-runs switch bounds the depth of the search space thereby guaran-
teeing termination of the tool.
naxos.spdl

~
*

NAXOS protocol
Input file for Scyther-compromise v0.3.
Modeled by Cas Cremers 2009/2010.

Original protocol description in "Stronger
Security of Authenticated Key Exchange" by
LaMacchia, Lauter, and Mityagin, 2006.

To find the attacks in the paper:

scyther-linux \
--SSR=1 --SSRinfer=2 --SKR=1 \
--LKRaftercorrect=1 --LKRactor=1 \
--max-runs=4 \
naxos.spdl

¥ O X X K X K X X X X X X ¥ X * ¥

*
~

// Hash functions
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hashfunction h1,h2;

~
*

Here we use the construct ’p(t,t’)’ to model
the notation t"{t’} from the abstract language
in the paper.

The construct is modeled using a wrapper
function p (a one-way function), and we use a
helper protocol (@DHapproximation, specified
later) to model a strict subset of the
corresponding equational theories.

¥ X X X ¥ X ¥ ¥ *

*/

hashfunction p;

// Generator constant
const g;

Simulate public knowledge of public keys.

*
*
* The @’ prefix of the protocol name denotes

* that it is a helper protocol, which is used by
* Scyther for displaying, and such protocols are
* ignored in auto-generation of protocol

*

modifiers.

*/
protocol @publickeys(PK) {

role PK {

send_!1(PK,PK, p(g,sk(PK)));

}
}
/%

* Approximation for the equational theory g~ab =
* g”ba in subterms of the Naxos protocol.
*/
protocol @DHapproximation(RA,RB,RC,RD) {
role RA {
var X,Y, T1,T2: Ticket;
recv_!1(RA,RA,h2( p(p(g,X),Y),T1,T2, RA,RB));
send_!'2(RA,RA,h2( p(p(g,Y),X),T1,T2, RA,RB));
}
role RB {
var X,Y, T1,T2: Ticket;
recv_!3(RB,RB,h2( T1,p(p(g,X),Y),T2, RA,RB));
send_'4(RB,RB,h2( T1,p(p(g,Y),X),T2, RA,RB));
}
role RC {
var X,Y, T1,T2: Ticket;
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recv_!5(RC,RC,h2( T1,T2, p(p(g,X),Y), RA,RB));
send_!6(RC,RC,h2( T1,T2, p(p(g,¥),X), RA,RB));
}
role RD {
var X,Y: Ticket;
recv_!7(RD,RD, p(p(g,X),Y));
send_!8(RD,RD, p(p(g,Y),X));

3

X

/*
* The main part of the Naxos protocol description
*
* No session-state is specified in the protocol
* description because it is inferred

* automatically by the Scyther tool.

*

* The SKR claims both identify the session keys
* and claim that these session keys are secret.
*/

protocol naxos(I,R) {

role I {
fresh eskI: Nonce;
var Y: Ticket;

/* ’send’ and ’recv’ match their counterparts
* in the abstract specification.
*/
send_1(I,R, p(g,hl(eskI,sk(I))) );
recv_2(R,I, Y );

/* ’claim(role,SKR,t)’ corresponds to
* ’sesionkey(t)’ in the abstract
* specification.
*/
claim(I,SKR,h2(
p(Y,sk(I)),
p(p(g,sk(R)),h1(eskI,sk(I))),
p(Y,h1(eskI,sk(I))),
I,R));
}
role R {
fresh eskR: Nonce;
var X: Ticket;

recv_1(I,R, X );
send_2(R,I, p(g,hi(eskR,sk(R))) );

claim(R,SKR,h2(
p(p(g,sk(I)) ,h1(eskR,sk(R))),
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p(X,sk(R)),
p(X,h1(eskR,sk(R))),
I,R));
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