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1 Introduction

Data and computation oursourcing is becoming a
popular trend due to the potential economic benefits.
For such applications, it is a big challenge to design
mechanisms, which simultaneously achieve the intended
business objectives and provide a maximal level of
privacy guarantee on the sensitive data. Recently,
a lot of research efforts have been dedicated to
cryptographic techniques supporting operations on
encrypted data. In this paper, we are interested in Public
Key Encryption schemes which support Equality Test
between ciphertexts, which is generally referred to as
PKEET.

As mentioned by Yang et al. (2010), PKEET is a
useful building block in constructing secure solutions
for outsourced databases. Besides, we can foresee more
applications in the emerging computing scenarios. For
example, Tang (2011a) shows that a special variant
of PKEET cryptosystem (i.e. AoN-PKEET) can allow
patients to encrypt their attributes and a semi-trusted
proxy to match the encrypted attributes and recommend
the patients to each other in an Internet-based PHR
application by Sittig (2002).

1.1 Related Work

The concept of PKEET cryptosystem was proposed
by Yang et al. (2010), and their formulation lacks
an authorization mechanism for users to specify who
can perform equality test between their ciphertexts. In
reality, any entity can perform the equality test. As a
result, standard semantic security or IND-CPA security
cannot be achieved. A serious consequence is that, if the
message space is polynomial size or the min-entropy of
the message distribution is much lower than the security
parameter, then any entity can potentially mount an
offline message recovery attack. This attack is similar to
the offline keyword guessing attack in the case of PEKS
(or searchable encryption) by Byun et al. (2006); Tang
and Chen (2009).

Tang (2011a) extends the concept of PKEET, and
introduces an authorization mechanism for users to
specify who can perform a plaintext equality test from
their ciphertexts. The new primitive is denoted as AoN-
PKEET. With an AoN-PKEET cryptosystem, every
user can independently run an authorization algorithm
to issue his token to some semi-trusted proxies. If a proxy
receives the tokens from both Alice and Bob, then it
is able to perform a plaintext equality test from their
ciphertexts; otherwise, it cannot do so.
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Tang (2011b) integrates a fine-grained authorization
policy enforcement mechanism into PKEET and
proposes an enhanced primitive, namely FG-PKEET.
With an FG-PKEET cryptosystem, two users, say Alice
and Bob, need to run the authorization algorithm
together to issue a token to a semi-trusted proxy, which
will then be authorized to perform equality test between
their ciphertexts. Without the token, the equality test
cannot be performed. With this new primitive, users gain
more control over the operations on their encrypted data
than with PKEET and AoN-PKEET.

• A user has tight control over who can perform
equality test on her ciphertexts, by choosing the
semi-trusted proxies.

• A user has tight control over with whose
ciphertexts that her ciphertexts can be tested
with, by choosing with which user to run the
authorization algorithm.

The concepts of PKEET has a close nature to that
of Public key encryption with keyword search (PEKS)
Boneh et al. (2004b) and public key encryption with
registered keyword search (PERKS) Tang and Chen
(2009). With a PEKS or PERKS scheme, a user can
enable a server to perform equality test between the
keyword embedded in a trapdoor and a tag (attached
to a ciphertext), and the user enforces her authorization
by issuing a trapdoor to the server. In particular,
Hwang and Lee (2007) extend PEKS to a multi-user
setting, where the tag contains keywords encrypted
under a group of users’ public keys. Compared with
these primitives, PKEET in general (namely PKEET,
AoN-PKEET, and FG-PKEET) is different in the sense
that it aims at equality test between the plaintexts of
any number of ciphertexts, while the PEKS and related
primitives aim at testing the equality of keyword(s) in a
given trapdoor and multiple tags.

1.2 Our Contribution

This paper is an extended work based on that by Tang
(2011b). The contributions lie in four aspects. First of
all, we correct some flaws in the description of proposed
cryptosystem and its security proofs by Tang (2011b).
In addition, we discuss how to extend the proposed
cryptosystem to support approximate equality test based
on the Euclidean distance metric. Secondly, we present
a comparison between FG-PKEET and other similar
primitives including AoN-PKEET by Tang (2011a) and
by PKEET Yang et al. (2010), and demonstrate their
differences in complexity and achieved security. Thirdly,
to mitigate the inherent offline message recovery attacks,
we extend FG-PKEET to a two-proxy setting, where
two proxies need to collaborate in order to perform an
equality test. we present a security model to formalize
a set of security properties which are similar to those of
FG-PKEET. Finally, we propose a cryptosystem based
on the FG-PKEET cryptosystem proposed by Tang
(2011b), and prove its security in our security model.

1.3 Organization

The rest of the paper is organized as follows. In
Section 2, we formulate the concept of FG-PKEET.
In Section 3, we propose an FG-PKEET cryptosystem
and prove its security. In Section 4, we describe
two relevant properties for FG-PKEET cryptosystems,
namely resistance to offline message recovery attacks
and approximate equality test support. In Section 5, we
compare FG-PKEET with PKEET and AoN-PKEET.
In Section 6, we extend FG-PKEET to two-proxy
setting, propose a cryptosystem and prove its security.
In Section In Section 7, we conclude the paper.

2 Formulation of FG-PKEET

In this section, we first provide a formal description for
FG-PKEET, and then present the security model.

Throughout the paper, we use “||” to denote the
concatenation operator and use x ∈R X to denote that
x is chosen from X uniformly at random.

2.1 Description of FG-PKEET

An FG-PKEET cryptosystem consists of algorithms
(KeyGen, Enc, Dec, Aut, Com), where (KeyGen,Enc, Dec)
define a standard public key encryption scheme while
(Aut,Com) define the equality test functionality.

• KeyGen(`): This algorithm takes a security
parameter ` as input, and outputs a public/private
key pair (PK,SK). Let M denote the message
space.

• Enc(M, PK): This algorithm takes a message M ∈
M and the public key PK as input, and outputs
a ciphertext C.

• Dec(C, SK): This algorithm takes a ciphertext C
and the private key SK as input, and outputs the
plaintext M or an error message ⊥.

Let all the potential users be denoted as Ui (1 ≤ i ≤
N), where N is an integer, and they adopt the above
public key encryption scheme. For any i, suppose that
Ui’s key pair is denoted as (PKi, SKi). Suppose that Ui

and Uj want to enable a proxy to perform equality test
between their ciphertexts, the Aut and Com algorithms
are defined as follows.

• Aut(SKi; SKj ; ·): This algorithm is interactively
run among Ui, Uj and the proxy, and the two users
use their private keys as their secret inputs. At the
end of the algorithm execution, the proxy receives
a token Ti,j as the output, while Ui and Uj receive
no explicit output.

• Com(Ci, Cj , Ti,j): This algorithm takes two
ciphertexts Ci, Cj and the token Ti,j as input, and
outputs 1 if Mi = Mj or 0 otherwise. Note that
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Ci, Cj are two ciphertexts encrypted under PKi

and PKj respectively.

In the algorithm definitions, besides the explicitly
specified parameters, other public parameters could also
be specified and be implicitly part of the input. We omit
those parameters for the simplicity of description. Note
that, under our definition of Aut, Ti,j and Tj,i are exactly
the same thing.

It is worth noting that the Aut algorithm is supposed
to run interactively among two users and the proxy.
The interactive nature of this algorithm may seem
to be a drawback, but it in fact reflects the process
that the two users together authorize the semi-trusted
proxy to perform equality test between their ciphertexts.
Moreover, this algorithm only needs to be run once for
any selected proxy, which will then be able to compare
all ciphertexts of the two users. Therefore, the interactive
nature of the the Aut algorithm will not be a performance
bottleneck in practice.

Similar to other cryptographic primitives, the basic
requirement for FG-PKEET is soundness. Informally,
this property means that the algorithms Dec and Com
work properly with valid inputs. Formally, it is defined
as follows.

Definition 2.1: An FG-PKEET cryptosystem
achieves (unconditional) soundness if the following two
equalities hold for any i, j ≥ 1 and M, M ′ ∈M. Let
(PKi, SKi) = KeyGen(`) and (PKj , SKj) = KeyGen(`).

1. Dec(Enc(M, PKi), SKi) = M and
Dec(Enc(M ′, PKj), SKj) = M ′.

2. Com(Enc(M, PKi),Enc(M ′, PKj), Aut(SKi; SKj ; ·))
is equal to 1 if M = M ′, and 0 otherwise.

Remark 2.1: In the definitions of Aut and Com, we
implicitly assume that i 6= j because, for the moment,
we are only interested in testing the equality of the
ciphertexts of two different users. This implies that,
for a secure FG-PKEET cryptosystem, with a token
Ti,j , the proxy may be able to test the equality of
two ciphertexts of Ui. For example, in the proposed
FG-PKEET cryptosystem in Section 3, the token Ti,j

actually allows the proxy to perform equality test
between the ciphetrexts of Ui. Arguably, this may be
regarded as a potential vulnerability or be a violation
of the expected fine-grained authorization capability. In
Section 6, we will extend the concept of FG-PKEET into
a two-proxy setting, where we will take this issue into
account in more detail.

2.2 The Security Model

Before describing the security model for FG-PKEET,
we first informally distinguish three common trust
assumptions used in formulating security properties of
cryptographic protocols.

• The first and strongest trust assumption is fully
trusted. If Alice is fully trusted in a protocol, then
she will faithfully follow the protocol specification
and do nothing else.

• The second trust assumption is semi-trusted or
honest-but-curious. If Alice is semi-trusted in
a protocol, then she will faithfully follow the
protocol specification and may try to deduce
some private information from the transcripts of
protocol execution. However, Alice will not act
malicious in order to gain more benefits. For
example, Alice will not try to collude with another
party.

• The third and weakest trust assumption is
untrusted. If Alice is untrusted in a protocol, then
she is supposed to do everything in order to gain
some private information.

To facilitate our formal discussions, we make the
following assumptions.

1. First of all, all users honestly generate their
public/private key pairs and the execution of the
Aut algorithm will be carried out through secure
channels between the involved entities.

2. Secondly, the proxies are semi-trusted (or, honest-
but-curious) to the users who have chosen
them. They will faithfully follow the protocol
specifications, but will try to deduce some
information from the acquired data. In addition,
one proxy can serve multiple pairs of users to
perform equality test.

3. Thirdly, there is no overlap between the user set
and the proxy set, namely no user will be allowed
to act as a proxy for another two users. This will
greatly simplify our discussion.

With respect to an FG-PKEET cryptosystem, for
an honest user Ut, where 1 ≤ t ≤ N , we consider two
categories of adversaries, namely Type-I and Type-II
adversaries as illustrated in Figure 1.

1. Type-I adversary represents the semi-trusted
proxies with which Ut has run the algorithm Aut
with. Referring to Figure 1, Proxy I and Proxy L
are Type-I adversary.

2. Type-II adversary represents all possibly malicious
entities in the system from the perspective of Ut,
namely Ui (1 ≤ i ≤ N, i 6= t). In fact, all proxies
with which Ut has not run the algorithm Aut
should also be regarded as a malicious adversary,
because Ut do not even semi-trust them. For
example, Proxy T in Figure 1 is such an entity.
However, taking them into account will not give the
Type-II adversary extra power, so that we simply
ignore them.
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Figure 1 An Illustration of Adversaries for FG-PKEET

As to a Type-I adversary, it is involved in the
executions of the Aut algorithm as the proxy with Ut,
and obtains the tokens, and it may also obtain some
information about Ut’s plaintexts through accessing Ut’s
decryption oracle. Clearly, in the presence of a Type-I
adversary, standard indistinguishability notions, such as
IND-CCA and IND-CPA, cannot be achieved. Referring
to Figure 1, given Enc(Mt, PKt), Proxy L is able to test
whether Mt is equal to any M . Since the proxy has been
authorized by Ut and Uk together, to do so, it just needs
to run a test between Enc(Mt, PKt) and Enc(M, PKk).
Against a Type-I adversary, we consider the following
two security properties.

1. OW-CCA (i.e. one-wayness under a chosen
ciphertext attack), which implies that an adversary
cannot recover the plaintext from a ciphertext
C∗t = Enc(Mt, PKt) even if it is allowed to query
the decryption oracle with any ciphertext except
for C∗t . This is the best achievable security
guarantee considering the desired equality test
functionality.

2. Fine-grained authorization property, which means
that if two users have not authorized a proxy to
perform equality test between their ciphertexts
then the proxy should not be able to do so.
Referring to Figure 1, Ut and Un have not
authorized Proxy L to perform equality test
between their ciphertexts, so that it should not
be able to do so even if Ut has authorized it to
perform equality test between her ciphertexts and
those of Uj and Uk. It is worth noting this is an
analog to the collusion resistance property in the
attribute-based encryption schemes by Sahai and
Waters (2005).

As to the power of a Type-II adversary, it is involved
in the executions of the Aut algorithm as the other user
with Ut, so that it may learn some information about
Ut’s private key. Moreover, it may also obtain some
information about Ut’s plaintexts through accessing Ut’s
decryption oracle. In the presence of a Type-II adversary,
we define the standard IND-CCA security.

Note that it is straightforward to define the CPA
security by simply disallowing the adversary’s access to
the Dec oracle in the attack games, so that we omit the
details in this paper.

2.2.1 OW-CCA Security against a Type-I
Adversary

Definition 2.2: An FG-PKEET cryptosystem
achieves OW-CCA security against a Type-I adversary,
if, for any 1 ≤ t ≤ N , any polynomial-time adversary
has only a negligible advantage in the attack game
shown in Figure 2, where the advantage is defined to be
Pr[M ′

t = Mt].

1. The challenger runs KeyGen to generate
public/private key pairs (PKi, SKi) for
all 1 ≤ i ≤ N .

2. Phase 1: The adversary is allowed to issue
the following types of oracle queries.

(a) Dec query with data C as input for
the index i: the challenger returns
Dec(C,SKi).

(b) Aut query with two integer indexes
i, j (i 6= j) as input: the challenger
runs the Aut algorithm with the
adversary which plays the role of the
proxy.

At some point, the adversary asks the
challenger for a challenge for an index t.

3. Challenge phase: The challenger chooses
a message Mt ∈R M and sends C∗t =
Enc(Mt, PKt) to the adversary.

4. Phase 2: The adversary is allowed to issue
the same types of oracle queries as in
Phase 1. In this phase, the adversary’s
activities should adhere to the following
restriction: The Dec oracle should not
have been queried with the data C∗t for
the index t. At some point, the adversary
terminates by outputting a guess M ′

t .
Figure 2 The Game for OW-CCA

It is worth noting that, strictly speaking, the notion of
OW-CCA is neither weaker nor stronger than IND-CPA
given by Bellare et al. (1998). One one hand, an IND-
CPA secure scheme may not be OW-CCA. For instance,
many homomorphic encryption schemes, such as the
Elgamal scheme by ElGamal (1984) and the Paillier
scheme by Paillier (1999), are IND-CPA but they are
clearly not OW-CCA. On the other hand, an OW-CCA
secure scheme may not be IND-CPA. For instance, the
scheme proposed in Section 3 is OW-CCA but it is not
IND-CPA.

2.2.2 Fine-grained authorization property

Definition 2.3: An FG-PKEET cryptosystem
achieves the fine-grained authorization property
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against a Type-I adversary, if, for any 1 ≤ t ≤ N ,
any polynomial-time adversary has only a negligible
advantage in the attack game shown in Figure 3, where
the advantage is defined to be |Pr[b′ = b]− 1

2 |.

1. The challenger runs KeyGen to generate
public/private key pairs (PKi, SKi) for
all 1 ≤ t ≤ N .

2. Phase 1: The adversary is allowed to issue
the following types of oracle queries.

(a) Dec query with data C as input for
the index i: the challenger returns
Dec(C, SKi).

(b) Aut query with two integer indexes
i, j (i 6= j) as input: the challenger
runs the Aut algorithm with the
adversary which plays the role of the
proxy.

At some point, the adversary sends two
integer indexes t, w to the challenger for
a challenge. In this phase, the Aut oracle
should not have been queried with two
integer indexes t, w (t 6= w).

3. Challenge phase: The challenger
randomly chooses two different messages
M0,M1 from M and a random bit b.
If b = 0, send C∗t = Enc(M0, PKt) and
C∗w = Enc(M0, PKw) to the adversary,
otherwise send C∗t = Enc(M0, PKt) and
C∗w = Enc(M1, PKw).

4. Phase 2: The adversary is allowed to issue
the same types of oracle queries as in
Phase 1. In this phase, the adversary’s
activities should adhere to the restriction
described in Phase 1, together with the
following one: The Dec oracle should not
have been queried with the data C∗t and
index t or with the data C∗w and index w.
At some point, the adversary terminates
by outputting a guess b′.

Figure 3 The Game for the Fine-grained Authorization
Property

In the attack game, it is clear that b = 0 (b = 1)
implies the challenge ciphertexts do (not) contain the
same plaintext. As a result, the adversary’s ability of
determining b is equivalent to determining the equality
of ciphertexts of Ut and Uw. The adversary is not allowed
to access Tt,w because we assume the adversary is not
authorized by Ut and Uw to perform the equality test.

Note the fact that a FG-PKEET cryptosystem can
only achieve OW-CCA but not IND-CPA or IND-CCA.
If the adversary is allowed to choose M0, M1 in the
game, then it can trivially win the game. Therefore,

different from a typical IND (indistinguishability)
security definition, where the adversary is allowed to
choose M0,M1, in this game the challenger chooses both
messages.

2.2.3 IND-CCA Security against a Type-II
Adversary

Definition 2.4: An FG-PKEET cryptosystem
achieves IND-CCA security against a Type-II adversary,
if, for any 1 ≤ t ≤ N , any polynomial-time adversary
has only a negligible advantage in the attack game
shown in Figure 4, where the advantage is defined to be
|Pr[b′ = b]− 1

2 |.

1. The challenger runs KeyGen to generate
public/private key pairs (PKi, SKi) for
all 1 ≤ t ≤ N .

2. Phase 1: The adversary is allowed to issue
the following types of oracle queries.

(a) KeyRetrieve query with an integer
index i as input: the challenger
returns SKi to the adversary.

(b) Dec query with data C as input for
the index i: the challenger returns
Dec(C,SKi).

(c) Aut query, defined as below.

At some point, the adversary sends an
integer index t and two messages M0,M1

from M to the challenger for a challenge.
In this phase, the adversary’s activities
should adhere to the following criteria.

(a) The KeyRetrieve oracle should not
have been queried with the index t.

(b) For any i 6= t, the adversary is
allowed to issue Aut oracle queries
with indexes i, t as input, where the
adversary plays the role of Ui.

3. Challenge phase: The challenger
selects b ∈R {0, 1} and sends C∗t =
Enc(Mb, PKt) to the adversary.

4. Phase 2: The adversary is allowed to issue
the same types of oracle queries as in
Phase 1. In this phase, the adversary’s
activities are subject to the restrictions
described in Phase 1, together with the
following one: The Dec oracle should not
have been queried with the data C∗t and
index t. At some point, the adversary
terminates by outputting a guess b′.

Figure 4 The Game for IND-CCA
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In this game, the challenger generates all key pairs
while the adversary is allowed to adaptively retrieve
all private keys except SKt. This formulation faithfully
describe the power of a Type-II adversary in our security
model, as defined in Section 2.2. In particular, the
adversary is allowed to issue Aut oracle queries, which
reflects the fact that Ut may interactively run the Aut
algorithm with a Type-II adversary. A PKEET is IND-
CCA secure against a Type-II adversary implies that,
for Ut, the execution of the Aut algorithm leaks no
information to other users.

3 A New FG-PKEET Cryptosystem

3.1 Description of the Cryptosystem

The proposed cryptosystem has
(`,G, g, p, H1, ê,G1,G2, g1, g2,GT , q, H2, H3) as the
global parameters which are defined as follows.

1. ` is the security parameter, G is a multiplicative
group of prime order p, g is a generator of G,
and H1 : {0, 1}∗ → {0, 1}` is a cryptographic hash
function.

2. ê : G1 ×G2 → GT is a bilinear map, where G1

and G2 are multiplicative groups of prime order
q, and they have g1 and g2 as their generators
respectively. H2 : {0, 1}∗ → {0, 1}m+d1 , H3 :
{0, 1}∗ → G1 are two cryptographic hash
functions, where m is a polynomial in `, {0, 1}m is
the message space and d1 is the bit-length of p.

Remark 3.1: To satisfy the hardness assumptions
required in Section 3.2, a Type-2 or Type-3 pairing
setting as mentioned by Boyen (2008) is sufficient. A
Type-2 setting means that there should be no efficiently
computable homomorphism from G1 to G2. A Type-
3 setting means that there should be no efficiently
computable isomorphism between G1 and G2.

In a PKEET cryptosystem, a ciphertext allows
the receiver to decrypt and also allows a proxy to
perform equality test. Hence, the intuition behind our
construction is to integrate some extra components
into a standard public key encryption scheme, so
that these components will facilitate the equality test
functionality. Specifically, in the encryption algorithm of
the proposed scheme described in next subsection, the
extra components are C(2) and C(4).

3.1.1 The Public Key Encryption Scheme

With the above global parameters defined, we first define
the public key encryption algorithms (KeyGen,Enc,Dec).

• KeyGen(`): This algorithm outputs a private key
SK = (x, y), where x ∈R Zp and y ∈R Zq, and the

corresponding public key is PK = (gx, gy
1 ). Note

that the message space is M = {0, 1}m.

• Enc(M, PK): This algorithm outputs a ciphertext
C = (C(1), C(2), C(3), C(4), C(5)), where

u ∈R Zp, C(1) = gu, C(3) = H2(gux)⊕M ||u,

v ∈R Zq, C(2) = gv
1 , C(4) = gvy

1 · H3(M),

C(5) = H1(C(1)||C(2)||C(3)||C(4)||M ||u).

• Dec(C, SK): This algorithm first computes
M ′||u′ = C(3) ⊕ H2((C(1))x), and then check the
following

1. gu′ = C(1),
2. H1(C(1)||C(2)||C(3)||C(4)||M ′||u′) = C(5).

If all checks pass, output M ′, otherwise output an
error message ⊥.

Suppose that every user Ui, for 1 ≤ t ≤ N , adopts
the above public key encryption scheme. To facilitate
our description, we use the index i for all the
variables in defining Ui’s data. For example, Ui’s
key pair is denoted as (PKi, SKi), where SKi =
(xi, yi) and PKi = (gxi , gyi

1 ), and Ui’s ciphertext Ci =
(C(1)

i , C
(2)
i , C

(3)
i , C

(4)
i , C

(5)
i ) is written in the following

form.

ui ∈R Zp, C
(1)
i = gui , C

(3)
i = H2(guixi)⊕Mi||ui,

vi ∈R Zq, C
(2)
i = gvi

1 , C
(4)
i = gviyi

1 · H3(Mi),

C
(5)
i = H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui).

3.1.2 The Token Generation Algorithm

Suppose that Ui and Uj want a proxy to perform
equality test between their ciphertexts, then they run
the following Aut algorithm to generate the token Ti,j

for the proxy.

• Aut(SKi, SKj , ·): This algorithm results in a token
Ti,j = (gri,j

2 , g
yiri,j

2 , g
yjri,j

2 ) for the proxy. In more
details, the token is interactively generated as
follows.

1. Ui and Uj generate ri,j ∈R Zq together.
2. Ui sends g

ri,j

2 , g
yiri,j

2 to the proxy, and Uj

sends g
yjri,j

2 to the proxy.

Note that, there can be many different ways for Ui

and Uj to generate ri,j in implementing this algorithm.
For instance, they can use a interactive coin flipping
protocol, such as that by Blum (1983). Or, simply they
can exchanges two nonces and set ri,j to be the hash
value of them. In addition, the security properties will
not be affected if Uj is required to send g

ri,j

2 to the proxy.
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3.1.3 The Equality Test Algorithm

Suppose a proxy has received the token Ti,j , then it can
run the following Com algorithm to perform equality test
between the ciphetexts Ci and Cj , which are encrypted
under PKi and PKj respectively.

• Com(Ci, Cj , Ti,j): This algorithm outputs 1 if xi =
xj or 0 otherwise, where

xi =
ê(C(4)

i , g
ri,j

2 )

ê(C(2)
i , g

yiri,j

2 )

=
ê(gviyi

1 · H3(Mi), g
ri,j

2 )
ê(gvi

1 , g
yiri,j

2 )
= ê(H3(Mi), g2)ri,j

xj =
ê(C(4)

j , g
ri,j

2 )

ê(C(2)
j , g

yjri,j

2 )

=
ê(gvjyj

1 · H3(Mj), g
ri,j

2 )
ê(gvj

1 , g
yjri,j

2 )
= ê(H3(Mj), g2)ri,j

In this construction, the group G can be any
multiplicative group which holds the CDH assumption.
In face, it can be set to be G1 or G2, in which case p = q.
We keep it the present way for a general construction.
For the proposed cryptosystem, the token Ti,j actually
allows the proxy to perform equality test between the
ciphetrexts of Ui (and also Uj).

3.2 Security Analysis

In this section, we first prove that the proposed
cryptosystem in Section 3 is secure in our security model.
Then, we show how to improve its security against a
Type-I adversary.

3.2.1 Preliminary.

Following the work by Bellare and Rogaway (1993),
we use random oracle to model hash functions in our
security analysis. A function P (k) : Z→ R is said to be
negligible with respect to k if, for every polynomial f(k),
there exists an integer Nf such that P (k) < 1

f(k) for all
k ≥ Nf .

We say that the CDH (computational Diffie-Hellman)
assumption holds in G of prime order p if, given
ga, gb where g is a group generator and a, b ∈R Zp, an
adversary has only a negligible advantage in computing
gab.

We say that the DDH (decisional Diffie-Hellman)
assumption holds in G1 of prime order q, if an adversary
has only a negligible advantage in distinguishing
(ga

1 , gb
1, g

ab
1 ) from (ga

1 , gb
1, g

c
1) where g1 is a group

generator and a1, b1, c1 ∈R Zq. In the pairing setting,

namely there is an efficient and non-degenerate bilinear
map ê : G1 ×G2 → GT , the DDH assumption in G1 is
also referred to as the XDH (external Diffie-Hellman)
assumption given by Boneh et al. (2004a).

In order to prove the fine-grained authorization
property, we need a new assumption, referred to as
extended DBDH (decisional bilinear Diffie-Hellman)
assumption. Let a pairing setting be ê : G1 ×G2 → GT ,
where the order of groups is a prime q. The extended
DBDH problem is formulated as follows.

1. The challenger selects g1, g4, g5 ∈R G1, and
g2, g3 ∈R G2, and x1, y1,∈R Zq, and α, β ∈R G1.
The challenger flips a coin b ∈R {0, 1} and sends
Xb to the adversary, where

X0 = (gx1
1 , gx1

2 , gx1
4 · α, gy1

1 , gy1
3 , gy1

5 · α)

X1 = (gx1
1 , gx1

2 , gx1
4 · α, gy1

1 , gy1
3 , gy1

5 · β)

2. The adversary’s outputs a guess b′. The adversary’s
advantage is |Pr[b = b′]− 1

2 |.

The extended DBDH problem is at most as hard as
the XDH problem in a Type-2 or Type-3 pairing setting
mentioned by Boyen (2008). In other words, if there is an
algorithm to solve the XDH problem then there must be
an algorithm to solve the extended DBDH problem, but
it is not clear whether the vise-versa is true. Nonetheless,
similar to the proof of the implicit XDH assumption
given by Ballard et al. (2005), we can show the extended
DBDH assumption is hard in the generic group model.
We leave the details to the full paper.

3.2.2 Proof Results.

It is straightforward to verify that the soundness
property is achieved, namely the Dec and Com work
properly. We skip the details here.

Theorem 1: The proposed FG-PKEET cryptosystem
is OW-CCA secure against a Type-I adversary in the
random oracle model based on the CDH assumption in
G.

Proof sketch. Suppose an adversary has the
advantage ε in the attack game shown in Figure 2. The
security proof is done through a sequence of games by
shoup (2006).

Game0: In this game, the challenger faithfully
simulates the protocol execution and answers the oracle
queries from the adversary, and all hash functions
are treated as random oracles. Let ε0 = Pr[M ′

t = Mt].
Clearly, ε0 = ε holds.

Game1: In this game, the challenger performs
identically to that in Game0 except that the
following. For any index i, if the adversary queries
the decryption oracle Dec with Ci, the challenger
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computes Mi||ui = H2(guixi)⊕ C
(3)
i and verifies gui =

C
(1)
i . If the verification fails, return ⊥. Then, the

challenger checks whether there exists an input query
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) to H1, which outputs
C

(5)
i . If such an input query exists, return Mi; otherwise

return ⊥. Let the event Ent1 be that, for some Ci, a
fresh input C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui to H1 results in
C

(5)
i . Clearly, This game is identical to Game0 unless the

event Ent1 occurs. It is straightforward that Pr[Ent1]
is negligible if H1 is modeled as a random oracle. Let
ε1 = Pr[M ′

t = Mt] in this game. From the Difference
Lemma by shoup (2006), we have |ε1 − ε0| ≤ Pr[Ent1].

Game2: In this game, the challenger performs
identically to that in Game1 except that, for any index
i, if the adversary queries the decryption oracle Dec
with Ci, the challenger does the following. Try to
obtain the query to the oracle H1 with the input
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui satisfying

Mi||ui = H2(guixi)⊕ C
(3)
i ,

gui = C
(1)
i , H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) = C
(5)
i .

If such a query cannot be found, return ⊥. Otherwise,
return Mi. This game is indeed identical to Game1. Let
ε2 = Pr[M ′

t = Mt], then we have ε2 = ε1.
Game3: In this game, the challenger performs

identically to that in Game2 except that the challenge
C∗t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δ ∈R {0, 1}m+d1 ,

C
(3)
t = δ, C

(4)
t = gvtyt

1 · H3(Mt),

C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mt||ut).

This game is identical to Game2 unless the event Ent2
occurs, namely gutxt is queried to the random oracle H2.
Note that the private key xt is never used to answer
the adversary’s queries. Therefore, Pr[Ent2] is negligible
based on the CDH assumption in G. Let ε3 = Pr[M ′

t =
Mt] in this game. From the Difference Lemma by shoup
(2006), we have |ε3 − ε2| ≤ Pr[Ent2].

Since H1 and H3 are modeled as random oracles, it
is clear that ε3 is negligible. From the above analysis,
we have that ε ≤ Pr[Ent1] + Pr[Ent2] + ε3, which is
negligible in the random oracle model based on the CDH
assumption in G. The theorem now follows. ¤

Theorem 2: The proposed FG-PKEET cryptosystem
achieves fine-grained authorization property against a
Type-I adversary in the random oracle model based on
the CDH assumption in G and the extended DBDH
assumption.

Proof sketch. Suppose an adversary has the
advantage ε in the attack game shown in Figure 3. The
security proof is done through a sequence of games by
shoup (2006).

Game0: In this game, the challenger faithfully
simulates the protocol execution and answers the oracle
queries from the adversary, and all hash functions are
treated as random oracles. Let ε0 = Pr[b′ = b]. Clearly,
ε0 = ε holds.

Game1: In this game, the challenger performs
identically to that in Game0 except that the
following. For any index i, if the adversary queries
the decryption oracle Dec with Ci, the challenger
computes Mi||ui = H2(guixi)⊕ C

(3)
i and verifies gui =

C
(1)
i . If the verification fails, return ⊥. Then, the

challenger checks whether there exists an input query
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui to H1, which outputs C
(5)
i .

If such an input query exists, return Mi; otherwise
return ⊥. Let the event Ent1 be that, for some Ci, a
fresh input C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui to H1 results in
C

(5)
i . Clearly, This game is identical to Game0 unless the

event Ent1 occurs. it is straightforward that Pr[Ent1]
is negligible if H1 is modeled as a random oracle. Let
ε1 = Pr[b′ = b] in this game. From the Difference Lemma
by shoup (2006), we have |ε1 − ε0| ≤ Pr[Ent1].

Game2: In this game, the challenger performs
identically to that in Game1 except that, for any index
i, if the adversary queries the decryption oracle Dec
with Ci, the challenger does the following. Try to
obtain the query to the oracle H1 with the input
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui satisfying

Mi||ui = H2(guixi)⊕ C
(3)
i , gui = C

(1)
i ,

H1(C
(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) = C
(5)
i .

If such a query cannot be found, return ⊥. Otherwise,
return Mi. This game is indeed identical to Game1. Let
ε2 = Pr[b′ = b], then we have ε2 = ε1.

Game3: In this game, the challenger performs
identically to that as in Game2 except the following. The
challenge C∗t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δt ∈R {0, 1}m+d1 ,

C
(3)
t = δt, C

(4)
t = gvtyt

1 · H3(M0),

C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mt||ut).

The challenge C∗w is generated as follows.

C(1)
w = guw , C(2)

w = gvw
1 , δw ∈R {0, 1}m+d1 ,

C(3)
w = δw, C(4)

w = gvwyw

1 · H3(Mb),

C(5)
w = H1(C(1)

w ||C(2)
w ||C(3)

w ||C(4)
w ||Mb||uw).

This game is identical to Game2 unless the event
Ent2 occurs, namely gutxt or guwxw is queried to the
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random oracle H2. Note that the private keys xt, xw are
never used to answer the adversary’s queries. Therefore,
Pr[Ent2] is negligible based on the CDH assumption in
G. Let ε3 = Pr[b′ = b] in this game. From the Difference
Lemma by shoup (2006), we have |ε3 − ε2| ≤ Pr[Ent2].

Game4: In this game, the challenger performs
identically to that as in Game3 except for answering
the Aut queries. For Ut and Uw, the challenger chooses
hi, hw ∈R Zq at the beginning of the game. On receiving
an Aut query with the inputs i, t, the challenger returns
(ghir

2 , ghiyir
2 , g

hiyjr
2 ), where r ∈R Zq, and does something

similar to answering the query with the input i, w. Let
ε4 = Pr[b′ = b] in this game. It is clear that this game is
identical to Game3, therefore ε4 = ε3 holds.

Game5: In this game, the challenger performs
identically to that in Game4 except the following. The
challenge C∗t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δt ∈R {0, 1}m+d1 ,

C
(3)
t = δt, kt ∈R Zq, C

(4)
t = gvtytkt

1 ,

C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mt||ut).

The challenge C∗w is generated as follows.

C(1)
w = guw , C(2)

w = gvw
1 , δw ∈R {0, 1}m+d1 ,

C(3)
w = δw, C(4)

w = gvwywX
1 ,

C(5)
w = H1(C(1)

w ||C(2)
w ||C(3)

w ||C(4)
w ||Mb||uw).

The value of X is set to be kt if b = 0, and otherwise
set to be kw which is randomly chosen from Zq. Let
ε5 = Pr[b′ = b] in this game. It is clear that this game
is identical to Game4, therefore ε5 = ε4 holds. Let C0 =
(C∗t , C∗w) when b = 0, and C1 = (C∗t , C∗w) when b = 1.
Distinguishing C0 and C1 is equivalent to distinguishing
the following tuples.

(gyt

1 , gvt
1 , gytvtkt

1 , ght
2 , ghtyt

2 , gyw

1 , gvw
1 , gywvwkt

1 , ghw
2 , ghwyw

2 )

(gyt

1 , gvt
1 , gytvtkt

1 , ght
2 , ghtyt

2 , gyw

1 , gvw
1 , gywvwkw

1 , ghw
2 , ghwyw

2 )

It is straightforward to prove that to distinguish
the above tuples is equivalent to distinguishing the
extended DBDH tuples. Therefore, similar to proving
semantic security of ElGamal scheme by shoup (2006),
it is straightforward to verify that ε5 − 1

2 is negligible
based on the extended DBDH assumption.

From the above analysis, we have that |ε0 − ε5| ≤
Pr[Ent1] + Pr[Ent2], which is negligible in the random
oracle model based on the CDH assumption in G and the
extended DBDH assumption. Note that ε = |ε0 − 1

2 | and
|ε5 − 1

2 | is negligible, then ε is negligible. The theorem
now follows. ¤

Theorem 3: The proposed FG-PKEET cryptosystem
is IND-CCA secure against a Type-II adversary in the
random oracle model based on the CDH assumption in
G and the DDH assumption in G1.

Proof sketch. Suppose that an adversary has the
advantage ε in the attack game shown in Figure 4. The
security proof is done through a sequence of games by
shoup (2006).

Game0: In this game, the challenger faithfully
simulates the protocol execution and answers the oracle
queries from the adversary, and all hash functions are
treated as random oracles. Let ε0 = Pr[b′ = b]. Clearly,
ε0 = ε holds.

Game1: In this game, the challenger performs
identically to that in Game0 except that the
following. For any index i, if the adversary queries
the decryption oracle Dec with Ci, the challenger
computes Mi||ui = H2(guixi)⊕ C

(3)
i and verifies gui =

C
(1)
i . If the verification fails, return ⊥. Then, the

challenger checks whether there exists an input query
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) to H1, which outputs
C

(5)
i . If such an input query exists, return Mi; otherwise

return ⊥. Let the event Ent1 be that, for some Ci, a
fresh input C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui to H1 results in
C

(5)
i . Clearly, This game is identical to Game0 unless the

event Ent1 occurs. It is straightforward that Pr[Ent1]
is negligible if H1 is modeled as a random oracle. Let
ε1 = Pr[b′ = b] in this game. From the Difference Lemma
by shoup (2006), we have |ε1 − ε0| ≤ Pr[Ent1].

Game2: In this game, the challenger performs
identically to that in Game1 except that, for any index
i, if the adversary queries the decryption oracle Dec
with Ci, the challenger does the following. Try to
obtain the query to the oracle H1 with the input
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui satisfying

Mi||ui = H2(guixi)⊕ C
(3)
i , gui = C

(1)
i ,

H1(C
(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) = C
(5)
i .

If such a query cannot be found, return ⊥. Otherwise,
return Mi. This game is indeed identical to Game1. Let
ε2 = Pr[b′ = b], then we have ε2 = ε1.

Game3: In this game, the challenger performs
identically to that in Game2 except that the challenge
C∗t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δ ∈R {0, 1}m+d1 ,

C
(3)
t = δ, C

(4)
t = gvtyt

1 · H3(Mb),

C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mb||ut).

This game is identical to Game2 unless the event Ent2
occurs, namely gutxt is queried to the random oracle H2.
Note that the private key xt is never used to answer
the adversary’s queries. Therefore, Pr[Ent2] is negligible



Public Key Encryption Schemes Supporting Equality Test with Authorization of Different Granularity 9

based on the CDH assumption in G. Let ε3 = Pr[b′ =
b] in this game. From the Difference Lemma by shoup
(2006), we have |ε3 − ε2| ≤ Pr[Ent2].

Game4: In this game, the challenger performs
identically to that in Game3 except that the challenge
C∗t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δ ∈R {0, 1}m+d1 , C
(3)
t = δ,

C
(4)
t = gvtyt

1 · H3(Mb), γ ∈R {0, 1}`, C
(5)
t = γ.

This game is identical to Game3 unless
C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mb||ut is queried to the random
oracle H1, referred to as the event Ent3. Let ε4 =
Pr[b′ = b] in this game. Based on the CDH in G, we
have |ε4 − ε3| ≤ Pr[Ent3] is negligible.

Just the same as in proving the semantic security of
ElGamal scheme by shoup (2006), it is straightforward
to verify that ε4 − 1

2 is negligible based on the DDH
assumption in G1. From the above analysis, we have
that |ε0 − ε4| ≤ Pr[Ent1] + Pr[Ent2] + Pr[Ent3], which
is negligible in the random oracle model based on the
CDH assumption in G and the DDH assumption in G1.
Note that ε = |ε0 − 1

2 | and |ε4 − 1
2 | is negligible, then ε

is negligible. The theorem now follows. ¤

4 Analysis beyond the Security Model

In this section, we first describe offline message recovery
attacks, which apply to not only FG-PKEET but also
PKEET and AoN-PKEET by Yang et al. (2010); Tang
(2011a). Similar to the work by Tang (2011a), we
show how to mitigate the attacks against the proposed
FG-PKEET scheme in Section 3 by making use of
computational puzzle schemes. Then, we present a
variant of the proposed FG-PKEET cryptosystem to
support approximate comparisons.

4.1 Offline Message Recovery Attack

Note that since a Type-I adversary has access to a token
Ti,t, then given a ciphertext Enc(M, PKt) it can test
whether M ′ = M holds for any M ′ by checking the
following equality

Com(Enc(M ′, PKi), Enc(M, PKt), Ti,t) = 1.

Therefore, in the extreme situation when the actual
message space M is polynomial size or the min-entropy
of the message distribution is much lower than the
security parameter, for FG-PKEET, a Type-I adversary
(or, semi-trusted proxies) is capable of mounting an
offline message recovery attack by checking every M ′ ∈
M.

This type of attack is unavoidable due to the desired
plaintext equality test functionality, similar to the offline
keyword guessing attack in the case of PEKS (or
searchable encryption) by Byun et al. (2006); Tang and
Chen (2009). However, compared with the formulation

by Yang et al. (2010), where any adversary can mount
the attack, our formulation achieves a significant security
improvement because a Type-II adversary is unable to
mount the attack. Although an offline message recovery
attack is theoretically unavoidable in the presence of
a Type-I adversary, but, depending on the specific
cryptosystem, certain countermeasure can be employed
to mitigate such an attack. One possible countermeasure
is shown as below.

As in the original cryptosystem proposed in Section
3, the enhanced cryptosystem requires the same global
parameters, namely

(`,G, g, p, H1, ê,G1,G2, g1, g2,GT , q,H2,H3).

In addition, Q · T , a puzzle hardness parameter L
(detailed below), and a hash function UH : {0, 1}∗ →
Z∗Q·T are also published, where Q, T are two large
primes. These additional parameters are required by
the computational client puzzle scheme by Rivest et al.
(1996), which is employed because it is deterministic
and immune to parallel attacks by Tang and Jeckmans
(2010). Note that the generation of Q · T could be
bootstrapped by a party trusted by all users in the
system, and threshold techniques (e.g. Boneh and
Franklin (1997)) can be used to improve the security.
Nevertheless, this trust assumption is not required for
achieving the existing security properties.

The algorithms KeyGen and Dec are identical to
those in the original scheme, while the algorithms Enc is
redefined as follows.

• Enc(M, PK): This algorithm outputs a ciphertext
C = (C(1), C(2), C(3), C(4), C(5)), where

u ∈R Zp, C(1) = gu, C(3) = H2(gux)⊕M ||u,

v ∈R Zq, C(2) = gv
1 ,

C(4) = gvy
1 · H3((UH(M))2

L

mod Q · T )),

C(5) = H1(C(1)||C(2)||C(3)||C(4)||M ||u).

Compared with the original encryption and
decryption algorithms, the main difference is in
computing C(4), where the encryptor needs to perform L

multiplications in Z∗Q·T in order to compute (UH(M))2
L

mod Q · T to form C(4). Let every user Ui, for i ≥ 1,
adopt the above public key encryption scheme, and Ui’s
key pair be denoted as (PKi, SKi). The algorithms Aut
is identical to that in the original cryptosystem, but the
Com algorithm is defined as follows.

• Com(Ci, Cj , Ti,j): This algorithm outputs 1 if xi =
xj or 0 otherwise, where
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xi =
ê(C(4)

i , g
ri,j

2 )

ê(C(2)
i , g

yiri,j

2 )

=
ê(gviyi

1 · H3((UH(Mi))2
L

mod Q · T )), gri,j

2 )
ê(gvi

1 , g
yiri,j

2 )

= ê(H3((UH(Mi))2
L

mod Q · T )), g2)ri,j

xj =
ê(C(4)

j , g
ri,j

2 )

ê(C(2)
j , g

yjri,j

2 )

=
ê(gvjyj

1 · H3((UH(Mj))2
L

mod Q · T )), gri,j

2 )
ê(gvj

1 , g
yjri,j

2 )

= ê(H3((UH(Mj))2
L

mod Q · T )), g2)ri,j

As to this enhanced cryptosystem, the existing
properties still hold, and their security proofs remain
exactly the same. If a proxy is given Ut’s ciphertext
Enc(M, PKt) and token Ti,t, then it can obtain
H3((UH(M))2

L

mod Q · T ). To test any M ′, the
most efficient approach for the proxy is to compute
(UH(M ′))2

L

mod Q · T and perform a comparison
based on its hash value. Since every test will cost
L multiplications, then by setting an appropriate L
the offline message recovery attack will be made
computationally very expensive. Suppose that the size of
the actual message space is not very small, this approach
will deter the attack to some extent.

It is worth noting that, in this enhanced
cryptosystem, the encryptor needs to perform L
multiplications to mask the message in the encryption.
This may be a computational bottleneck for some
application scenarios. How to overcome this drawback
while still mitigating the attack is an interesting future
work.

4.2 Approximate Equality Test Support

Note that, throughout the paper, we have only talked
about exact equality test. It is reasonable to assume that,
in some application scenarios, users may want the proxy
to perform some form of approximate test. In this paper,
we focus on the following case: if the plaintext messages
are considered as integers, how to enable the proxy to
test whether |Mi −Mj | ≤ T , where T is an integer, given
the ciphertexts for Mi and Mj . Note that approximate
equality test based on other distance metrics may also
be interesting, but we leave them for future work.

In the original FG-PKEET cryptosystem,
the messages are hashed with H3 so that there
is no manipulation possible for the proxy to
perform approximation test. We propose an variant
cryptosystem, in which all algorithms remain the same
except for Enc. Note that we treat messages as integers.

• Enc(M, PK): This algorithm outputs a ciphertext
C = (C(1), C(2), C(3), C(4), C(5)), where

u ∈R Zp, C(1) = gu, C(3) = H2(gux)⊕M ||u,

v ∈R Zq, C(2) = gv
1 , C(4) = gvy

1 · gM
1 ,

C(5) = H1(C(1)||C(2)||C(3)||C(4)||M ||u).

It is clear that the only difference is the computation
of C(4), which is defined to be gvy

1 · H3(M) in the original
scheme.

Suppose that every user Ui, for 1 ≤ t ≤ N , adopts
the above public key encryption scheme. To facilitate
our description, we use the index i for all the
variables in defining Ui’s data. For example, Ui’s
key pair is denoted as (PKi, SKi), where SK =
(xi, yi) and PK = (gxi , gyi

1 ), and Ui’s ciphertext Ci =
(C(1)

i , C
(2)
i , C

(3)
i , C

(4)
i , C

(5)
i ) is written in the following

form.

ui ∈R Zp, C
(1)
i = gui , C

(3)
i = H2(guixi)⊕Mi||ui,

vi ∈R Zq, C
(2)
i = gvi

1 , C
(4)
i = gviyi

1 · gMi
1 ,

C
(5)
i = H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui).

Recall from Section 3, the equality test algorithm of
this variant cryptosystem is as follows.

• Com(Ci, Cj , Ti,j): This algorithm outputs 1 if xi =
xj or 0 otherwise, where

xi =
ê(C(4)

i , g
ri,j

2 )

ê(C(2)
i , g

yiri,j

2 )

=
ê(gviyi

1 · gMi
1 , g

ri,j

2 )
ê(gvi

1 , g
yiri,j

2 )

= ê(gMi
1 , g

ri,j

2 )

xj =
ê(C(4)

j , g
ri,j

2 )

ê(C(2)
j , g

yjri,j

2 )

=
ê(gvjyj

1 · gMj , g
ri,j

2 )
ê(gvj

1 , g
yjri,j

2 )

= ê(gMj

1 , g
ri,j

2 )

Now, if the proxy wants to test whether |Mi −Mj | ≤
T , then it can just test whether xi = xj · ê(gt

1, g
ri,j

2 )
for any −T ≤ t ≤ T . With this variant, the proxy can
perform other types of approximate equality tests, say
testing whether Mi = t ·Mj for any integer t.

It is true that the approximate equality test property
could be very useful and necessary in some application
scenarios. However, it should be noted that FG-PKEET
cryptosystems with such a property may possess two
vulnerabilities.
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• The first one is offline message recovery attacks.
Due to the requirement that the proxy somehow
needs to be able to manipulate some operations in
the comparison, the countermeasure proposed in
Section 4.1 cannot be applied any more. It remains
as a challenge to find a countermeasure.

• Besides recovering the messages, the proxy can
figure out more information about the plaintexts,
i.e. the relationships between the plaintexts. Note
that this is directly resulted from approximate
equality test requirement, and it demonstrates a
conflict between the desired functionality and the
available security.

5 Comparisons of PKEET Primitives

In this section, we compare the functionalities and
achieved security of three similar primitives, including
the PKEET by Yang et al. (2010), AoN-PKEET by Tang
(2011a), and FG-PKEET proposed in this paper.

5.1 Review of PKEET

According to its definition, a PKEET cryptosystem
(depicted in Figure 5) consists of four algorithms
(KeyGen, Enc,Dec, Com), where (KeyGen, Enc,Dec) are
similar to those of a standard public key encryption
scheme and the Com algorithm allows any entity to
compare two ciphertexts, which can be encrypted under
a single user’s public key or under two users’ public keys
respectively.

Figure 5 An Illustration of PKEET

As to security, for a user Ut, all other entities are
potential adversaries, who have the same privilege in the
sense that nobody has additional secret from Ut. As a
result, a PKEET cryptosystem can only achieve OW-
CCA security and it is naturally vulnerable to offline
message recovery attacks, which can be mounted by
any attacker. This means that a PKEET cryptosystem
is weaker than an AoN-PKEET or an FG-PKEET
cryptosystem from the security perspective.

As to the efficiency, a PKEET cryptosystem is
clearly more efficient in the sense that the users do
not need to explicitly authorize any proxy to enable
the comparison, in contrast to the other two primitives.

With respect to the common algorithms, generally a
PKEET cryptosystem should also be more efficiently
than an AoN-PKEET or FG-PKEET cryptosystem.
With respect to the cryptosystems PKEET by Yang
et al. (2010), AoN-PKEET by Tang (2011a), and FG-
PKEET proposed in Section 3, a rough complexity
comparison of the Enc, Dec, Com algorithms are shown
in Table 1, where Exp means exponentiation.

Enc Dec Com
PKEET 2 Exp 3 Exp 2 Pairings
AoN-PKEET 4 Exp 2 Exp 2 Exp
FG-PKEET 4 Exp 2 Exp 4 Pairings

Table 1 Computational Complexity Comparison

Note that the PKEET cryptosystem by Yang et al.
(2010) uses Type 1 pairing, while the FG-PKEET
cryptosystem proposed in Section 3 uses a Type 3 pairing
mentioned by Boyen (2008).

5.2 Review of AoN-PKEET

An AoN-PKEET cryptosystem consists of the same
set of algorithms as that of FG-PKEET, where
(KeyGen, Enc, Dec) are identical to those of FG-PKEET.
Let all the potential users be denoted as Ui (1 ≤ i ≤
N), where N is an integer, and they adopt the above
public key encryption scheme. For any i, suppose that
Ui’s key pair is denoted as (PKi, SKi). The Aut and Com
algorithms are defined as follows.

• Aut(SKi): This algorithm takes the private key
SKi as input and outputs a token Ti.

• Com(Ci, Cj , Ti, Tj): This algorithm takes two
ciphertexts Ci, Cj and two tokens Ti, Tj as input,
and outputs 1 if Mi = Mj or 0 otherwise. Note that
Ci, Cj are two ciphertexts encrypted under PKi

and PKj respectively, and Ti, Tj are the tokens
from Ui and Uj respectively. As a special case, if
the proxy wants to perform equality test between
Ui’s ciphertexts, it only needs Ti to run Com.

With respect to an AoN-PKEET cryptosystem, for
any honest user Ut, where t ≥ 1, two types of adversaries
are considered, as illustrated in Figure 6.

Figure 6 An Illustration of AoN-PKEET
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1. Type-I adversary represents the semi-trusted
proxies to which Ut has assigned his token. In
addition, this type of adversary has access to
the ciphertexts of all users. Referring to Figure
6, Proxy I and Proxy L are Type-I adversary.
Against this type of adversary, OW-CCA security
is defined, similar to that in Figure 2.

2. Type-II adversary represents all possibly malicious
entities in the system from the perspective of Ut. In
contrast to Type-I adversary, this type of adversary
only has access to the ciphertexts of all users.
Referring to Figure 6, such an adversary represents
Ui (i ≥ 1, i 6= t), the untrusted proxies and any
other outsider. Against this type of adversary,
IND-CCA security is defined, similar to that in
Figure 4.

In contrast to that of FG-PKEET, the Aut algorithm
of AoN-PKEET only takes one private key as input,
and the resulted token will enable the proxy to compare
the user’s ciphertexts to those of any other users. This
implies that an AoN-PKEET cryptosystem has very
coarse authorization capability, i.e. either giving full
privilege or giving nothing to a proxy. As a result, the
fine-grained authorization property defined in Figure 3
does not apply to AoN-PKEET.

6 FG-PKEET Cryptosystem in Two-Proxy
Setting

Due to the nature of FG-PKEET, it is impossible to
construct a cryptosystem which is immune to offline
message recovery attacks and the caveat related to
fine-grained authorization mentioned in Section 2.1.
Therefore, we extend the concept of FG-PKEET into
the two-proxy setting, where two semi-trusted proxies
need to work together in order to perform a equality
test. With respect to security, we assume that the
semi-trusted proxies chosen by a user will not collude
with each other. This is a standard assumption which
has been used by many other threshold cryptographic
primitives. For the simplicity of notation, we denote the
new extended primitive as FG-PKEET+.

6.1 New Security Model in Two-Proxy Setting

6.1.1 Description of FG-PKEET+.

An FG-PKEET+ cryptosystem consists of 5 algorithms
(KeyGen, Enc,Dec, Aut, Com), which are defined in the
same way as for FG-PKEET, except for the Aut and Com
algorithms.

Let all the potential users be denoted as Ui (1 ≤ i ≤
N), where N is an integer, and they adopt the above
public key encryption scheme. For any i, suppose that
Ui’s key pair is denoted as (PKi, SKi). Let all proxies
be denoted as Vx (1 ≤ x ≤ N ′), where N ′ is an integer.

For simplicity of description, we require that there is no
overlap between the user set and the proxy set. Suppose
that Ui and Uj want to enable two proxies Vx and Vy to
perform equality test between their ciphertexts, the Aut
and Com algorithms are defined as follows.

• Aut(SKi; SKj ;Vx, Vy): This algorithm is
interactively run among Ui, Uj and two proxies
Vx and Vy, and the two users use their private
keys as their secret inputs while the proxies have
no explicit input. At the end of the algorithm
execution, proxy Vx receives a token Tx;i,j as the
output and proxy Vy receives a token Ty;i,j as the
output, while Ui and Uj receive no explicit output.

We require that i = j is allowed which means that
a user want to authorize two proxies to perform
equality test on his ciphertexts. But, x 6= y should
always hold which implies a two-proxy setting.

• Com(Ci, Cj , Tx;i,j ; Ty;i,j): This algorithm is
interactively run between two proxies Vx, Vy,
where Ci, Cj are the ciphertexts of Ui and Uj . At
the end of the execution, the algorithm outputs 1
if Mi = Mj or 0 otherwise for both proxies.

6.1.2 Correctness of FG-PKEET+.

Similar to other cryptographic primitives, the basic
requirement to FG-PKEET+ is soundness. Informally,
this property means that the algorithms Dec and Com
work properly with valid inputs. Formally, it is defined
as follows.

Definition 6.1: A FG-PKEET+ cryptosystem
achieves (unconditional) soundness if the following
two equalities hold for any 1 ≤ i, j ≤ N , 1 ≤ x, y ≤
N ′, and M, M ′ ∈M. Let (PKi, SKi) = KeyGen(`),
(PKj , SKj) = KeyGen(`), and (Tx;i,j , Ty;i,j) =
Aut(SKi; SKj ;Vx, Vy).

1. Dec(Enc(M, PKi), SKi) = M , Dec(Enc(M ′, PKj), SKj) =
M ′.

2. Com(Enc(M, PKi), Enc(M ′, PKj), Tx;i,j , Ty;i,j) outputs
1 if M = M ′, and 0 otherwise to Vx and Vy.

6.1.3 Security Model of FG-PKEET+.

For this new primitive, we make the same set of
assumptions as we have made for FG-PKEET in Section
2. In addition, we assume that the semi-trusted proxies
will not collude with each other. Note that this new
assumption is only required for defining the fine-grained
authorization property.

Similar to FG-PKEET, with respect to an FG-
PKEET+ cryptosystem, for an honest user Ut, where
1 ≤ t ≤ N , we consider two categories of adversaries, as
illustrated in Figure 7.
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1. Type-I adversary represents any semi-trusted
proxy with which Ut has run the algorithm Aut
with. Referring to Figure 7, Proxy x, y, or
z is Type-I adversary. The difference with the
definition of Type-I adversary for FG-PKEET is
that we assume there no collusion between semi-
trusted proxies.

2. Type-II adversary represents all possibly malicious
entities in the system from the perspective of
Ut, namely Ui (1 ≤ i ≤ N, i 6= t). This is identical
to the definition of Type-II adversary for FG-
PKEET.

Figure 7 An Illustration of Adversaries for FG-PKEET+

For the same reason as in the case of FG-PKEET,
in the presence of a Type-I adversary, standard
indistinguishability notions, such as IND-CCA and IND-
CPA, cannot be achieved for FG-PKEET+. Similarly,
we focus on OW-CCA and fine-grained authorization
properties, which are slightly different from those of FG-
PKEET.

Definition 6.2: An FG-PKEET+ cryptosystem
achieves OW-CCA security against a Type-I adversary,
if, for any 1 ≤ t ≤ N , any polynomial-time adversary
has only a negligible advantage in the attack game
shown in Figure 8, where the advantage is defined to be
Pr[M ′

t = Mt].

Compared with the OW-CCA definition for FG-
PKEET, the main difference is that i = j is allowed in
any Aut query. This reflects the fact that we take into
account the fucntionality that a user needs to explicitly
grant the authorization to proxies to perform equality
test on his ciphertexts. Moreover, in the game, the
adversary plays the role of both proxies in an Aut query.
This implies that even if the proxies collude they cannot
recover an encrypted message. It provides somewhat
worst-case security guarantee.

Definition 6.3: An FG-PKEET+ cryptosystem
achieves the fine-grained authorization property
against a Type-I adversary, if, for any 1 ≤ t ≤ N ,
any polynomial-time adversary has only a negligible
advantage in the attack game shown in Figure 9, where
the advantage is defined to be |Pr[b′ = b]− 1

2 |.

1. The challenger runs KeyGen to generate
public/private key pairs (PKi, SKi) for
all 1 ≤ i ≤ N .

2. Phase 1: The adversary is allowed to issue
the following types of oracle queries.

(a) Dec query with data C as input for
the index i: the challenger returns
Dec(C,SKi).

(b) Aut query with two user indexes i, j
and proxy indexes x, y as input: the
challenger runs the Aut algorithm
with the adversary which plays the
role of proxies x, y. Note that i = j
is allowed but x = y is not allowed.

At some point, the adversary asks the
challenger for a challenge for an index t.

3. Challenge phase: The challenger chooses
a message Mt ∈R M and sends C∗t =
Enc(Mt, PKt) to the adversary.

4. Phase 2: The adversary is allowed to issue
the same types of oracle queries as in
Phase 1. In this phase, the adversary’s
activities should adhere to the following
restriction: The Dec oracle should not
have been queried with the data C∗t for
the index t. At some point, the adversary
terminates by outputting a guess M ′

t .
Figure 8 The Game for OW-CCA

Compared with the fine-grained authorization
property definition for FG-PKEET, the main difference
is that i = j is allowed in any Aut query and t = w
is allowed in the challenge. This reflects the fact that
we take into account the functionality that a user need
to explicitly grant proxies the authorization to perform
equality test on his ciphertexts, i.e. a proxy cannot
perform equality test on two ciphertexts of Ui even if
it has been authorized to perform equality test on two
ciphertexts which are for Ui and Uj respectively.

As to the power of a Type-II adversary, it is involved
in the executions of the Aut algorithm as the other user
with Ut, so that it may learn some information about
Ut’s private key. Moreover, it may also obtain some
information about Ut’s plaintexts through accessing Ut’s
decryption oracle. In the presence of a Type-II adversary,
we define the standard IND-CCA security, which is
identical to Definition 2.4, except for that an Aut oracle
query involves two proxies which will be simulated by
the challenger.
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1. The challenger runs KeyGen to generate
public/private key pairs (PKi, SKi) for
all 1 ≤ t ≤ N .

2. Phase 1: The adversary is allowed to issue
the following types of oracle queries.

(a) Dec query with data C as input for
the index i: the challenger returns
Dec(C, SKi).

(b) Aut query with two user indexes i, j
and proxy indexes x, y as input: the
challenger runs the Aut algorithm
with the adversary which plays the
role of proxy x. Note that i = j is
allowed but x = y is not allowed.

At some point, the adversary sends two
integer indexes t, w to the challenger. In
this phase, the Aut oracle should not have
been queried with two integer indexes
t, w.

3. Challenge phase: The challenger
randomly chooses two different messages
M0,M1 from M and a random bit b.
If b = 0, send C∗t = Enc(M0, PKt) and
C∗w = Enc(M0, PKw) to the adversary,
otherwise send C∗t = Enc(M0, PKt) and
C∗w = Enc(M1, PKw).

4. Phase 2: The adversary is allowed to issue
the same types of oracle queries as in
Phase 1. In this phase, the adversary’s
activities should adhere to the restriction
described in Phase 1, together with the
following one: The Dec oracle should not
have been queried with the data C∗t and
index t or with the data C∗w and index w.
At some point, the adversary terminates
by outputting a guess b′.

Figure 9 The Game for the Fine-grained Authorization
Property

6.2 Description of the Proposed Cryptosystem

6.2.1 The Public Key Encryption Scheme.

The global parameters and the public key encryption
algorithms (KeyGen,Enc,Dec) are defined as those of the
FG-PKEET cryptosystem proposed in Section 3.1.

Suppose that every user Ui, for 1 ≤ t ≤ N , adopts
the above public key encryption scheme. To facilitate
our description, we use the index i for all the
variables in defining Ui’s data. For example, Ui’s
key pair is denoted as (PKi, SKi), where SKi =
(xi, yi) and PKi = (gxi , gyi

1 ), and Ui’s ciphertext Ci =

(C(1)
i , C

(2)
i , C

(3)
i , C

(4)
i , C

(5)
i ) is written in the following

form.

ui ∈R Zp, C
(1)
i = gui , C

(3)
i = H2(guixi)⊕Mi||ui,

vi ∈R Zq, C
(2)
i = gvi

1 , C
(4)
i = gviyi

1 · H3(Mi),

C
(5)
i = H1(C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui).

Suppose that all proxies are denoted as Vx (1 ≤ x ≤ N ′),
where N ′ is an integer.

6.2.2 The Token Generation Algorithm

Suppose that Ui and Uj want to authorize proxies Vx and
Vy to perform equality test between their ciphertexts,
then they run the following Aut algorithm interactively.

1. Ui and Uj generate ri,j ∈R Zq together. Note that,
there can be many different ways for Ui and Uj

to generate ri,j . For instance, they can use an
interactive coin flipping protocol, such as that of
Blum (1983). Or, simply they can exchange two
nonces and set ri,j to be the hash value of them.

2. Ui chooses ti ∈R Zq, sends (gri,j

2 , g
(yi−ti)ri,j

2 ) to
proxy Vx, and sends (gri,j

2 , g
tiri,j

2 ) to proxy Vy.

3. Uj chooses tj ∈R Zq, sends g
tjri,j

2 to proxy Vx, and
sends g

(yj−tj)ri,j

2 to proxy Vy.

4. Proxy Vx’s token is Tx;i,j =
(gri,j

2 , g
(yi−ti)ri,j

2 , g
tjri,j

2 ), and proxy Vy’s token is
Ty;i,j = (gri,j

2 , g
tiri,j

2 , g
(yj−tj)ri,j

2 ).

As a special case of the above algorithm, if i = j, then
Ui first generates ri,i, ti, t

′
i ∈R Zq and then sends Tx;i,j

and Ty;i,j to Vx and Vy respectively, where

Tx;i,i = (gri,i

2 , g
(yi−ti)ri,i

2 , g
t′iri,i

2 ),

Ty;i,i = (gri,i

2 , g
tiri,i

2 , g
(yi−t′i)ri,i

2 ).

6.2.3 The Equality Test Algorithm.

Suppose that proxy Vx and proxy Vy have been
authorized by Ui and Uj to perform equality test on their
ciphertexts. If Vx wants to compare Ci and Cj , then the
Com algorithm is interactively run between Vx and Vy as
follows.

1. Vx sends the messages Ci, Cj to Vy, and they agree
on the ciphertexts to perform equality test. If Vy

has not been authorized by Ui and Uj , then it
rejects Vx’s request.

2. Proxy Vx computes Xi and sends rx ·Xi to proxy
Vy, where rx ∈R GT . Proxy Vy computes Xj and
sends ry ·Xj to proxy Vx, where ry ∈R GT .
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Xi =
ê(C(4)

i , g
ri,j

2 )

ê(C(2)
i , g

(yi−ti)ri,j

2 )

=
ê(gviyi

1 · H3(Mi), g
ri,j

2 ) · ê(gvi
1 , g

tiri,j

2 )
ê(gvi

1 , g
yiri,j

2 )

= ê(H3(Mi), g2)ri,j · ê(gvi
1 , g

tiri,j

2 )

Xj =
ê(C(4)

j , g
ri,j

2 )

ê(C(2)
j , g

(yj−tj)ri,j

2 )

=
ê(gvjyj

1 · H3(Mj), g
ri,j

2 ) · ê(gvj

1 , g
tjri,j

2 )
ê(gvj

1 , g
yjri,j

2 )

= ê(H3(Mj), g2)ri,j · ê(gvj

1 , g
tjri,j

2 )

3. Proxy Vx computes X∗
j and Proxy Vx computes

X∗
i , where

X∗
j = rx · ry ·Xj

ê(C(2)
j , g

tjri,j

2 )
, X∗

i = ry · rx ·Xi

ê(C(2)
i , g

tiri,j

2 )

4. Proxy Vx and Proxy Vx engages in a two-party
protocol to compare X∗

i and X∗
j . At the end of

the protocol, both proxies learn 1 if X∗
i = X∗

j

and 0 otherwise. As a specifical case of integer
comparison problem, there are many solutions
available, say that by Freedman et al. (2004).

As a special case of the above algorithm, if i = j and
Vx wants to compare Ci and C ′i, then the Com algorithm
is interactively run between Vx and Vy as follows. Let
C ′i = (C ′(1)i , C

′(2)
i , C

′(3)
i , C

′(4)
i , C

′(5)
i ) be written in the

following form.

u′i ∈R Zp, C
′(1)
i = gu′i , C

′(3)
i = H2(gu′ixi)⊕M ′

i ||u′i,

v′i ∈R Zq, C
′(2)
i = g

v′i
1 , C

′(4)
i = g

v′iyi

1 · H3(M ′
i),

C
′(5)
i = H1(C

′(1)
i ||C ′(2)i ||C ′(3)i ||C ′(4)i ||M ′

i ||u′i).

1. Vx sends the messages Ci, C ′i to Vy, and they agree
on the ciphertexts to perform equality test. If Vy

has not been authorized by Ui, then it rejects Vx’s
request.

2. Proxy Vx computes Xi and sends rx ·Xi to proxy
Vy, where rx ∈R GT . Proxy Vy computes X ′

i and
sends ry ·X ′

i to proxy Vx, where ry ∈R GT .

3. Proxy Vx computes X ′∗
i and Proxy Vx computes

X∗
i , where

X ′∗
i = rx · ry ·X ′

i

ê(C ′(2)i , g
t′iri,i

2 )
, X∗

i = ry · rx ·Xi

ê(C(2)
i , g

tiri,i

2 )

Xi =
ê(C(4)

i , g
ri,i

2 )

ê(C(2)
i , g

(yi−ti)ri,i

2 )

=
ê(gviyi

1 · H3(Mi), g
ri,i

2 ) · ê(gvi
1 , g

tiri,i

2 )
ê(gvi

1 , g
yiri,i

2 )

= ê(H3(Mi), g2)ri,i · ê(gvi
1 , g

tiri,i

2 )

X ′
i =

ê(C ′(4)i , g
ri,i

2 )

ê(C ′(2)i , g
(yi−t′i)ri,i

2 )

=
ê(gv′iyi

1 · H3(M ′
i), g

ri,i

2 ) · ê(gv′i
1 , g

t′iri,i

2 )

ê(gv′i
1 , g

yiri,i

2 )

= ê(H3(M ′
i), g2)ri,i · ê(gv′i

1 , g
t′iri,i

2 )

4. Proxy Vx and Proxy Vx engage in a two-party
protocol to compare X ′∗

i and X∗
i . At the end of the

protocol, both proxies learn 1 if X ′∗
i = X∗

i and 0
otherwise.

From the description, it is straightforward to verify
that the soundness property under Definition 6.1 is
achieved.

6.3 Security Analysis

Note the fact that, for any i, j, the tokens Tx;i,j and
Ty;i,j generated by the Aut algorithm proposed in Section
6.2.2 is a random division of the Token Ti,j generated
by the Aut algorithm proposed in Section 3.1.2. In other
words, given Ti,j , we can faithfully generate Tx;i,j and
Ty;i,j . Therefore, with respect to the OW-CCA security
property under Definition 6.2, a proof is identical to that
of Theorem 1. Another fact about the Aut algorithm
proposed in Section 6.2.2 is that Ui and Uj perform
identically to the case in Section 3.1.2, regardless the
trivial operation of dividing the values and assign them
to two proxies. As a result, Therefore, with respect to
the IND-CCA security property under Definition 2.4, a
proof is identical to that of Theorem 3.

Next, we give a proof for the fine-grained
authorization property according to Definition 6.3.

Theorem 4: The proposed FG-PKEET+

cryptosystem achieves fine-grained authorization
property against a Type-I adversary in the random
oracle model based on the CDH assumption in G and
the extended DBDH assumption.

Proof sketch. Suppose an adversary has the
advantage ε in the attack game shown in Figure 9. Now,
we consider two cases of an execution of the attack game.
One case is that t 6= w in the challenge. Based on the fact
that, for any i, j, given Ti,j we can faithfully generate
Tx;i,j and Ty;i,j . In this case, the adversary’s privilege in
the game is no more than that in the game defined in
Figure 3. Therefore, based on Theorem 2, we have ε to
be negligible.



16 Q. Tang

Now, we consider the other case where t = w in the
attack game, and show that ε is also negligible. The
security proof is done through a sequence of games by
shoup (2006).

Game0: In this game, the challenger faithfully
simulates the protocol execution and answers the oracle
queries from the adversary, and all hash functions are
treated as random oracles. Let ε0 = Pr[b′ = b]. Clearly,
ε0 = ε holds.

Game1: In this game, the challenger performs
identically to that in Game0 except that the
following. For any index i, if the adversary queries
the decryption oracle Dec with Ci, the challenger
computes Mi||ui = H2(guixi)⊕ C

(3)
i and verifies gui =

C
(1)
i . If the verification fails, return ⊥. Then, the

challenger checks whether there exists an input query
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui to H1, which outputs C
(5)
i .

If such an input query exists, return Mi; otherwise
return ⊥. Let the event Ent1 be that, for some Ci, a
fresh input C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui to H1 results in
C

(5)
i . Clearly, This game is identical to Game0 unless the

event Ent1 occurs. it is straightforward that Pr[Ent1]
is negligible if H1 is modeled as a random oracle. Let
ε1 = Pr[b′ = b] in this game. From the Difference Lemma
by shoup (2006), we have |ε1 − ε0| ≤ Pr[Ent1].

Game2: In this game, the challenger performs
identically to that in Game1 except that, for any index
i, if the adversary queries the decryption oracle Dec
with Ci, the challenger does the following. Try to
obtain the query to the oracle H1 with the input
C

(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui satisfying

Mi||ui = H2(guixi)⊕ C
(3)
i , gui = C

(1)
i ,

H1(C
(1)
i ||C(2)

i ||C(3)
i ||C(4)

i ||Mi||ui) = C
(5)
i .

If such a query cannot be found, return ⊥. Otherwise,
return Mi. This game is indeed identical to Game1. Let
ε2 = Pr[b′ = b], then we have ε2 = ε1.

Game3: In this game, the challenger performs
identically to that as in Game2 except the following. The
challenge C∗t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δt ∈R {0, 1}m+d1 ,

C
(3)
t = δt, C

(4)
t = gvtyt

1 · H3(M0),

C
(5)
t = H1(C

(1)
t ||C(2)

t ||C(3)
t ||C(4)

t ||Mt||ut).

The challenge C ′∗t is generated as follows.

C
′(1)
t = gu′t , C

′(2)
t = g

v′t
1 , δ′t ∈R {0, 1}m+d1 ,

C
′(3)
t = δ′t, C

′(4)
t = g

v′tyt

1 · H3(Mb),

C
′(5)
t = H1(C

′(1)
t ||C ′(2)t ||C ′(3)t ||C ′(4)t ||Mb||u′t).

This game is identical to Game2 unless the event Ent2
occurs, namely gutxt or gu′txt is queried to the random
oracle H2. Note that the private key xt is never used
to answer the adversary’s queries. Therefore, Pr[Ent2]
is negligible based on the CDH assumption in G. Let
ε3 = Pr[b′ = b] in this game. From the Difference Lemma
by shoup (2006), we have |ε3 − ε2| ≤ Pr[Ent2].

Game4: In this game, the challenger performs
identically to that as in Game3 except the following. The
challenge C∗t is generated as follows.

C
(1)
t = gut , C

(2)
t = gvt

1 , δt ∈R {0, 1}m+d1 , C
(3)
t = δt,

C
(4)
t = gvtyt

1 · H3(M0), γt ∈R {0, 1}`, C
(5)
t = γt.

The challenge C ′∗t is generated as follows.

C
′(1)
t = gu′t , C

′(2)
t = g

v′t
1 , δ′t ∈R {0, 1}m+d1 , C

′(3)
t = δ′t,

C
′(4)
t = g

v′tyt

1 · H3(Mb), γ′t ∈R {0, 1}`, C
′(5)
t = γ′t.

This game is identical to Game3 unless the event
Ent3 occurs, namely a message containing ut or u′t is
queried to the random oracle H1. Therefore, Pr[Ent2]
is negligible based on the CDH assumption in G. Let
ε4 = Pr[b′ = b] in this game. From the Difference Lemma
by shoup (2006), we have |ε4 − ε3| ≤ Pr[Ent3].

Let C0 = (C∗t , C ′∗t ) when b = 0, and C1 = (C∗t , C ′∗t )
when b = 1. Distinguishing C0 and C1 is equivalent to
distinguishing the following tuples:

(gyt

1 , gvt
1 , gytvt

1 · H3(M0), g
v′t
1 , g

ytv
′
t

1 · H3(M0))

(gyt

1 , gvt
1 , gytvt

1 · H3(M0), g
v′t
1 , g

ytv
′
t

1 · H3(M1)).

Note that every tuple can be regarded as two ElGamal
encryptions. In particular, the adversary has two
privileges:

• For some 1 ≤ x ≤ N ′, the adversary can possess
Tx;i,j for any 1 ≤ i, j ≤ N except for i = j = t,
through issuing the Aut oracle queries. These
tokens are random numbers without referring to
the other parts, namely Ty;i,j .

• The adversary can issue Com oracle queries with
two ciphertexts Ci, Cj and Tx;i,j as input. Due
to the randomization in step 2 and the secure
two-party comparison protocol, this algorithm
can be regarded as some sort of zero-knowledge
”decryption and compare” oracle. This means
that, given C

(2)
i = gvi

1 , C
(4)
i = gviyi

1 · hi and C
(2)
j =

g
vj

1 , C
(4)
j = g

vjyj

1 · hj , the oracle returns 1 if hi =
hj and 0 otherwise without revealing any other
information.

Given a tuple, these two privileges allow the adversary
to exclude T

2 possibilities of whether the tuple contains
two encryptions of H3(M0) or one encryption for H3(M0)
and one encryption for H3(M1), given it can issue T
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Com oracle queries. As a result, based on the DBDH
assumption in the group G1, ε4 − 1

2 is negligible in this
game.

From the above analysis, we have that |ε0 − ε4| ≤
Pr[Ent1] + Pr[Ent2] + Pr[Ent3], which is negligible in
the random oracle model based on the CDH assumption
in G and the DBDH assumption. Note that ε = |ε0 − 1

2 |
and |ε4 − 1

2 | is negligible, then ε is negligible when t = w.
Combining two cases, the theorem now follows. ¤

7 Conclusion

In this paper, we have reviewed the concepts of PKEET,
AoN-PKEET, and FG-PKEET, and discussed their
capabilities in authorizing users to control who can
perform equality test on their ciphertexts and the
available security guarantees. Our analysis has shown
that offline message recovery attack is a security concern
for all primitives, although only semi-trusted proxies
can carry out the attack in the case of AoN-PKEET
and FG-PKEET. To address the concern, we have
proposed the concept of FG-PKEET+, namely FG-
PKEET in two-proxy setting. The tradeoff is clear: an
FG-PKEET+ cryptosystem can prevent offline message
recovery attacks but it is more expensive to carry out the
test because it requires an interactive protocol between
two proxies. When to choose which primitive to use is
depending on the security and efficiency requirements
of the specific application scenario. It is an interesting
future work to further investigate this. Recall from
Section 6, one of the motivations of the two-proxy setting
is to mitigate the caveat that the proxy can test equality
of Ui’s ciphertexts, given a token Ti,j . It remains as
an interesting future work is to propose a FG-PKEET
cryptosystem without this caveat, where the attack game
for fine-grained authorization property is identical to
that in Figure 3 except that i = j and t = w are allowed
in the game.
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