
A Survey on Context-aware
systems

Matthias Baldauf and
Schahram Dustdar
e9902330@student.tuwien.ac.at
dustdar@infosys.tuwien.ac.at

TUV-1841-2004-24 November 30, 2004

Technical University of Vienna
Information Systems Institute
Distributed Systems Group

Context-aware systems offer entirely new opportunities for application de-
velopers and for end users by gathering context data and adapting sys-
tems’ behavior accordingly. Especially in combination with mobile devices
such mechanisms are of great value and claim to increase usability tremen-
dously. In this paper, we present a layered architectural framework for
context-aware systems. Based on our suggested framework for analysis,
we introduce various existing context-aware systems focusing on context-
aware middleware and frameworks, which ease the development of context-
aware applications. We discuss various approaches and analyze important
aspects in context-aware computing on the basis of the presented systems.

Keywords: Context-awareness, Layer architecture, Context framework,
Context middleware

c©2004, Distributed Systems Group, Technical University of Vienna

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402
fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

A Survey on Context-aware systems

Matthias Baldauf, Schahram Dustdar
Distributed Systems Group, Institute of Information Systems,

Vienna University of Technology
{e9902330@student.tuwien.ac.at | dustdar@infosys.tuwien.ac.at}

Abstract. Context-aware systems offer entirely new opportunities for application
developers and for end users by gathering context data and adapting systems’
behavior accordingly. Especially in combination with mobile devices such
mechanisms are of great value and claim to increase usability tremendously. In this
paper, we present a layered architectural framework for context-aware systems. Based
on our suggested framework for analysis, we introduce various existing context-aware
systems focusing on context-aware middleware and frameworks, which ease the
development of context-aware applications. We discuss various approaches and
analyze important aspects in context-aware computing on the basis of the presented
systems.

Keywords: Context-awareness, Layer architecture, Context framework, Context
middleware

1 Introduction

With the appearance and penetration of mobile devices such as notebooks, PDAs, and
smart phones, pervasive (ubiquitous) systems become increasingly more popular
these days. The term ‘pervasive’ introduced first by Mark Weiser in 1991 [38] refers
to the seamless integration of devices into the users’ everyday life. Appliances should
vanish in the background to make the user and his tasks the central focus rather than
computing devices and technical issues.

One part in the wide range of pervasive computing are the so called context-aware
(or sentient) systems. Context-aware systems are able to adapt their operations to the
current context without explicit user intervention and thus aim at increasing usability
and effectiveness by taking environmental context into account. Especially when
using mobile devices it is desirable that programs and services react specifically to
their current location, time and other environment attributes and adapt their behavior
to changing circumstances as context data may change rapidly. The needed context
information may be retrieved in a variety of ways like applying sensors, network
information, device status, browsing user profiles and using other sources.

The history of context-aware systems started in 1992 when Want, Hopper et al
introduced their ‘Active Badge Location System’ [39] which is considered to be one
of the first context-aware applications. The infrared technology based system is able
to determine a user’s current location which was used to forward phone calls to a

2

telephone close to the user. In the middle of the 1990s a couple of location-aware tour
guides [23, 40, 41] emerged which provided information according to the user’s
current location. While location is the most used attribute of context by far attempts to
use other context information as well grew over the last few years as the examples in
this paper show.

Hence, it is a challenging task to define the word ‘context’ and many researchers
tried to find their own definition for what context actually includes. In the literature
the term ‘context-aware’ first appeared in [1] where the authors describe context as
location, identities of nearby people and objects and changes to those objects. Such
enumerations of context examples were often used in the beginning of context-aware
system history. In [2] Ryan, Pascoe and Morse referred to context as the user’s
location, the environment, the identity and the time. Dey [3] enumerates context as
the user’s emotional state, focus of attention, location and orientation, date and time,
objects and people in the user’s environment. Another common way of defining
context was the use of synonyms. Hull, Neaves and Bedford-Roberts describe context
as the aspects of the current situation [4]. Definitions like this one are often too wide,
a good one is found in [5]: Brown defines context to be the elements of the user’s
environment that the computer knows about. One of the best topical definitions is
found by Dey and Abowd [6]. The authors refer to context as ‘any information that
can be used to characterize the situation of entities (i.e. whether a person, place or
object) that are considered relevant to the interaction between a user and an
application, including the user and the application themselves’.

One popular way to classify context instances is the distinction of different context
dimensions. In [7, 8] these dimensions are called ‘external’ and ‘internal’, [9] refers to
‘physical’ and ‘logical’ context. The ‘external’ (‘physical’) dimension means context
that can be measured by hardware sensors, i.e. location, light, sound, movement,
touch, temperature, air pressure etc. Whereas the ‘internal’ (‘logical’) dimension is
mostly specified by the user or captured monitoring the user’s interaction, i.e. the
user’s goals, tasks, work context, business processes, the user’s emotional state etc.

Most context-aware systems make use of external context factors as they provide
useful data like location information etc. Furthermore external attributes are easy to
sense due to off-the-shelf sensing technologies. Virtually all systems presented in this
paper apply physical context information. Examples for the use of logical data are the
Watson Project [10] and the IntelliZap Project [11] which support the user providing
relevant information due to information read out of opened web pages, documents etc.

When dealing with context three entities can be distinguished [12]: places (rooms,
buildings etc.), people (individuals, groups) and things (physical objects, computer
components etc.). Each of these entities may be described by various attributes
summarized to four main categories: identity (each entity has an unique identifier),
location (an entity’s position, co-location, proximity etc.), status (or activity, meaning
the intrinsic properties of an entity, e.g. temperature and lightning for a room,
processes running currently on a device etc.) and time (used for timestamps to
accurately define situation, ordering events etc.).

The reminder of this paper is structured as follows. Section 2 introduces current
design principles for context-aware systems describing requirements for their
architecture and the used context model. In section 3 we present a comparison of

3

existent context-aware systems and explain the approaches’ varieties and similarities.
Finally section 4 draws some concluding remarks.

2 Design Principles

2.1 Architecture

Context-aware systems can be implemented in many ways. The approach depends on
special requirements and conditions like e.g. the location of sensors (local or remote),
the amount of possible users (one user or many), the available resources of the used
devices (high-end-PCs or small mobile devices) or the facility of a further extension
of the system. Based on these considerations three different approaches of context-
aware system architectures can be distinguished [13]:

Direct sensor access: This approach is often used in devices with sensors locally
built in. The client software gathers the desired information directly from these
sensors, i.e. there is no additional layer for gaining and processing sensor data.
Drivers for the sensors are hardwired into the application, so this tight coupled
method is usable only in rare cases as it complicates extensibility. Also it is not suited
for distributed systems due to its direct access nature without any component capable
of managing multiple concurrent sensor accesses.

Middleware based: Modern software design uses methods of encapsulation to
separate e.g. business logic and graphical user interfaces. The middleware based
approach introduces a layered architecture to context-aware systems with the
intention of hiding low-level sensing details. Compared to direct sensor access this
technique eases extensibility since the client code has not be modified anymore and it
simplifies the reusability of hardware dependent sensing code due to the strict
encapsulation.

Context server: The next logical step is to permit multiple clients access to remote
data sources. This distributed approach extends the middleware based architecture by
introducing an access managing remote component. Gathering sensor data is moved
to this so called context server to facilitate concurrent multiple access. Beside the
reuse of sensors the usage of a context server has the advantage of relieving clients of
resource intensive operations. As probably the majority of end devices used in
context-aware systems are mobile gadgets with limitations in computation power,
disk space etc. this is an important aspect. Sadly there is no free lunch: in return one
has to consider about appropriate protocols, network performance, quality of service
parameters etc. when designing a context-aware system based on client-server
architecture.

In a similar manner Winograd [17] describes three different context management
models for coordinating multiple processes and components:

Widgets: Derived from the homonymous GUI elements a widget is a software
component that provides a public interface for a hardware sensor [12]. They hide low-
level details of sensing and ease application development due to their reusability.
Because of the encapsulation in widgets it is possible to exchange widgets which

4

provide the same kind of context data (e.g. exchange a radio frequency widget by a
camera widget to collect location data). Widgets are usually controlled by some kind
of a widget manager. The tight coupled widget approach increases efficiency but is
not robust to component failures.
Networked services: This more flexible approach, argued for e.g. in [42], resembles
the context server architecture. Instead of a global widget manager discovery
techniques are used to find networked services. This service based approach is not as
efficient as a widget architecture due to complex network based components but
provides robustness.

Blackboard model: In contrast to the process-centric view of the widget and the
service-oriented model the blackboard model represents a data-centric view. In this
asymmetric approach processes post messages to a shared media, the so called
blackboard, and subscribe to it to be notified when some specified event occurs.
Advantages of this model are the simplicity of adding new context sources and the
easy configuration. Unfavorable is the need of a centralized server to host the
blackboard and the lacks in communication efficiency as two hops per
communication are needed.

In this paper we will focus on middleware based and context-server based systems
due to their usability in distributed systems. Many layered context-aware systems and
frameworks have evolved during the last years. Most of them differ in the functional
range, location and naming of the layers, the use of optional agents etc. Beside these
adaptations and modifications a common architecture in modern context-aware
applications is identifiable when analyzing their design.

As mentioned above a separation of detecting and using context is necessary to
improve extensibility and reusability of systems. The following abstract architecture
augments layers for detecting and using context by adding interpreting and reasoning
functionality [12, 14].

application

storage/management

preprocessing

raw data retrieval

sensors

Fig. 1. Abstract layer architecture for context-aware systems

 The first layer consists of the sensors. It is notable that the word ‘sensor’ not only
refers to sensing hardware but to every data source which may provide usable context
information. Concerning to the way data are captured sensors can be classified in
three groups [15].

5

Physical sensors: The most frequently used type of sensors are physical sensors.
Many hardware sensors are available nowadays capable of capturing almost any
physical data. Table 1 shows some examples of physical sensors [16]:

Type of context Available Sensors
Light Photodiodes, color sensors, ir and uv-sensors etc.
Visual Context Various cameras
Audio Microphones
Motion, Acceleration Mercury switches, angular sensors, accelerometers, motion

detectors, magnetic fields
Location Outdoor:Global Positioning System (GPS), Global System for

Mobile Communications (GSM); Indoor: Active Badge
system etc.

Touch Touch sensors implemented in mobile devices
Temperature Thermometers
Physical attributes Biosensors to measure skin resistance, blood pressure

Table 1. List of different physical sensor types

Virtual sensors: Virtual sensors source context data from software. E.g. it is possible
to determine an employee’s location not only by using tracking systems (physical
sensors) but also by a virtual sensor, e.g. by browsing an electronic calendar, a travel-
booking system, emails etc. for location information. Other context attributes that can
be sensed by virtual sensors include e.g. the user’s activity by checking for mouse-
movement and keyboard input.
 Logical sensors: These sensors make use of a couple of information sources, they
combine physical and virtual sensors with additional information from databases etc.
to solve a higher task. E.g. by analyzing logins at desktop pcs and a database mapping
fixed devices to location information a logical sensor can be constructed to detect an
employee’s current position.

The second layer is responsible for the retrieval of raw context data. It makes use
of appropriate drivers for physical sensors and APIs for virtual and logical sensors.
The query functionality if often implemented in reusable software components which
make low-level details of hardware access transparent by providing more abstract
methods like getPosition() etc. By using interfaces for components responsible for
equal types of context these components become exchangeable. So it is possible e.g.
to replace a RFID system by a GPS system without any major modifications.

The next layer is not implemented in every context-aware system but may offer
useful information if the raw data are too coarse grained: this preprocessing layer is
responsible for reasoning and interpreting. The sensors queried in the underlying layer
most often return technical data that are not appropriate to use by application
designers, hence this layer raises the results of layer two to a higher abstraction level.
The transformations include extraction and quantization operations. E.g. the exact
GPS position of a person might not be of value for an application but the name of the
room the person is in is needed.

In context-aware systems consisting of several different context data sources the
single context atoms can be combined to high-level information in this layer. This

6

process is also called aggregation or compositing. A single sensor value is often not
important to an application; combined information might be more precious. In this
vein a system is able to determine e.g. whether a client is situated indoor or outdoor
by analyzing various physical data like temperature and light or whether a person is
currently attending a meeting by capturing noise level and location etc. To make this
analysis work correctly a lot of statistical methods are involved and often some kind
of training phase is required.

Obviously, this abstraction functionality could also be implemented directly by the
application. But due to a couple of reasons this task should be encapsulated and better
moved to the context server. The encapsulation advances the reusability and hence
eases the development of client applications. And by making such aggregators remote
accessible the network performance increases (as clients have to send only one
request to gain high-level data instead of connecting to various sensors) and limited
client resources are saved.

The problem of sensing conflicts that might occur when using several data sources
has also to be solved in this layer. E.g. when a system is notified about a person’s
location by the coordinates of her mobile phone and a camera spotting this person it
might be difficult to decide what information to use. Often this conflict is approached
by using additional data like time stamps and resolution information.

The fourth layer organizes the gathered data and offers them via a public interface
to the client. Access by clients may happen in two different ways: synchronous and
asynchronous. In the synchronous manner the client is polling the server for changes
via remote method calls: it sends a message requesting some kind of offered data and
pauses until it receives the server’s answer. The asynchronous mode works via
subscriptions: at the program’s start the client subscribes to specific events it is
interested in. When one of these events occurs the client is either simply notified or a
client’s method is directly involved using a callback.

In the majority of cases the asynchronous approach is more suitable due to rapid
changes in the underlying context. The polling technique is more resource intensive as
context data has to be requested quite often and the application has to prove for
changes itself using some kind of context history.

The client is realized in the fifth layer, the application layer. The actual reaction on
different events and context-instances is implemented here. Sometimes information
retrieval and application specific context management and reasoning is encapsulated
in form of agents which communicate with the context server and act as an additional
layer between the preprocessing and the application layer [13]. An example for
context logic at the client side is the display on mobile devices: as a light sensor
detects bad illumination text may be displayed in higher color contrast.

2.2 Context Models

A context model is needed to define and store context in a machine processible form.
To develop flexible and efficient context ontologies that cover the wide range of
possible contexts is a challenging task. The most important goals when designing a
context ontology include [20]:

7

 Simplicity: The used expressions and relations should be as simple as possible to
simplify the work of applications developers.
 Flexibility and extensibility: The ontology should support the simple addition of
new context elements and relations.
Genericity: The ontology should not be limited to special kind of context atoms but
rather support different types of context.
 Expressiveness: The ontology should allow to describe as much context states as
possible in arbitrary detail.

There are tools available to define declarative representations and to publish and
share ontologies developed by the World Wide Web Consortium, e.g. the Resource
Description Language (RDF) [19, 20, 21] and the Web Ontology Language OWL [22,
32, 34, 35]. A single context atom can be described with a couple of attributes. The
two most obvious are
 Context type: The context type refers to the category of context like temperature,
time, speed etc. This type information may be used a parameter for a context query or
a subscription, e.g. subscribeToChanges(“temperature”). It is important to use
meaningful type names, hence as the system grows some names might not be unique
anymore. For example the type ‘position’ may belong to a mobile device or a user.
One solution to create a well-structured type names is the use of cascaded names [20]
as shown in table 2.
 Context value: Context value means the raw data gathered by a sensor. The unit
depends on the context type and the applied sensor, e.g. degree Celsius, miles per
hour etc.

In most cases context type and context value are not enough information to build a
working context-aware system. Additional attributes that might be useful include
Description: A literal description containing details about the context atom. The
attribute is especially helpful to application developers when new sensors can be
dynamically added to the system.
Time stamp: This attribute contains a date/time-value describing when the context
was sensed. It is needed e.g. to create a context history and deal with sensing
conflicts.
 Source: A field containing information how the information was gathered. In case
of an hardware sensor it might hold the ID of the sensor and allow an application to
prefer data from this sensor.
 Confidence: The confidence attribute describes the uncertainty of this context type.
Not every data source delivers accurate information. E.g. location data suffers
inaccuracy dependent on the used tracking tool.

Part of a flexible context model is an extendable context vocabulary to deal with
abstract descriptions rather than technical data. It simplifies the description of various
context atoms and context instances. These verbal descriptions are often based on
subjective impressions and mostly implemented using fuzzy sets. In [20] ‘context’
refers to this attribute.

Table 2 shows a small part of an example vocabulary. Notice that not all contexts
have to be available at a time. In contrast to temperature a light source is not always
measurable.

8

Context type Context
Environment:Temperature Cold
Environment:Temperature Normal
Environment:Temperature Hot
Environment:Light:Source 50Hz
Environment:Light:Source 60Hz
Environment:Light:Source NotAvailable
Device:Activity:Placement AtHand
Device:Activity:Placement NotAtHand

Table 2. Example context vocabulary [20]

Based on this vocabulary above instances of context atoms can be created (Table 3).

Context type Context
value

Context Confidence Source Timestamp

Environment:Temperature 21 °C Normal 0.9 Sensor
#2

05-25-04
13:36:14

Device:Activity:Placement - AtHand 1 Sensor
#5

05-25-04
15:12:57

Table 3. Example context atoms

3 Existent systems and frameworks

3.1 Location-aware systems

Context-aware systems dealing with location information are widespread and the
demand for them grows due to the increasing spread of mobile devices. Although by
location mostly a user’s whereabouts is meant the term also refers to the location of
devices and services.

Famous examples for location-aware systems are various tourist guide projects
where information dependent to the current location is displayed, other examples can
be found in [25, 26, 27, 28]. A couple of different location aware infrastructures are
available to collect position data: GPS satellites, mobile phone towers, badge
proximity detectors, cameras, magnetic card readers, barcode readers etc. These
sensors can provide either position or proximity information, the appropriate sensor
depends on the use: they differ in price, accuracy, some need a clear line of sight,
other signals may travel through walls etc.

As a detailed example we introduce an indoor location sensing system: In [24]
Harter et al present a location-aware system using ultrasonic technique. To each entity
(person or equipment) that should be detectable a small sending unit called bat is

9

attached. These bats have globally unique identifiers and contain ultrasonic
transducers. To monitor the signals sent by the bats receivers are installed at the
rooms’ ceilings and connected by a wired network. The third needed hardware type is
a base station. It periodically sends radio messages with specific bat ids and resets the
receivers. A corresponding bat reacts emitting an ultrasonic impulse which is caught
by the receivers. By recording the time of arrival of signals the distance between the
bat and the receiver can be calculated. The bat’s exact position is then determined
using multilateration (an extension of trilateration). A challenge the authors where
confronted with due to the use of ultrasonic technique was the incorrect measurement
because of unwanted reflections of the signals. The problem could be solved by using
a statistical outlier rejection algorithm to improve the accuracy of the calculated
positions.

3.2 Context-aware systems

The systems named in the prior chapter use only one aspect of context, namely
location information. The use of different types of context atoms like e.g. noise, light
and location allows the combination to high-level context objects. These elements are
necessary to build more adaptive, useful and user-friendly systems.

As example for this kind of context-aware infrastructures serves the system
presented by Muñoz et al [29] which extends the instant messaging paradigm by
adding context-awareness to support information management within a hospital
setting. All users (in this case physicians, nurses etc.) are equipped with mobile
devices to write messages that are sent when a specified set of circumstances is
satisfied. For example a user can formulate a message that should be delivered to the
first doctor that enters room number 108 after 8 a.m. The contextual elements this
system is aware of include location, time, roles and device state.

Its context functionality is moved to agents which include three modules (layers).
The perception module gathers raw context information from data sources (sensors,
users, other agents, the server). The reasoning module governs the agent’s actions and
finally the action module triggers a user-specified event. All messages between agents
are XML encoded.

3.3 Context-aware frameworks

Context-aware systems capable of dealing with special types of context are well-
suited for specific conditions, e.g., the hospital scenario. These systems can be
optimized for the situations they are used in, they do not have to be flexible and
extensible. To really simplify the developing of context-aware applications rather an
abstract framework is needed. Such a generic infrastructure not only provides client
access to retrieve context data, it also permits the simple registration of new
distributed heterogeneous data sources.

In this section different context-aware frameworks are introduced and compared
based on various design decisions.

10

Architecture
The most common design approach for distributed context-aware frameworks is a

classical hierarchical infrastructure with one or many centralized components using a
layered architecture as presented in Section 2. This approach is useful to overcome
memory and processor constraints of small mobile devices but provides one single
point of failure and thereby lacks of robustness.

The architecture of the Context Managing Framework presented by Korpipää et al
in [19] is depicted in figure 2. Four main functional entities comprise this context
framework: the context manager, the resource servers, the context recognition
services and the application.

Application

Context Manager

Resource Servers
Context Recognition

Services

Fig. 2. Architecture of the Context Managing Framework

Whereas the resource servers and the context recognition services are distributed
components, the so-called context manager represents a centralized server managing a
blackboard: it stores context data and serves information to the clients applications.

The SOCAM (Service-oriented Context-Aware Middleware) project introduced by
Gu et al [32] is another architecture for the building and the rapid prototyping of
context-aware mobile services. It uses a central server as well, here called context
interpreter, which gains context data through distributed context providers and offers
it in mostly processed form to the clients. The context-aware mobile services are
located on top of the architecture: they make use of the different levels of context and
adapt their behavior according to the current context.

One further extensible centralized middleware approach designed for context-
aware mobile applications is a project called CASS (Context-awareness sub-structure)
[43]. Figure 3 shows the system’s composition.

11

MobileContextChannel

LocationFinder

ChangeListener

Interpreter

ContextRetriever

RuleEngine

SensorListener

Sensor

Sensor

Database

Hand-held computer

CASS Middleware

Sensor node

Fig. 3. Architecture of the CASS system

The middleware contains an Interpreter, a ContextRetriever, a Rule Engine and a
SensorListener. The SensorListener listens for updates from sensors which are located
on distributed computers called sensor nodes. Then the gathered information is stored
in the database by the SensorListener. The ContextRetriever is responsible for
retrieving stored context. Both of these classes may use the services of an interpreter.
The ChangeListener is a component with communications capabilities, that allows a
mobile computer to listen for notification of context change events. Sensor and
LocationFinder classes also have built-in communications capabilities. Mobile clients
connect to the server over wireless networks. To reduce the impact of intermittent
connections local caching on the client side is supported.

CoBrA (Context Broker Architecture) [34] is an agent based architecture for
supporting context-aware computing in so called intelligent spaces. Intelligent spaces
are physical spaces (e.g. living rooms, vehicles, corporate offices and meeting rooms)
that are populated with intelligent systems that provide pervasive computing services
to users. Central to CoBrA is the presence of an intelligent context broker that
maintains and manages a shared contextual model on the behalf of a community of
agents. These agents can be applications hosted by mobile devices that a user carries
or wears (e.g. cell phones, PDAs and headphones), services that are provided by
devices in a room (e.g. projector service, light controller and room temperature
controller) and web services that provide a web presence for people, places and things
in the physical world (e.g. services keeping track of people’s and objects’
whereabouts). The context broker consists of four functional main components: the
Context Knowledge Base, the Context Inference Engine, the Context Acquisition
Module and the Privacy Management Module. To avoid the bottle neck problem
CoBrA offers the possibility of creating broker federations.

The Context Toolkit [12, 30], another context-aware framework, takes a step
towards a peer-to-peer architecture but it still needs a centralized discoverer where
distributed sensor units (called widgets), interpreters and aggregators are registered in
order to be found by client applications. The toolkit’s object-oriented API provides a

12

superclass called BaseObject which provides generic communications abilities to ease
the creation of own components.

Another framework based on a layered architecture is built in the Hydrogen project
[9]. Its context acquisition approach is specializing in mobile devices. While in the
majority of existent distributed content-aware systems the working of a centralized
component is essential, the Hydrogen system tries to avoid this dependency. It
distinguishes between a remote and a local context: remote context is information
another device knows about, local context is knowledge our own device is aware of.
When the devices are in physical proximity they are able to exchange these contexts
in a peer-to-peer manner via WLAN, Bluetooth etc. This exchange of context
information among client devices is called “context sharing”. Figure 4 shows the
management of a device’s context which consists of its own local context and a set of
remote contexts gathered from other devices. Both local and remote context are made
up of context objects. The superclass ContextObject is extended by different context
types, e.g. LocationContext, DeviceContext etc. This approach allows the simple
addition of new context type by specializing ContextObject. A context type has to
implement ContextObject’s toXML and fromXML methods to convert the data to a
XML stream.

ContextObject

TimeContext DeviceContext NetworkContext

LocationContext UserContext ...

LocalContext RemoteContext

1

0..*

1

0..*

Context

1

0..*

1

0..*

Fig. 4. Hydrogen’s object oriented approach to manage local and remote contexts

The architecture consists of three layers which are all located on the same device
(figure 5). The Adaptor layer is responsible for retrieving raw context data by
querying sensors. This layer permits a sensor’s concurrent use by different
applications. The second layer, the Management layer, makes use of the Adaptor layer
to gain sensor data and is responsible for providing and retrieving contexts. The so
called ‘context server’ offers the stored information via synchronous and
asynchronous methods to the client applications. On top of the architecture is the
Application layer where appliance code is implemented to react on specific context
changes reported by the context manager. Due to platform and language
independency all inter-layer communication is based on a XML-protocol.

13

Application

ContextServer

User
Adapter

Location
Adapter

Time
Adapter

Network
Adapter

...
Adapter

ApplicationApplication

Management Layer

Adaptor Layer

Application Layer

Fig. 5. Architecture of the Hydrogen project

The CORTEX system is an example for a context-aware middleware approach. Its
architecture is based on the Sentient Object Model [31] which was designed for the
development of context-aware applications in an ad-hoc mobile environment. The
model’s special suitability for mobile applications depends on the use of STEAM, a
location-aware event-based middleware service designed specifically for ad-hoc
wireless networking environments.

Sensory
Capture

Context
Hierarchy

Inference
Engine

C
on

su
m

er
P

roducer

Sensor

Sensor

Actuator

Actuator

Sentient Object

Event

Fig. 6. The Sentient Object Model

A sentient object is an encapsulated entity consisting of three main parts (figure 6):
sensory capture, context hierarchy and inference engine. Via interfaces a sentient
objects communicates with sensors which produce software events and actuators
which consume software events. As figure 6 shows: sentient objects can be both
producer and consumer of another sentient object. Own sensors and actuators are
programmed using STEAM. For building sentient objects a graphical development
tool is available which allows developers to specify relevant sensors and actuators,
define fusion networks, specify context hierarchies and production rules, without the
need to write any code.

14

The Gaia project [36, 37], another middleware infrastructure, extends typical
operating system concepts to include context-awareness. It aims at supporting the
development and execution of portable applications for active spaces. Gaia exports
services to query and utilize existing resources, to access and use current context, and
provides a framework to develop user-centric, resource-aware, multi-device, context-
sensitive and mobile applications. The current system consists of the Gaia kernel and
the application framework (figure 7).

Component Management Core

Space
Repository

Service

Event
Manager
Service

Context
File

System

Presence
Service

Context
Service

Application Framework

Active Space Applications

}Gaia Kernel

Fig. 7. Architecture of the Gaia system

In this paper, we focus on Gaia’s parts concerning context-awareness, namely the
Event Manager, the Context Service and the Context File System. The Event Manager
service is responsible for event distribution in the active space and implements a
decoupled communication model based on suppliers, consumers, and channels. Each
channel has one or more suppliers that provide information to the channel and one or
more consumers that receive the information. The reliability is increased as suppliers
are exchangeable. With the help of the Context Service applications may query and
register for particular context information and higher level context objects. And
finally the Context File System makes personal storage automatically available in the
users' present location. It constructs a virtual directory hierarchy to represent context
as directories, where path components represent context types and values. For
example, to determine which files have the context of location == RM2401 &&
situation == meeting associated with them, one may enter the
/location:/RM2401/situation:/meeting directory.

Resource Discovery
As sensors in a distributed network may fail or new ones may be added, a discovery
mechanism to search for and find appropriate sensors at runtime is important.

For these purposes the Context Toolkit offers the already mentioned discoverer.
The discoverer works as registry component which interpreters, aggregators and
widgets have to notify about their presence and their contact possibilities. After
registration the components are pinged to ensure that they are operating. If a
component does not respond to a specified number of consecutive pings, the
discoverer determines that the component is unavailable and removes it from its
registry list. Customers may find appropriate components querying the discoverer
either via a white page lookup (a search for the component’s name) or a yellow page

15

lookup (a search for specific attributes). In case the lookup was successful the
discoverer returns a handle to contact the context component.

SCAM offers a discovery mechanism as well called service locating service. In
Gaia different context providers are stored in a registry component. A pure peer-to-
peer context-aware system like Hydrogen only uses local built-in sensors and does not
connect to distributed sensors therefore no discovery mechanism is involved.

Sensing
The Context Toolkit’s authors presented a new approach to handle different data
sources. Derived from the use of widgets in GUI development they introduced so
called context widgets to separate applications from context acquisition concerns. In
these widgets the complexity of sensing is hidden, further they abstract the gained
context information (e.g. the accurate position of a person might not be of value but
the application should be notified when this person enters another room) and as
widgets are encapsulated software components they are reusable. Each widget owns
some attributes that can be queried by applications, e.g. the IdentityPresence widget
implemented by the authors offers attributes like its location, the last time a presence
was detected and the identity of the last user detected. Beside the polling mechanism
an asynchronous way of data retrieval is possible too: if an application subscribes to a
widget it is notified when the widget’s context changes. The IdentityPresence
provides the callbacks PersonArrives(location, identity, timestamp) and
PersonLeaves(location, identity, timestamp) which are triggered when a person either
arrives or leaves a room. The separation of acquisition and use of context permits a
simple exchange of widgets since e.g. identity may be sensed in various ways like
Active Badges, video recognition etc.

This manner of building reusable sensor units that make the action of sensing
transparent to the customer (whether it is a centralized server or a distributed client
component) became widely accepted in distributed context-aware systems: CASS
applies ‘sensor nodes’, SOCAM uses ‘context providers’, the Context Managing
Framework refers to ‘resource servers’, CoBrA makes use of ‘context acquisition
components’.

Context Model
A efficient model for handling, sharing and storing context data is essential for a
working context-aware system. The Context Toolkit handles context in simple
attribute-value-tuples which are encoded using XML for transmission.

As already described above Hydrogen uses an object-oriented context model
approach with a superclass called ContextObject which offers abstract methods to
convert data streams from XML representations to context objects and vice versa.

More advanced ways of dealing with context data based on ontologies are found in
SOCAM, CoBrA and the Context Managing Framework. SOCAM’s authors divide a
pervasive computing domain into several sub-domains, e.g. home domain, office
domain etc., and define individual low-level ontologies in each sub-domain to reduce
the complexity of context processing. Each of these ontologies implemented in OWL
provides a special vocabulary used for representing and sharing context knowledge.

16

CoBrA also uses an own OWL-based ontology approach, namely COBRA-Ont [34,
35]. The following lines show a short part of an COBRA-Ont example:

<loc:LocationContext>

 <rdf:type rdf:resource="&tme;InstantThing"/>

 <loc:locationContextOf>

 <per:Person>

 <per:name rdf:datatype="&xsd;string">Harry
Chen</per:name>

 </per:Person>

 </loc:locationContextOf>

 <loc:boundedWithin rdf:resource="&ebgeo;Japan"/>

 <tme:at rdf:datatype="&xsd;dateTime">2004-02-
23T11:23:00</tme:at>

 </loc:LocationContext>

The ontology’s structure and vocabulary applied in the Context Managing Toolkit
are described in RDF. Parts of its vocabulary are used as example in Section 2, see
table 2 and 3.

In Gaia context is represented in a special manner, namely through 4-ary predicates
in the way Context(<ContextType>, <Subject>, <Relater>, <Object>) written in
DAML+OIL. The Context Type refers to the type of context the predicate is
describing, the Subject is the person, place or thing with which the context is
concerned, and the Object is a value associated with the Subject. The Relater relates
the Subject and the Object such as a comparison operator (=, >, or <), a verb, or
preposition. An example for a context instance is Context(temperature, room 3231, is,
98 F). This syntax is used for both representing context and forming inference rules.

Context Processing
After raw context data was sensed by a data source, it has to be processed as its
customers mostly are rather interested in already interpreted and aggregated
information than in raw, fine-grained data. Whereas context aggregation means the
composing of context atoms either to collect all context data concerning a specific
entity or to build higher-level context objects, context interpretation refers to the
transformation of context data including special knowledge. These forms of context
data abstraction ease the application designer’s work tremendously.

The Context Toolkit offers facilities for both context aggregation and context
interpretation: the context aggregators (former called context servers) are responsible

17

for composing context about of particular entity by subscribing to relevant widgets,
context interpreters provide the possibility of transforming context, e.g. in a simple
case returning the corresponding email address to a passed name. Like widgets
aggregators and interpreters inherit communication methods from the upperclass
BaseObject and have to be registered at the discoverer in order to be found.

The Context Managing Framework presented by Korpipää et al. (Fig. Xx) offers
various processing facilities as well. Its resource servers’ task is complex: First they
gather raw context information by connecting to various data sources. After the
preprocessing and feature abstraction crip limits and fuzzy sets are used for
quantization. But now the data are delivered by posting it to the context manager’s
blackboard. The context recognition services are used by the context manager to
create higher-level context object out of context atoms. In this vein new recognition
services are easy to add.

In SOCAM the Context Reasoning Engine reasons over the knowledge base, its
tasks include inferring deduced contexts, resolving context conflicts and maintaining
the consistency of the context knowledge base. Different inference rules used by the
reasoning engine can be specified. The interpreter is implemented with the help of
Jena2 [33], a semantic web toolkit.

In CoBrA’s architecture the so-called Inference Engine processes context data. The
engine contains the Context Reasoning Module responsible for aggregating context
information: it reasons over the Context Knowledge Base and deduces additional
knowledge from information acquired from external sources.

In CASS the deriving of high-level context is also based on an inference engine
and a knowledge base. The knowledge base contains rules queried by the inference
engine to find goals using the so called forward chaining technique. As these rules are
stored in a database separated from the interpreter whether recompiling nor restarting
of components is necessary when rules change. Table 4 shows an example for a rule.

Rain Brightness Temperature Goal
wet dull cold Indoor

Table 4. A rule’s database entry containing criteria to display rather indoor than outdoor
activities in a CASS based tour-guide application.

In CORTEX the whole context processing is encapsulated in Sentient Objects: the
sensory capture unit performs sensor fusion to manage uncertainty of sensor data
(sensing conflicts) and to build higher-level context objects. Different contexts are
represented in a so called context hierarchy together with specific actions to be
undertaken in each context. Since only one context is active at any point in time
(concept of the ‘active context’) the number of rules that have to evaluated are limited
which increases efficiency of the inference process. The inference engine component
is based on CLIPS (C Language Integrated Production System). It is responsible for
changing application behavior according to the current context by using conditional
rules.

Gaia’s context processing is hidden in the Context Service Module allowing the
creation of high-level context objects by performing first order logic operations such
as quantification, implication, conjunction, disjunction, and negation of context
predicates. One example of a rule is Context(Number of people, Room 2401, >, 4)

18

AND Context(Application, Powerpoint, is, Running) => Context(Social Activity,
Room 2401, Is, Presentation).

Almost all current context-aware frameworks permit the aggregation and
interpretation of raw context data, only exceptions leave the higher-level abstractions
for the applications’ layer (e.g. Hydrogen, Owl [45]).

Historical context data
Sometimes it might be necessary to have access to historical context data. Such
context histories may be used to establish trends and predict future context values. As
most data sources constantly provide context data, the maintaining of a context
history is mainly a memory concern, so a centralized high-resource storage
component is needed. Since in a server-based architecture the context data provided
by sensors has to be stored at the server-side anyway to offer it to customers, the
majority of these systems has the facility to query historical context data.

The Context Toolkit, CoBrA, CASS, SOCAM, CORTEX and Owl save sensed
context data persistently in a database. An further advantage of using a database is the
use of the Structured Query Language (SQL) which enables read and manipulation
operations at a high abstraction level.

In the CoBrA and the CASS architecture the persistent storage is called Context
Knowledge Base, additionally a set of APIS is offered to assert, delete, modify and
query the stored knowledge.

CASS uses its database not only to save context data but also to store domain
knowledge and inference rules needed for creating high-level context.

Due to limited memory resources a peer-to-peer network of mobile devices like
Hydrogen is not able to offer persistent storage possibilities.

Security and Privacy
As context may include sensitive information on people, e.g. their location and their
activity, it is necessary to have the possibility of protecting privacy.

For these purposes the Context Toolkit introduces the concept of context
ownership. Users are assigned to sensed context data as their respective owners who
are allowed to control the other user’s access. New components involved in this
access control are the Mediated Widgets, Owner Permissions, a modified BaseObject
and Authenticators. The MediatedWidget class is an extension of a basic widget
which contains a so-called widget developer specifying who owns the data being
sensed. The Owner Permission is the component that receives permission queries and
determines to grant or to deny access based on stored situations. These situations
include authorized users, time of access etc. The modified BaseObject contains all the
original methods augmented with identification mechanisms. Applications and
components now have to provide their identity along with the usual request for
information. Finally the Authenticator is responsible for proofing the identity using a
public-key infrastructure.

Owl’s security concept is based on Role Based Access Control (RBAC). As the
number of users is generally smaller than the number of roles the amount of managed
associations between entities and privileges is reduced. The authors remind to
consider the privacy of the context sources as well as that of the context subjects.

19

CoBrA includes an own flexible policy language to control context access, called
Rei [44]. This policy language is modeled on deontic concepts of rights, prohibitions,
obligations and dispensations and controls data access through dynamically
modifiable domain dependent policy rules. The example for Rei’s rule syntax shown
below states that all employees of ‘UBMC’ can perform senseAction1.

has(Variable, right(senseAction1,
employee(Variable,’UMBC’))))

4 Conclusion and future work

In this survey paper we introduced an abstract layer architecture for context-aware
systems and presented various existent middleware and server-based approaches to
ease the development of context-aware applications. The direct comparison of the
named systems and frameworks shows their similarity concerning the layered
structure. Especially remarkable is the strict division of the context data’s acquisition
and use. Thus context sources become reusable and are able to serve a multitude of
context clients.

Although most authors refer to abstract ‘context sources’ the current mainly used
and tested sources are physical sensors. Virtual and logical sensors are capable of
providing useful context data as well and should be more incorporated in the ongoing
research. Other often disregarded aspects are security and privacy issues. These facets
belong to the most important components of a context-aware system as the protection
of sensitive context data must be guaranteed. Many systems totally lack security
modules, others provide basic security mechanisms and only a few systems offer
advanced and sufficient security options.

Probably the main problem in the presented approaches is the variety of used
context encodings and ways to find and access context sources. Every system and
framework uses its own format to describe context and its own communications
mechanisms. We believe that standardized formats and protocols are important for the
enhancements of context-aware systems to make the development of context services
the focus rather than the communication between context sources and users. In our
opinion Web services seem to be an appropriate solution to achieve that aim as they
provide standardized methods for service description and access: The XML-based
WSDL (Web Services Description Language) is suited to describe the functionality of
and communication with a context service, whereas the UDDI (Universal Description,
Discovery and Integration) can be used to search for and register context services.
Hence we are going to continue our investigation on context-aware systems placing
emphasis on service-oriented architectures, especially exploring advantageous
opportunities provided by Web services.

20

References

 [1] Bill N. Schilit and Marvin M. Theimer. Disseminating Active Map Information to Mobile
Hosts. IEEE Network, 8(5). 1994

 [2] Nick Ryan, Jason Pascoe and David Morse. Enhanced reality fieldwork: the context-
aware archaeological assistant. Gaffney, V., van Leusen, M., Exxon, S. (eds) Computer
Applications in Archaeology 1997

 [3] Anind K. Dey. Context-aware computing: The CyberDesk project. Proceedings of the
AAAI 1998 Spring Symposium on Intelligent Environments. Menlo Park, CA: AAAI
Press.

 [4] Richard Hull, Philip Neaves, James Bedford-Roberts. Towards situated computing. In
Proceedings of International Symposium on Wearable Computers 1997

 [5] Peter J. Brown. The Stick-e Document: a framework for creating context-aware
applications. In Electronic Publishing, Palo Alto, 1996

 [6] Anind K. Dey, Gregory D. Abowd. Towards a better understanding of context and
contextawareness. Proceedings of the Workshop on the What, Who, Where, When and
How of Context-Awareness, affiliated with the CHI 2000 Conference on Human Factors
in Computer Systems, New York, NY: ACM Press. 2000

 [7] Paul Prekop, Mark Burnett. Activities, context and ubiquitous computing. Special Issue
on Ubiquitous Computing Computer Communications, vol.26, no.11, 2003

 [8] Richard Moe Gustavsen. Condor – An Application Framework for mobility-based
context-aware Applications. 2002

 [9] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leonhartsberger, Josef
Altmann. Context-Awareness on Mobile Devices – the Hydrogen Approach. 2002

[10] Jay Budzik, Kristian J. Hammond. User interactions with everyday applications as
context for just-in-time information access. Proceedings of Intelligent User Interfaces
2000. ACM Press, 2000

[11] Lev Finkelstein, Evgeniy Gabrilovich1, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman and Eytan Ruppin. Placing Search In Context: the Concept Revisited. Tenth
International World Wide Web Conference WWW10, Hong Kong, 2001

[12] Anind K. Dey, Gregory D. Abowd. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer
Interaction (HCI) Journal, Volume 16 (2-4)

[13] Harry Chen. An Intelligent Broker Architecture for Context-Aware Systems. PhD.
Dissertation proposal. 2003

[14] Heikki Ailisto, Petteri Alahuhta, Ville Haataja, Vesa Kyllönen, Mikko Lindholm.
Structuring Context Aware Applications: Five-Layer Model and Example Case. 2002

[15] Jadwiga Indulska, Peter Sutton. Location Management in Pervasive Systems. In
Conferences in Research and Pratice in Information Technology series, Vol. 21. 2003

[16] Albrecht Schmidt, Kristof Van Laerhoven. How to Build Smart Appliances? IEEE
Personal Communications 8(4). 2001

[17] Terry Winograd. Architectures for Context. Human-Computer-Interaction, vol.16, nos. 2-
4) 2001

[18] Anand Ranganathan, Roy H. Campbell. An infrastructure for context-awareness based
on first order logic. Personal and Ubiquitous Computing 7 2003

[19] Panu Korpipää, Jani Mäntyjärvi, Juha Kela, Heikki Keränen, Esko-Juhani Malm.
Managing Context Information in Mobile Devices. IEEE Pervasive Computing. 2003

21

[20] Panu Korpipää, Jani Mäntyjärvi. An Ontology for Mobile Device Sensor-Based Context
Awareness. Proc. Context ’03, LNAI no. 2680, 2003

[21] Resource Description Framework (RDF). www.w3.org/RDF/
[22] OWL Web Ontology Language Overview. http://www.w3.org/TR/owl-features/
[23] Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, Mike

Pinkerton. Cyberguide: A mobile context-aware tour guide. Wireless Networks, 3(5).
1997

[24] Andy Harter, Andy Hopper, Pete Steggles, AndyWard, Paul Webster. The Anatomy of a
Context-Aware Application. Wireless Networks, 8(2/3) 2002

[25] Fredrik Espinoza, Per Persson, Anna Sandin, Hanna Nyström, Elenor Cacciatore, Markus
Bylund. GeoNotes: Social and Navigational Aspects of Location-Based Information
Systems. SICS Technical Report T2001:08. 2001

[26] Nissanka B. Priyantha, Anit Chakraborty, Hari Balakrishnan. The Cricket Location-
Support System. In Proceedings of the Sixth ACM Annual International Conference on
Mobile Computing and Networking (Boston, MA). 2000

[27] Jenna Burrell, Geri K. Gay. E-graffiti: evaluating real-world use of a context-aware
system. Interacting with Computers (Special Issue on Universal Usability) 14(4). 2002

[28] Clemens Kerer, Schahram Dustdar, Mehdi Jazayeri, Danilo Gomez, Akos Szego, Jose A.
Burgos Caja. Presence-Aware Infrastructure using Web services and RFID technologies

[29] Miguel A. Muñoz, Marcela Rodríguez, Jesus Favela, Ana I. Martinez-Garcia, Victor M.
González. Context-Aware Mobile Communication in Hospitals. 2003

[30] Daniel Salber, Anind K. Dey, Gregory D. Abowd. The Context Toolkit: Aiding the
Development of Context-Enabled Applications. In Proceedings of ACM CHI 99,
Pittsburgh, PA. 1999

[31] Gregory Biegel, Vinny Cahill. A Framework for Developing Mobile, Context-aware
Applications. In Proceedings of 2nd IEEE conference on Pervasive computing and
Communications, Percom 2004

[32] Tao Gu, Xiao Hang Wang, Hung Keng Pung, Da Qing Zhang. A Middleware for
Context-Aware Mobile Services. IEEE Vehicular Technology Conference. Milan, Italy,
2004

[33] Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net.
[34] Harry Chen, Tim Finin, Anupam Joshi. Using OWL in a Pervasive Computing Broker.

Workshop on Ontologies in Agent Systems, AAMAS 2003
[35] Harry Chen, Tim Finin, Anupam Joshi. An Ontology for Context-Aware Pervasive

Computing Environments. Special Issue on Ontologies for Distributed Systems,
Knowledge Engineering Review. 2004

[36] Manuel Román, Christopher Hess, Renato Cerqueira, Anand Ranganat, Roy H.
Campbell, Klara Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active Spaces.
In IEEE Pervasive Computing, Oct-Dec 2002.

[37] Gaia Homepage. http://choices.cs.uiuc.edu/gaia.
[38] Mark Weiser. The Computer for the Twenty-First Century. Scientific American. 1991
[39] Roy Want, Andy Hopper, Veronica Falcão, Jonathan Gibbons. The Active Badge

Location System. ACM Transactions on Information Systems, 10(1), 1992
[40] Sidney Fels, Yasuyuki Sumi, Tameyuki Etani, Nicolas Simonet, Kaoru Kobayashi, Kenji

Mase. Building a context-aware mobile assistant for exhibition tours. The First Kyoto
Meeting on Social Interaction and Communityware. 1998

[41] Nigel Davies, Keith Cheverst, Keith Mitchell, Alon Efrat. Developing a context sensitive
tour guide. Proceedings of First Workshop on Human-Computer Interaction for Mobile
Devices, Glasgow, UK. 1998

[42] Jason I. Hong and James A. Landay. An infrastructure approach to context-aware
computing. Human-Computer Interaction, Vol. 16, 2001

22

[43] Patrick Fahy, Siobhan Clarke. CASS – Middleware for Mobile Context-Aware
Applications. MobiSys 2004

[44] Lalana Kagal, Tim Finin, Anupam Joshi. A Policy Language for a Pervasive Computing
Environment. IEEE 4th International Workshop on Policies for Distributed Systems and
Networks, 2003.

[45] Maria R. Ebling, Guerney D. H. Hunt, Hui Lei. Issues for Context Services for Pervasive
Computing. Workshop on Middleware for Mobile Computing, 2001

