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Abstract: Coverage is one of the fundamental issues in wireless sensor networks (WSNs). 
It reflects the ability of WSNs to detect the fields of interest. In a real sensor networks 
application, the detection area is always non-ideal and the terrain of the detection area is 
often more complex in applications of three-dimensional sensor networks. Consequently, 
many of the existing coverage strategies cannot be directly applied to three-dimensional 
spaces. This paper presents a new coverage strategy for the three-dimensional sensor 
networks. Sensor nodes are uniformly distributed. The cost factor is utilized to construct the 
perceived probability and the classical watershed algorithm after the transformation of 
points from the three-dimensional space to the two-dimensional plane using the 
dimensionality reduction method, which can maintain the topology characteristic of the 
non-linear terrain. The detection probability in the optimal breath path is used as the 
measure to evaluate the coverage. Simulation results indicate that the proposed strategy can 
determine the coverage with fewer nodes, while achieving the coverage requirements of the 
networks. 
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1   Introduction 
A wireless sensor network (WSN) is a "smart" system, 
which consists of numerous small, low-powered, self-
organizing sensor nodes that have communication and 
computation capabilities. The sensor nodes of networks can 
be used to complete tasks assigned according to the 
application environment. WSNs have been widely used 
(Akyildiz et al., 2002) in applications related to the military, 
environmental monitoring, health care, and so on. However, 
the computation power and communication capacity of 
sensor nodes within the network are often limited by the 
environment. The sensor network always has some special 
characteristics such as the dense distribution of sensor nodes, 
frequently changing topology, multihop communication 
mode, and so on. To manage the sensor network more 
effectively and ensure a better quality of network service, 
we should consider the coverage issue of networks, which 
refers to the method of deployment of nodes to achieve 
better detection. Coverage reflects networks’ "perceived 
quality of service" and provides a more reliable guarantee to 
monitor and control the sensor networks. 

The coverage problem, which involves the appropriate 
placing of the sensor nodes in the surveillance area to meet 
the networks’ coverage requirements, is one of the 
fundamental issues in WSNs. Many researchers have 
studied this issue and achieved great results, such as the 
coverage in two-dimensional (2D) plane or the full three-
dimensional (3D) space. In studies of the coverage problem 
in 3D space (Huang et al., 2004; Watfa and Commuri, 2006), 
the 3D space is often considered to be ideal. However, in 
real-world applications, the surveillance area is often a 
complex surface. Many studies (Zhao et al., 2007; 
O’Rourke, 1992) have proved that the deterministic sensor-
deployment problem is nondeterministic polynomial-time 
complete (NP-complete), that is, it cannot be solved in 
polynomial time and only has an approximate solution. The 
applications of WSNs are not in a 2D plane or a 3D space 
but on a complex surface topography, and they are therefore 
affected by the surface topography. The previously 
proposed coverage models related to the 3D space cannot 
completely reflect the coverage ratio so that the previous 2D 
place or 3D space deployment strategies cannot be used to 
deal with complex surfaces.   

Considering these facts, the manner of deployment of 
sensor nodes to cover the entire monitored area is essential 
to build energy-efficient and self-organizing sensor 
networks. In this study, we propose a new solution for the 
complex 3D surfaces using the manifold learning algorithm 
for the well-known nonlinear dimensionality reduction, 
called locally linear embedding (LLE), to convert the 3D 
space into a 2D space. Then we determine the figures of 
height related to the detection probability in the 2D plane 
according to the parameters defined below after applying 
the perceived probability model to the coverage strategy. 
Next, we obtain the water contours using the watershed 
algorithm of the image-processing method and propose an 

improved algorithm based on the shortest path to find an 
optimal breath path along which the mobile object can pass 
through the surveillance area. The perceived probability in 
this path is regarded as a parameter that represents the 
coverage. If the optimal perceived probability in this path 
can meet the requirements of the network, the others can too. 

The remainder of this paper is divided into the following 
sections. Section 2 provides a summary of previous research 
on coverage strategies. Section 3 proposes a new coverage 
strategy appropriate for the 3D surface and elaborates this 
method in details for real world applications related to 
WSNs. Section 4 proposes an improved algorithm based on 
the shortest path to find an optimal breath path. Section 5 
describes the experiments, simulates the strategy, and 
analyzes the results. Section 6 concludes the paper. 

2   Background 

2.1 Related Work 
Numerous researchers have carried out research on the 

coverage issue for 2D detection areas. Meanwhile, the 
coverage strategies in 2D space have been widely applied in 
the case of WSNs. For example, some studies (Hoffmann et 
al., 1991; Shermer, 1992) describe the gallery problem in a 
2D space, which aims to arrange the least number of 
guarders to ensure that every point in this polygonal area is 
observed by at least one guard. Another study (Dhillon and 
Chakrabarty, 2003) places the sensor nodes based on a 
deterministic approach and proposes the deployment 
algorithm depending on a greedy method. The authors of 
this study choose grid points to place the sensor nodes until 
all the nodes could satisfy the constraints each time. 
However, this methodology is not suitable for applications 
in complex and dangerous environments prevailing in real 
world. Other studies (Liu et al., 2005; Lazos and 
Poovendran, 2006) refer to a strategy that places the sensor 
nodes randomly. In the study by Howard et al. (2002), the 
sensor nodes are regarded as virtual charged particles with 
the ability to move, and the sensor nodes affected by a force 
do not stop moving until all nodes are in equilibrium. Some 
researchers (Alam and Haas, 2006) have studied not only 
the coverage problem but also the connectivity issue. The 
optimal geographical density control (OGDC) algorithm 
(Zhang and Hou, 2004) maintains the coverage and 
connectivity in large-scale WSNs. Some studies (Wang et 
al., 2005) deal with the coverage and connectivity for an 
arbitrarily shaped model without using any previous model. 
Huang and Tseng (2005) propose the concept of circular 
coverage, assuming that the detection area can be fully 
covered if the detection circles of all the sensor nodes are 
fully covered. Huang and Tseng (Huang et al., 2004) 
consider the coverage issue in the context of transformation 
from the 2D circle to the 3D sphere and settle a 3D-
coverage problem using a distributed approach without 
increasing the computational complexity.  

Some researchers have recently begun the study of 
coverage strategies in 3D space. For instance, in some 



   

actual scenarios, the sensor nodes can be placed anywhere 
within the 3D volume. The study by Alam and Haas (2006) 
analyzes grid points’ coverage and connectivity issues, such 
as the need to deploy sensor nodes in underwater marine 
areas to detect a range of oceanic environments. Bai et al. 
(2009) study a method to achieve the network connectivity 
with the premise of a complete coverage. The authors in 
another report (Oktug et al., 2008) have studied the 
coverage problem on the surface of a 3D topography. In 
some studies (Zhao et al., 2009; Liu and Ma, 2011), the 
authors deeply explore the expected coverage ratio, which 
also belongs to the surface coverage, by considering 
different 3D terrain models from different aspects. Some 
researchers (Jin and Rong, 2012) have also studied the 
surface coverage problem which is related to the optimal 
sensor deployment on the three-dimensional terrains to 
achieve the highest overall sensing quality according to the 
actual application environment. For the optimal coverage 
control problem, a general function is introduced to measure 
the unreliability of the monitored data in the entire sensor 
networks including the perception ability of sensor nodes 
determined by the distances of nodes. However, the 
coverage holes of the entire sensor networks have not been 
resolved well. 

 2.2 Problem Statement 
The 3D detection area is ideal according to the above 
discussion, so the previous deployment strategies can be 
only applied to the full space. In general, considering that 
the monitoring regions are often rough surfaces, sensor 
nodes are deployed not at arbitrary points but on the 
surfaces, such as volcanoes, canyons and other hilly 
geographical areas, of the region. Previous coverage 
strategies may thus lead to the “empty holes” problem 
(Zhao et al., 2009). As shown in Figure 1, some areas fall 
within the detection-blind region of nodes, which means 
that the 2D-coverage strategies cannot be directly applied to 
an actual 3D detection space. Under these circumstances, 
the strategy of transformation from 2D to 3D space is often 
not very easy to achieve complete coverage for such 
problems. Given that the sensor nodes are directly placed in 
the 3D space, the locations of sensor nodes are 
determined in advance if the nodes are planned to be 
distributed manually or by a robot. This problem has been 
proved to be NP-complete, which cannot be solved in 
polynomial time. Moreover, the nodes have uncertain 
positions after random deployment. Then the sensor 
coverage strategy proposed in the study by Watfa and 
Commuri (2006) cannot be applied to this 3D space either. 
Furthermore, this strategy not only needs more sensor nodes 
but also accelerates the consumption of energy within the 
networks. A direct analysis of the coverage strategy using 
the 3D model is often more complex and not very easy to 
understand after establishing the actual detection 
environment. Thus accomplishing optimal coverage more 
effectively with lesser number of sensor nodes is essential to 
reduce the energy consumption, prolong network lifetime, 
and improve the stability and reliability of the entire sensor 

networks. In this study, the deployment depends on the 
actual applications and we do not undertake an analysis of 
direct deployment on the 3D terrain model. A new strategy 
that can maintain the characteristics of the 3D terrain and 
the topology of the data points is introduced to reduce the 
space dimensionality. Finally, we analyze the deployment 
coverage of the sensors. 
 
Figure 1   Sensor nodes distributed on a regular surface 
 

3   Detection models and deployment strategy 
We propose a new solution for the transformation of a 3D 
surface to a 2D plane using the manifold learning algorithm 
for the nonlinear dimensionality reduction. Then we 
determine the figures of height and obtain the water contour 
according to the cost value and the cost factor. Finally, we 
propose an improved algorithm based on the shortest path to 
find the optimal breath path.  

3.1 3D-simulation terrains 
Previous studies (Bai et al., 2009) on coverage have mainly 
focused on ideal models, such as full space, wherein the 
sensor nodes can be placed anywhere (Alam and Haas, 
2006). However, the actual applications of WSNs are often 
in complex terrains, which may be variable, such as 
volcanoes, canyons, basins, and so on, as shown in Figure 2. 

 
Figure 2   Actual applications: (a) is the real world terrain, and (b) is the 
simplified regular surface 
 

To construct the actual applications more visually, as 
shown in Figure 2, the surface in (a) can be simplified to the 
regular and continuous surface map similar to that in (b). 
We use multiple peaks that are subject to Gaussian 
distribution to simulate the actual applications and further 
assume that the topographic terrain built on the 3D space is 
regular, nonlinear, and continuous. 

In the following analysis, we assume that there are 
L W  grid points on the 3D multi-peak surface topography 
with the reflection of the real-world terrain in a range 
of L W 2m  and L is the length and W is the width and the 
surface of peak is defined by 

 
    ,0,1h n normcdf peak n                               (1) 

          
n=1, 2… K , where K  is the number of peak points that 
develop a peak graph respectively within the detection area. 
The coordinates   i, j,h n represent one of the K peak 

maps, where i ranges from 1 to L  and j ranges from 1 to W. 
The function normcdf represents the cumulative distribution 
function (Devore, 2011) subject to the Gaussian distribution 
with zero mean and unit variance, which means that the 
probability is less than the value in the statistics and 
probability. In this study, as shown in Figure 3, we construct 
the 3D peak maps using the function. (x(n), y(n)) are the 



   

coordinates of the peak points and both  and   are the 
peak parameters. The peak coefficient   determines the 
height of each peak ，

where         2 2
1e n sqrt i x n j y n



    ， and 

    peak n sqrt e n 
. 

 
Figure 3   Peak map (K = 1,  = 20) 

 
 

In this study, we have constructed the 3D terrain with the 
available K  ranging from 1 to 50, using appropriate peak 
parameters, peak coefficients, and all peak points so that the 
terminal terrain is composed of K  peak maps represented 
as follows:  

 
 

 
 

n = 1 ,2 . .K
H e ig h t i , j = m a x h n                                    (2) 

  i, j,Height i, j are the coordinates of the grid points on 

the 3D terrain shown in Figure 4. 
 

Figure 4   Three-dimensional terrain (K=20) 
 
 

There are 2500 data points in Figure 4, but for an actual 
terrain, the locations of sensor nodes have been 
determined when the nodes have been planned to be 
distributed, which has been proved NP-complete. Even 
though the nodes are placed randomly, the sensor- coverage 
strategy in the study by Watfa and Commuri (2006) cannot 
be applied to the 3D terrain. 

If the sensor nodes are placed in point A in Figure 1, a 
part of regions limited by the 3D terrain will lie in the 
detection-blind area of nodes and can thus be ignored, 
which may lead to the “empty holes” problem.  

3.2 Transformation from 3D to 2D space 
As described previously, the coverage strategy in a 2D plane 
or the 3D full space cannot be directly applied to actual 
applications. Thus we introduce the LLE (Locally linear 
Embedding) algorithm to complete the transformation from 
a 3D space to a 2D plane. The LLE concept (Roweis and 
Saul, 2000) is a recently proposed nonlinear dimensionality 
reduction method that enables the 2D data points to 
maintain the original topology of the 3D points, which is 
suitable for the non-linear manifold. It considers the 
manifold to be linear locally and uses the local symmetry of 
the linear reconstruction to identify the neighbour 
relationships of high-dimensional data points so as to map 
the high-dimensional points to low-dimensional space.  

According to the sample points, the LLE algorithm can 
calculate each sample point’s k neighbors which are k 
sample points with the nearest distance. The reduction 
parameter k is assigned a value that defines the process of 
finding the k neighbors of each sample point. An 
appropriate parameter k can make the transformation 
process from 3D to 2D space better. In addition, the local 

reconstruction weight matrix of one sample point can be 
calculated from all its neighbour points. Then this sample 
point and its weight matrix will lead to the corresponding 
sample points which are mapped from high-dimensional 
space to low-dimensional space. 

 
Figure 5   Comparison between PCA and LLE 

 
 
In Figure 5, the results of dimensionality reduction by PCA 
(Principal Component Analysis) which is fit for the linear 
manifold and LLE are compared. LLE can achieve a better 
two-dimensional plane. 

The 3D terrain constructed in this study is regular and 
nonlinear. The LLE algorithm yields L W  grid points in 
the 2D plane by reduction from the 3D space in the 
detection area. With reference to the 3D surveillance area, 
we should ensure a topology that is not only better, but also 
truly reflects the terrain characteristics of the 3D surface, in 
addition to avoiding possible blind detection problems. 
Therefore, we require a reduction parameter, which is 
named the cost value  that is defined by 

 
 

 
0

ij i j

i j

d h h i j


   
  

                                      (3) 

 
As shown in Figure6, i jh h is the difference in the 

altitudes between data points before using the LLE, whereas 
ijd  in Figure 7 is the Euclidean distance between the points 

i and j in the 2D plane and i jh h . After distributing the 
sensor nodes, the computational time will become longer if 
the distances between the points in our perceived probability 
model are calculated using the dijkstra shortest-distance 
algorithm. The neighboring weights of each point in LLE 
remain unchanged during the translation, rotation, stretching 
transformation, which is called no deformation of the 
popular learning. This characteristic ensures the conversion 
from the 3D space to 2D plane by the parameter  , adding 
the topological characteristics of the area to be covered in 
WSNs. 

When the topological invariant is taken into 
consideration, ijd can replace the 3D distance of the data 
points and the cost factor  can reflect the 3D surface 
features and the topology relationship between the data 
points. 
 
Figure 6   Altitude difference of data points on 3D terrains 
 
 
Figure 7   Euclidean distance between the 2D points 

 
 
We can see that, by using the LLE algorithm, four points in 
Figure 6 are mapped into Figure 7. 1 2h h is the altitude 
difference between the data points 1 and 2. Here 12d is the 



   

Euclidean distance between points 1 and 2 in Figure 7. The 
parameter  , which reflects the 3D terrain, is determined by 
both the altitude difference and the distance. 

3.3 Perceived Probability 
We can obtain the corresponding 2D data points from the 
3D space. However, we also need to define the perceived 
probability before drawing the sensing map in the 2D 
detection area. 
 

 
 

1

0

ijd

ij

e a
P

a

 



   
 

                                           (4) 

 
Here, a is the variable cost factor and ijP  is the probability 
of point j being detected by the sensor node in point i ; 

,  are the probability parameters; and ijd  is the Euclidean 
distance between the points i and j . 

The perceived probability model for the deployment of 
sensor nodes should depend on the actual applications of 
WSNs. The detection area of a node in the Boolean sensing 
model is a sphere, where the center of circle is the node and 
the radius is the farthest detection area. If a point lies within 
this sphere, the probability of detection is 1, otherwise, the 
probability is 0. 

However, the model is often subject to the actual terrain, 
the distance between nodes and detected points, the number 
of neighbors for the nodes, the cost factor, and so on. That is 
why we use the model defined in (4). 

3.4 Sensing-map 
As described in the study by Onur et al. (2010), we can 

produce the sensing map in 2D space if the detection 
probability is regarded as the altitude of the 3D terrain. 

 

 
1

1 1
R

j ij
i

P P


                                                  (5) 

 
The data points in the surveillance area will be detected by 
more than one sensor node. Here jP is the detection 
probability of the point j  lying within the detection areas of 
R sensor nodes. 

 
1 2rate s s                                                         (6) 

 
The network coverage ratio is one of the standards that 
measure the performance of WSNs, and it describes a ratio 
between 1s , the number of data points whose detection 
probability surpasses the threshold; and 2s , the total number 
of data points in the surveillance area. Here tP is the 
threshold that reflects the coverage. 

In Figure 8, we present the sensing map with a 2D 
matrix, which has L W detection probabilities, according 

to (5). Twenty sensor nodes are deployed in the Figure 8.  
The sensing map is non-continuous. 

 
Figure 8   Sensing map 

 

3.5 Watershed Transformation 
The watershed algorithm (Vincent and Soille, 1991) is a 
recently developed image segmentation method based on 
mathematical morphology. It is also a classical description 
of topography and is mainly applied for image 
transformation. For example, the Rocky Mountain 
watershed divides the United States into two regions. A 
drop of water flows into the Atlantic if it falls on one side of 
this watershed; otherwise, it will flow through the other side 
into the Pacific. The Atlantic and the Pacific are the 
corresponding lowest regions of these two basins. 

The basic idea of watershed transformation is generated 
from the line reconstruction of geodesy. The watershed is 
applied into the image processing and the immersion-
simulation process of watershed is proposed. The water 
begins to rise from the minimum points, which are regarded 
as the local lowest points. The local minimum points affect 
the formation of the catchment basin. To prevent water from 
different catchment basins from merging together, dams are 
built in all confluences as the water lever rises and the 
watershed is produced after the water lever stops rising. 

 
Figure 9   Catchment basin 

 
In this study, the missed-detection probability is obtained 
from the sensing-map by 

 
1miss jP P                                                                                      (7) 

 
The catchment basin is produced by the missed-detection 
probability, where every gray-scale value represents the 
corresponding altitude, as shown in Figure 9. 

The sensor nodes are placed on the minimum location of 
the catchment basin. The water starts to rise from the 
minimum of the gray image. The dams can be built as the 
water rises from the different basins, and watershed 
contours shown in Figure 10 are produced. 

 
Figure 10   Water contours 

 
As shown in Figure 10, the water contours are produced 
from the sensing-map described in Section 3.4 by the 
watershed transformation. It represents a series of grid 
points that lie far away from the sensor nodes within the 
available detection area of nodes. For example, the grid 
points in the contours A, B, and C are less likely to be 
detected by the sensor nodes. As long as the grid points in 
the water contours can meet the coverage requirements, the 
others can also do so. Moreover, many paths are produced 
by the contours. Therefore, in the section below, we discuss 
how to find an optimal breath path composed of water 
contours.  



   

3.6 Finding optimal breath path 
The detection probability, which is called the optimal 

coverage probability from the optimal breath path, is 
regarded as one of the standards to judge the coverage of 
networks. This so-called optimal breath path is the path 
through which a mobile object can pass, from the 
perspective of the object, to the other edge of the entire 
detection area with a poorer detection probability. In this 
study, the path along which an object can start out from one 
edge to reach the other edge consists of a series of points 
that can minimize the sum of all the detection probabilities 
of data points. From the object’s point of view, they do not 
expect to be detected by the sensor nodes, which is 
obviously not our aim to gain a better coverage. 

The L W data points that are present in the 2D plane 
obtained from the 3D space can maintain the topology of the 
3D terrain. The breath path extracted from all the water 
contours is composed of a series of data points (Onur et al., 
2004) derived from the L W  2D points. 
Thus, PS = [local_1...local_R] , where R is the number of 
points in the optimal path. 

 
Figure 11 Longitudinal penetration (dotted line) and cross penetration 
(solid line) 

 
 

  [ ]1.2..
maxopt PS ss R

P P


                                                  (8) 

optP  is the maximum detection probability of the data points 
on this path because it can truly reflect the deployment of 
sensors in the surveillance area adjacent to the path to 
achieve complete deployment. The boundary region is not 
included in our analysis. We aim to find the paths that 
penetrate the entire surveillance area, by including 
longitudinal penetration and cross penetration. 

As shown in Figure 11, many paths are extracted from 
the water contour, including the longitudinal and cross paths. 
For example, a mobile object penetrates the region from 
edge 1 to edge 2, whereas another one runs through this 
region from edge 3 to edge 4. The same penetration is 
available to objects in the opposite direction. 
 
Figure 12   Case 1: (a) no longitudinal path; Case 2:  (b) no cross path 

 

4   Algorithm description and implementation 
The sensing map produced by the perceived probability 
model and the cost parameters in the process of 
dimensionality reduction from 3D to 2D space is often not 
smooth. The case that no paths exist to penetrate the 
surveillance area within the water contours may occur, as 
shown in Figure 12. We propose an improved algorithm 
based on the shortest path to find the optimal breath path 
and the structure local, such as local(i).x, local(i).y, 
local(i).pro, and so on, maintains the locations and weights 
of data points. The detection probability defines the points’ 
weights. The structure total describes all the breath paths, 

such as total(j).s, total(j).d, total(j).ds, total(j).paren, which 
are the start , end, the sum of the weights, and the precursor 
matrix of the jth path, respectively. Two cases are as follows: 
1) As shown in Figure 12(a), no points belonging to the 
water contours lie on the edge 1, so no path exists; and 2) 
The beginning is the edge 3 with no end reaching the edge 4, 
as shown in Figure 12(b). Clearly, we cannot complete the 
penetration in both cases. 

The workflow of longitudinal penetration algorithm is 
described below: 

Begin 
 Step 1:  i = 0, qq = 1, flag = 0，the state of all points is 

0; 
 Step 2: choose the edge 1 with M points and define the 

end of the path, end = 1; 
Step 2.1: i = i + 1, traverse point i in edge1 and if flag = 

M, jump to step 5; else, check out whether it belongs to the 
water contour; if not, flag = flag + 1, then jump to 2.1; else, 
continue;  

Step 2.2: mark this start point as A and state(A) is 1, 
create a weight matrix distance and initialize it; if the point 
is the neighbour of A, the distance is the weight; else the 
distance is 65535; 

Step 2.3: search the smallest sum of weights in distance 
while the point is on the water contour; if state of this point 
is 0, then mark B and state(B) = 1; traverse all points 
adjacent to B; if  the sum from A to a point C through B is 
smaller than the distance (C), then update the distance, and 
B is the precursor point of  point C. 

Step 2.4: for other points, if there still exists points 
whose state is 0, jump to step 2.3; else, continue; 

Step 3: totalcost=65535, mark the point with the 
smallest sum of weights while the distance is not equal to 
the totalcost as the end of a path among the points in edge 2; 

Step 3.1: if end = 1, then qq = qq - 1, and jump to step 
3.3; else, continue; 

Step 3.2: utilize the structure total to retain the start 
point and end point. 

Step 3.3: qq = qq + 1; if i M , jump to step 2; else, 
continue; 

Step 4: if qq > 1, find the smallest sum of weights from 
qq - 1 paths, then  opt1 iP Pmax , and the output is opt1P  ; 
else, continue; 

Step 5: traverse all points in the water contours, if the 
extent of points surpasses 2, give all contours adjacent to 
this point a weight labelled by the biggest weight in this 
contour, respectively, else, jump to step 7; 

Step 6: find the smallest weight of contours and mark 
this weight to opt1P ; the output is opt1P ; 

Step 7: mark the biggest weight of all points in the water 
contours as opt1P , then export it;  

End 
In this algorithm, the primary distance matrix (Weiss, 

1999) represents the sums calculated by all points in the 
surveillance area and the terminal distance matrix contains 
the smallest sums of the weights from a point to all other 



   

points. The computational complexity is  2n , where n is 

the number of data points, and the cross penetration, whose 
output is opt2P , is similar to the longitudinal penetration and 
we label the smaller output as the optimal coverage 
probability optP . 

5   Simulation results and analysis 
In this study, our simulations are based on the MATLAB 
R2010a platform and the coverage parameters are given in 
Table 1. A 3d Gaussian terrain is thus generated 
where 1000  , 5  , K=20 and 1 100   . Herein,   
ranges from 1-100, with the uniform distribution. The 
projection region in the 2D plane is a rectangular area of 
50  50 2m , without consideration of the impact of the 
border. The sensor nodes are placed with uniform random 
distribution in the detection area. When we carry out the 
simulation experiments, different values of the 
dimensionality reduction parameter k and the detection 
probability parameters ,   are applied to analyze the 
optimal detection probability and coverage ratio, with an 
appropriate cost parameter. The threshold of perceived 
probability is tP  = 0.80; thedP is the threshold of coverage 
ratio and thedP  = 0.90. Then we comprehensively analyze 
the impact of the various parameters on the essential sensor 
nodes. 
 
Table 1     Coverage parameters 
 

We have applied different probability parameters, which 
are subject to the cost factor, to calculate the optimal 
probability. The cost factor a = 4, probability parameter = 
3, and the reduction parameter k = 6. Each experiment has 
been repeated 20 times, and the average is the final result. 
The results are depicted in Figure 13. As the parameter β  
increases, the corresponding detection probability gradually 
becomes smaller, which means that the perception ability of 
the deployed nodes is weaker and that more nodes are 
needed. The coverage ratio decreases with the increase in 
the parameter β . The coverage ability and reliability of the 
networks become worse in a bad environment. 

 
Figure 13 Effect of the perceived parameter   on the detection 
probability and coverage ratio 

 
Similarly, for 0.2  , other parameters are the same as in 
Figure 13, but the value of   changes. Then the trend of 

optP  with reference to the coverage parameters is observed, 
and the detection probability and coverage ratio decrease 
with a slow change, as in Figure 14. Because optP  in Figure 
14 does not change enormously as in Figure 13, compared 
with  , the parameter   has lesser influence on the 
coverage of sensor nodes. 

 

Figure 14 Effect of the perceived parameter   on the detection 
probability and coverage ratio 

 
During the process of nonlinear dimensionality reduction, 
the reduction parameter k  affects the optimal coverage 
probability and changes the breath path. If we apply a 
bigger value of k , a better convergence will be lost while 
simultaneously increasing the computational complexity. A 
smaller value of k leads to fewer neighbors, and the local 
reconstructed weight matrix may not be able to maintain a 
more manifold invariant and the topology of data points 
perfectly. In our simulations, twenty sensor nodes are placed 
in the surveillance area, with 0.3, 2   , and a = 4 as in 
Figure 15. The probability optP  increases at the beginning 
and then decreases as the parameter k  changes. Finally, it 
maintains a fluctuating state. 
 
Figure 15   Effect of the reduction parameter k on the detection probability 
and coverage ratio 

 
The cost parameters affect the perceived probability model 
that considers the topology of data points in the 3D terrain 
as a rough terrain. In Figure 14, the detection area is 
influenced by the 3D terrain, which leads to the blind area 
where parts of the regions cannot be detected by the sensor 
nodes. Approximate cost parameters are needed to maintain 
the topology of the surface and complete the transformation 
from the 3D space to the 2D plane. 

In Figure 16, twenty sensor nodes are placed with a 
uniform random distribution in the 50  50 2m  area, 
where 0.3, 2   , k  = 9. According to the deployment 
strategy, the detection probability increases firstly, and then 
stops increasing with fluctuations rising in certain values. 

 
Figure 16   Effect of the cost parameter a on the detection probability and 
coverage ratio 

 
The sensor nodes can detect objects in a larger area with 
increases in the parameter a , until the detection ability of 
nodes begins to decline; the cost parameter a  has little 
influence on  and the detection probability does not 
increase any more. However, we need to consider the 
locations of the sensor nodes deployed on the surface 
because points, such as A or B, whose neighbors may have a 
larger value for  than those of C or D, exist. The cost factor 
a  affects the effective detection area of points and makes it 
relatively smaller. Compared with the Figure 16, the sensor 
nodes are placed on a steeper surface in Figure 17, which 
leads to a smaller detection probability and a lower 
coverage ratio. More sensor nodes are needed to be 
deployed in Figure 17. 

 
Figure 17   Effect of the cost parameter a on the detection probability and 
coverage ratio for a steeper surface 

 
Figure 18   Points A and B have a smaller cost value than C 

 
 



   

Because the resources of WSNs are limited and the 
deployment is influenced by the real-world applications, the 
coverage strategy we have proposed aims to implement 
optimal coverage, which needs to cover the surveillance 
area using as few number of sensor nodes as possible and 
reduce the energy consumption largely to meet the 
requirements of WSNs. In Figure 19, the perceived 
probability parameters, 0.3, 2   , k = 9, and a = 3. 
The detection probability optP  increases progressively with 
increasing sensor count. The value of optP  is 0.91, which is 
more than the probability threshold thedP . However, the 
coverage ratio is 0.62 and is less than tP  when the sensor 
node count is 30. Both the coverage ratio of networks and 
detection probability can reach the optimal levels if the 
sensor count is maintained at 40-50. 

 
Figure 19   Effect of the sensor count on the coverage parameters 

   

The parameters in Figure 20 are the same as in Figure 19, 
where 0.3, 2   , k  = 9, and a  = 3. The sensor nodes 
are placed on the surface with uniform random distribution. 
However, some nodes are placed on the steep surface 
through the analysis of cost value   so that more nodes are 
placed under this situation, compared to that in Figure 19, 
where 40-50 sensor nodes are required to achieve the 
optimal coverage. However, the coverage ratio is only 
0.5.The detection probability optP  also increases 
progressively with the increasing sensor count and 60-70 
sensor nodes are needed to meet the requirements of the 
optimal thresholds of both detection probability and 
coverage ratio. In conclusion, an approximate coverage 
parameter has a crucial effect on the coverage strategy of 
sensor nodes and the stability of network performance. 

 
Figure 20  Effect of the sensor count on the coverage parameters for a 
steeper surface 

 

6   Conclusion 
In this study, we have proposed a new coverage strategy for 
nodes available to a 3D complex terrain in the real-world 
applications. We use coverage parameters, such as the cost 
factor, reduction parameter, and perceived probability 
parameters, to complete the transformation from 3D space 
to the 2D plane and determine the deployment strategy of 
sensor nodes. We propose an algorithm based on the 
perceived probability to find the optimal breath path and 
achieve the optimal detection probability optP and determine 
the number of sensor nodes needed to cover the entire 
surveillance area. Meanwhile, the possible cases occurring 
in the penetration process are included in our analysis. The 
experimental simulation results are consistent with the 
existing theories and all the coverage parameters meet the 
requirements of WSNs after the deployment, which prove 

the feasibility of the transformation strategy from 3D to 2D 
space and the necessity to analyze the real-world 
applications of WSNs before deployment of sensor nodes. 
In the future, we will try to make improvements on the 3D 
terrain with the inclusion of obstacles which can reflect the 
real applications of WSNs. Moreover, mobile nodes would 
be included, which will make the coverage issue and 
deployment strategy more complex. Energy consumption of 
nodes that have great effect on the performance of WSNs 
will be also considered.  
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Figure 1   Sensor nodes distributed on a regular surface 

 

 
Figure 2   Actual applications: (a) is the real world terrain, and (b) is the simplified regular surface 

 

 

 
Figure 3   Peak map (K = 1,  = 20) 

 
 



   

 
Figure 4   Three-dimensional terrain (K=20) 

 
 
 

Figure 5   Comparison between PCA and LLE 
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Figure 6   Altitude difference of data points on 3D terrains 

 
 
 



   

 
Figure 7   Euclidean distance between the 2D points 

 

 
 

Figure 8   Sensing map 

 
 
 

Figure 9   Catchment basin 

 
 



   

 
Figure 10   Water contours 

 
 
 
 

Figure 11  Longitudinal penetration (dotted line) and cross penetration (solid line) 

 
 
 
 

Figure 12   Case 1: (a) no longitudinal path; Case 2:  (b) no cross path 

 

 

 



   

 
Figure 13 Effect of the perceived parameter   on the detection probability and coverage ratio 
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Figure 14 Effect of the perceived parameter   on the detection probability and coverage ratio 
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Figure 15   Effect of the reduction parameter k on the detection probability and coverage ratio 
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Figure 16   Effect of the cost parameter a on the detection probability and coverage ratio 
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Figure 17   Effect of the cost parameter a on the detection probability and coverage ratio for a steeper surface 
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Figure 18   Points A and B have a smaller cost value than C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

 
Figure 19   Effect of the sensor count on the coverage parameters 
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Figure 20  Effect of the sensor count on the coverage parameters for a steeper surface 
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Table 1     Coverage parameters 

 

 

PARAMETER VALUE PARAMETER VALUE 
L  50   4 

W 50   2~4 
K  1~100   0.1~0.5 

  1000 
rd  10 

tP  0.80 
thedP  0.90 

  1~100 a 1~9 

k  6~14   


