
ar
X

iv
:1

21
0.

45
02

v1
  [

cs
.N

E
] 

 1
0 

O
ct

 2
01

2

Comparing several heuristics for a packing problem
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Abstract

Packing problems are in general NP-hard, even for simple cases. Since now there are no highly efficient algorithms
available for solving packing problems. The two-dimensional bin packing problem is about packing all given rectangular
items, into a minimum size rectangular bin, without overlapping. The restriction is that the items cannot be rotated.
The current paper is comparing a greedy algorithm with a hybrid genetic algorithm in order to see which technique is
better for the given problem. The algorithms are tested on different sizes data.
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1. Introduction

Genetic Algorithms are successfully metaheuristics used
to solve in general static and dynamic NP -hard problems.
They are adaptive heuristic search algorithms premised
on the evolutionary ideas of natural selection and genetic
which are, in general, applied to spaces which are too
large to be exhaustively searched. Genetic Algorithms
were successfully used to solve several difficult classes of
problems as for example timetabling problems [2], packing
problems[5, 17, 20] and vehicle routing problem [13].

The present paper will show a hybridization of Genetic
Algorithm (GA) with a greedy technique. From a math-
ematical point of view, a greedy algorithm is a process
that constructs a set of objects from the smallest possi-
ble constituent parts. The solution of a particular prob-
lem depends on solutions to smaller instances of the same
problem. The advantage of greedy algorithm is that solu-
tions for smaller instances are easy to understand. On the
other hand, the disadvantage could be that the optimal
local solutions may not lead to a good global solution.

The packing problem tested with the hybrid GA ap-
proach is the two dimensional Bin-Packing problem. The
bin-packing problem (2D-BPP) is concerned with pack-
ing different sized objects into fixed sized, in general for
two-dimensional bins, using as few bins as possible. The
two-dimensional bin-packing problem (2D-BPP) and its
multi-dimensional variants have many practical applica-
tions as packing objects in boxes, stock cutting, filling up
containers, loading trucks with weight capacity, multipro-
cessor scheduling, production planning.

Some applications of 2D-BPP are in stock cutting ex-
amples. In stock cutting, quantities of material are pro-
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duced in standard sized, in general rectangular sheets. De-
mands for pieces of the material are for rectangles of ar-
bitrary sizes, smaller than the sheet itself. The problem
is to use the minimum number of standard sized sheets in
accommodating a given list of required pieces.

Even very small, particular Bin-Packing problems are
known to be NP-hard [18] as is the current problem using
just one bin. In order to solve the 2D-BPP problem one
could use Integer Linear Programming, heuristic methods
as Local Search and enumeration methods like Branch-and-
Bound. These methods could prove to be useful in general
for small data-sets or produce very sub-optimal packing
for larger data. For complex data-sets there are used ap-
proximation algorithms which run fast and produce near-
optimal packing with quality guarantees.

In the present paper one of the rules involved in the
greedy shelf technique of [8] is used. In the design of these
algorithms is used one of the rules: decreasing width, in-
creasing height, etc. and then greedily pack them one by
one in this order. Shelf algorithms can pack the rectangles
without sorting them first. There could be used some of
the following rules: Bottom-Left, Next-Fit, First-Fit, Best-
Fit. In our implementation is involved the Bottom-Left Fill
(BLF) technique. The implementation is not difficult, hav-
ing a very fast running time and a relatively good quality
guarantee.

2. Literature review

The current section illustrates some useful techniques
for solving Bin-Packing problems. BPP instances are usu-
ally solved with fast heuristic algorithms. One of them is
First-Fit-Decreasing (FFD) algorithm [8]. Here, first, the
items are placed in order of non-increasing weight. Then
the items are picked and placed into the first, still empty,
bin, which is big enough to hold them. If there is not any
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bin left the item can fit in, a new bin is started. Another
fast heuristic is Best-Fit-Decreasing (BFD) algorithm [8].
The difference from FFD is that the items are placed in
the bin that can hold them with minimum empty space.

In [11] there is an ant colony and a hybrid ant colony
approach, the hybrid one has good results comparing to
Martello and Toth reduction procedure MTP [14] that is
slower for large data-sets but has very good results. The
ant-based approach is generic and is based on the idea of
reinforcement of good groups through binary couplings of
item sizes. In order to perform, the memetic algorithm for
solving BPP with rotations [6] is using specific evolution-
ary and local search operators.

In [12], in a particular case, is developed a particle
swarm algorithm for the multiobjective two-dimensional
bin packing problem MO2DBPP. It is considered in addi-
tion to the minimization in the number of bins, the mini-
mization of the imbalance of the bins according to a center
of gravity.

3. The statement of the problem and the greedy

technique

The section starts with the mathematical statement
of the two-dimensional Bin-Packing problem based on [8],
followed by greedy technique.

2D Bin-Packing Problem. Given a finite set of rectan-
gular boxes E = {e1, e2, ...en} with associated sizes W =
{(x1, y1), (x2, y2), ...(xn, yn)} such that 0 ≤ xi, yi ≤ L∗,
where L∗ denotes the minimal size of a bin, place without
overlapping all or some of the boxes from E into the rect-
angular bin with sizes X ≥ L∗, Y ≥ L∗ such as the empty
space is reduced to minimum.

In [15] the 2D Bin-Packing Problem (2D-BPP) is de-
fined as packing a finite number of two-dimensional ob-
jects, squares or rectangles, into a two-dimensional bin of
a given height and infinite length, minimizing the total
length required. The rotations of the rectangles are not
considered. The BPP is extended for larger dimension of
bins. For example, if n = 3, the 3D-BPP studies cubes or
rectangular solids and the bin has a square or rectangular
base and infinite height or length.

In a greedy technique an optimal solution is constructed
in stages. At each step it should take a decision, the best
possible based on given restrictions. This decision is not
changed later, so each decision should assure feasibility.

4. BLF-based Genetic Algorithm for 2D Bin-Packing

problem

Bottom Left Fill (BLF) technique and the hybridiza-
tion of a genetic algorithm with BLF are further described.

4.1. Bottom Left Fill approach for 2D-BPP

The Bottom Left Fill (BLF) technique is based on shelf
algorithms [8].

The BLF pseudo-code is further illustrated. The greedy
technique for 2D-BPP depends on the dimensions of the
rectangle. The input parameters of BLF function are the
dimensions of the rectangle i, width and height and the
width of a current bin. BLF function is used only for one
bin and returns the coordinates (x, y) for the rectangle.

The first rectangle is placed at null coordinates of the
bin. It is created a list of points. In general, for a position
j, for each rectangle is chosen the closer bottom left point
(xj , yj) where it can be placed the rectangle. This point
is removed from the list and are inserted two new points:
(xj +widthj , yj) and (xj , yj +heightj). If the point is not
founded in the points list, it is necessary to add to the list
a point with coordinates 0 and max(height+ y) based on
the previous rectangle. The following conditions need to
be accomplished in order to decide if it can be placed a
rectangle k in a given position.

• Accomplish the inequality x+width ≤ width1, where
width1 is the width of the first rectangle from the
bin.

• The intersection with all previous rectangles - from
1 to k − 1 - need to be null.

In order to prevent some of the already mentioned condi-
tions it is better to store the points in a sorted list. Bottom
Left Fill technique allows the representation of the solution
as a permutation.

Procedure BLF(width, height,maxWidth)

begin
initialize the arrays x and y

initialize the list and add the null point
for all rectangles

initialize choosePoint as impossible
while choosePoint is impossible and j < length of list

if the rectangle could be placed in a specific point
choose the point

endif
endwhile
if choosePoint is possible

update the arrays x and y

remove the point from the position choosePoint

from list
add the points (xi+width,yi),(xi,yi+height)
to the points list

else
if (width > maxWidth) the problem has no solution
else xi = 0 and yi = max(heightk + yk)
where k ∈ {1, . . . , i− 1}
endif

endif
endfor
solutions: the arrays x and y with (xi, yi)
the coordinates of rectangle i

end

4.2. Hybrid Genetic Algorithm for 2D-BPP

As it is mentioned in the literature review from section
2, several techniques were involved for solving 2D-BPP.
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Regarding evolutionary approaches, some variants of ge-
netic algorithms were used to solve BPP [5, 17, 20].

A hybrid variant referring to a simple local search in-
spired by Martello and Toth [14] is described in [5]. The
current paper use a hybrid genetic algorithm, GA-BLF,
based on [5] with the BLF technique described in section
4.1.

Figure 1: The illustration of successively procedures within a genetic
algorithm.

Successively are described the procedures involved in
the implementation of the hybrid algorithmGA-BLF (Fig-
ure 1). Genetic Algorithms are based on chromosomes
representations. For the 2D-BPP problem a chromosome
is represented as a permutation of natural numbers 1 to
n, in this case, the rectangles. n is the total number of
rectangles.

The hybrid algorithm GA-BLF starts with six initial
possible solutions corresponding to the following cases.
The rectangles are sorted in ascending/descending order
of heights, widths and surfaces areas. For our tested data-
sets, sorting the rectangles ascending in order of heights
give the closest to the optimal solution. The hybrid algo-
rithm implementation allows setting the number of gener-
ations and the number of individuals per generation. The
number of individuals is inherited from one generation to
another.

Fitness function. The fitness value is initialized with
the height of the initial rectangle. The input parameters
are chromosome widths and heights and initial rectangle
width. In order to evaluate this function we need to posi-
tion the rectangles with BLF algorithm and compute the
maximal value of the height coordinate, y.

Selection function is based on elitism. At each step are
chosen the best k individuals to be transferred in the next
generation. The mutation operation involves choosing a
random number of pairs of genes and their interchange.

The crossover function return a new possible solution
from two given solution. The input parameters are two
chromosomes and the output is the new solution.

• Choose randomly a cutting point, c < solution length.

• It copies itself to the first c positions of the second
chromosome in solution.

• For each value of position j < c the solution is look-
ing for its position in the first series and swapped
with the value j in the same row position.

• Finally the last n − c chromosomes copies itself to
the solution of the first chromosome.

Procedure Fitness(widths,heights,maximum)

begin
order widths and heights of chromosome specifications
calculate x and y arrays using BLF procedure
fit = x1 + height1;
for (i = 2 to number of rectangles)

if (xi + heighti > fit) fit = xi + heighti;
endif

endfor
return fit

end

5. Tests and Results

In order to test the hybrid genetic algorithm, GA-BLF
quality follows several tests comparison with a greedy tech-
nique and the BLF technique. For this purpose are used
small and large benchmarks of Hopper and Turton [22].
Data-sets dimensions are between 20 to 240 size width.
The parameters used for the genetic algorithm are the
number of population/generation 50, the number of good
successors is 20, the surviving percentage is 30 and the
maximum number of generations is considered 1000. The
running time depends on the computer technical consider-
ations: AMD 1.14 GHz obtains one second for the greedy
based algorithms and for each genetic algorithm’s genera-
tion.

The columns of Table 1 and Table 2 include: Hop-
per and Turton benchmarks [22], data-sets dimensions, the
number of rectangles for each benchmark and the solutions
- the empty spaces areas of the bin - for the compared al-
gorithms: greedy, the greedy Bottom-Left-Fill (BLF) and
the hybrid Genetic Algorithm (GA-BLF). Table 1 shows
the first data-set benchmarks from 20 (ht01) to 60 (ht09)
size width. The smaller the empty space area, the better
is the result illustrated in bold format.

Some visual representations for the compared algorithms
are further illustrated. For the first data-set Table 1 is
considered the second benchmark: ht02 and for Table 2 is
considered c6-p1 data-set. Figure 2 shows the greedy BLF
solution for h02 and Figure 3 illustrates the solution for
GA-BLF. In Figure 3 there are fewer empty spaces and
the entire width (21) is smaller than for the BLF solution
Figure 2 (24).

Table 2 shows the second set of benchmarks from 60
(c4-p1) to 240 (c7-p3) size width. For smaller dimensions,
Table 2, shows better values, few empty spaces areas, for
greedy and GA-BLF.
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Figure 2: BLF solution for ht02. Figure 3: GA-BLF solution for ht02.

Figure 4: BLF solution for c6-p1. Figure 5: GA-BLF solution for c6-p1.

Table 1: Hopper and Turton benchmark data [22]

Data-set Dim. No. of Greedy Greedy GA
Rectangles BLF BLF

ht01 20 16 30 26 20

ht02 20 17 30 24 21

ht03 20 16 29 23 20

ht04 40 25 23 17 17

ht05 40 25 34 26 26

ht06 40 25 27 17 17

ht07 60 28 46 32 32

ht08 60 29 49 33 33

ht09 60 28 38 35 32

Table 2: Hopper benchmark data [22]

Data-set Dim. No. Greedy BLF GA
Rectangles Greedy BLF

c4-p1 60 49 60 65 60

c4-p2 60 49 60 68 60

c4-p3 60 49 60 65 60

c5-p1 60 73 90 101 90

c5-p2 60 73 90 97 90

c5-p3 60 73 90 93 90

c6-p1 80 97 120 127 120

c6-p2 80 97 120 134 120

c6-p3 80 97 120 126 120

c7-p1 240 196 178 167 164

c7-p2 240 197 190 166 163

c7-p3 240 196 185 164 164

As the sizes of the data increases, for c7-p1, c7-p2 and c7-
p3 the difference between the simple greedy technique and
BLF is clearly delimited. As for the GA-BLF, the best
results are also found for the large dimensions of Hopper
benchmarks. For c6-p1 Figure 4 illustrates the greedy BLF
solution and Figure 5 illustrates the solution for GA-BLF.
Figure 4 is more compact than Figure 5 and the width are
127 for BLF and 120 for GA-BLF.

Further work will focus in improving GA-BLF with
some hybrid approach as local search, memetic techniques,
involving bio-inspired methods as ant colony [4, 1, 16] and
other computational intelligence tools [3, 21]. Bin-packing
problems with different sizes and multi-objective variants
will continue to be explored with many techniques, es-
pecially meta-heuristics, in order to solve their real life
difficult applications.

6. Conclusion

Bin-packing problems are real life complex problems.
The two dimensional approach of the problem, without
considering rotations, is considered to be solve using a
hybrid genetic algorithm. The genetic technique is using
Bottom-Left-Fill (BLF), involving iterative arrangement
of rectangles from the lower left corner. Each rectangle is
placed as low as possible as to not overlapping with other
rectangles. The heuristic techniques are tested with good
results on several real data sets.
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