
Strengthening the security of cognitive packet networks

Ricardo Lent*
Intelligent Systems and Networks Group,
Electrical and Electronic Engineering,
Imperial College,
SW7 2BT, London, UK
E-mail: r.lent@imperial.ac.uk
*Corresponding author

Georgia Sakellari
School of Architecture, Computing and Engineering,
University of East London,
E16 2RD, London, UK
E-mail: g.sakellari@uel.ac.uk

George Loukas
School of Computing and Mathematical Sciences,
University of Greenwich,
SE10 9LS, UK
E-mail: G.Loukas@greenwich.ac.uk

Abstract: Route selection in cognitive packet networks (CPNs) occurs continuously for active flows

and is driven by the users’ choice of a quality of service (QoS) goal. Because routing occurs

concurrently to packet forwarding, CPN flows are able to better deal with unexpected variations

in network status, while still achieving the desired QoS. Random neural networks (RNNs) play a

key role in CPN routing and are responsible to the next-hop decision making of CPN packets. By

using reinforcement learning, RNNs. weights are continuously updated based on expected QoS

goals and information that is collected by packets as they travel on the network experiencing the

current network conditions. CPN.s QoS performance had been extensively investigated for a

variety of operating conditions. Its dynamic and self-adaptive properties make them suitable for

withstanding availability attacks, such as those caused by worm propagation and denial-of-service

attacks. However, security weaknesses related to confidentiality and integrity attacks have not

been previously examined. Here, we look at related network security threats and propose

mechanisms that could enhance the resilience of CPN to confidentiality, integrity and availability

attacks.

Keywords: network security; cognitive packet network; CPN; network performance; integrity;

confidentiality.

Reference to this paper should be made as follows: Lent, R., Sakellari, G. and Loukas, G. (2014)

‘Strengthening the security of cognitive packet networks’, Int. J. Advanced Intelligence Paradigms,

Vol. 6, No. 1, pp.14.27.

Biographical notes: Ricardo Lent is a Research Fellow in the Intelligent Systems and Networks

Group at Imperial College London. He holds a PhD and MSc in Computer Science from the

University of Central Florida, an MSc in Telecommunications from Universidad Nacional de

Ingeniería and a BSc in Electronic Engineering from Universidad Ricardo Palma. His prior

experience includes work as a Principal Network Engineer for industry and as a Visiting Assistant

Professor at the University of Central Florida. His research interests include networking and

distributed computing, with emphasis on mobile and pervasive communications, such as mobile

ad hoc networks, wireless sensor networks, virtualisation and cloud computing, and self-aware

networks. He has participated in UK and EU funded research projects as a Post-Doctoral Fellow

and as a Co-PI, including UK EPSRC Self Aware Networks and Quality of Service, UK DIF DTC, EU

FP6 CASCADAS, EU FP7 DIESIS, and EU FP7 Fit4Green. Georgia Sakellari received her PhD in

Computer Networks from Imperial College London and is currently a Lecturer at University of East

London. She has taken part in several programme committees and in the organising committee of

the ISCIS conferences and the PerNEM workshops. Her research interests include network routing

protocols, self-aware networks, admission control in QoS-driven networks, maintaining QoS

during failures and most recently energy consumption in computer networks and cloud

infrastructures. George Loukas holds a PhD in Network Security from Imperial College and is

currently a Senior Lecturer at the University of Greenwich, currently focusing on cyber-physical

attacks. He is also a principal investigator for the EU-funded project E-CENTRE, coordinating

research on cybercrime profiling. He has previously published his work in self-aware networks,

denial of service attacks, cloud security, emergency management simulation and wireless robotic

routers.

--

1 Introduction

Reliable networks that provide good service quality are expected to become the norm in all

communication aspects, especially as the information transferred between network users gets more

complex and confidential, and as malicious users try to deliberately degrade or altogether deny

legitimate network service. There is therefore an increased need for network stability and reliability

which has led to the growth of autonomic networks that use quality of service (QoS)-driven

approaches for greater stability and reliability in communications. The cognitive packet network (CPN)

that was introduced by Gelenbe et al. (1999) has been shown to provide good network adaptation

properties under varying network conditions and user requirements. Its performance has been

investigated extensively and for a variety of performance metrics, but most studies have considered

operating conditions where there is no malicious intent or security threats limited to availability

attacks through worm propagation or network denial-of-service (Sakellari, 2009).

In CPN, the steady-state of random neural networks (RNNs) running on network routers decides

network paths. RNNs (Gelenbe et al., 2001b; Gelenbe and Fourneau, 1999) are trained continuously

by enhancing network flows with packets that monitor performance. These packets store information

about the network state as they cross the network from a source to a destination, and get updated at

each hop in the path. In general, CPN blindly trusts the information carried by packets, but a network

attack could result in some routers falling under the control of a malicious user, and as a consequence

packets may be subject to tampering. The problem is aggravated as routing decisions in CPN are

distributed. In this paper, we examine potential weaknesses of CPN and the use of RNNs in relation to

confidentiality, integrity and availability, and identify possible solutions that could enhance the

resilience of CPN to representative security threats.

2 Brief overview of the CPN

The CPN is a routing protocol that uses adaptive techniques based on online measurements to provide

QoS to its users (Gelenbe et al., 2000, 2001a; Sakellari, 2009). The users themselves can declare

individually their QoS goals, such as minimum delay, minimum packet loss, maximum bandwidth,

minimum power consumption or a weighted combination of these. CPN has been designed to perform

self-improvement in a distributed manner by learning from the experience of the packets in the

network and by constantly probing for the current best routes.

More specifically, CPN uses three types of packets; smart packets (SPs) for discovery, source

routed dumb packets (DP) to carry the payload and acknowledgement (ACK) packets to bring back

information that has been discovered by either SPs or DPs. This information is used in each node to

train RNNs (Gelenbe et al., 2001b) and produce routing decisions. At each network node, SPs are

routed according to the measured experiences of previous packets with the same QoS goals and the

same destination. In order to explore all possible routes and account for sudden network changes,

each SP might make a random routing decision instead of the one calculated by the RNN, with a small

probability (usually 5% to 10%).

The header of the CPN packets has been modified to allow the packets to gather network

information according to the specified QoS goal. Therefore, as packets travel the network, they store

QoS data (such as timestamps, counters, etc.) in a special data storage area of the packet header

known as the cognitive map (CM) (Gellman, 2007). When a packet arrives at its destination, an ACK

packet is generated which stores the route taken by the original packet, and the measurements it

collected during its journey. The ACK will then return along the reverse route. At each hop the ACK

visits, it deposits information in a special short-term memory store called mailbox. When it finally

reaches the source, the ACK establishes the route that the DPs will follow.

At each node a specific RNN, that has as many neurons as the possible outgoing links, provides

the SP with the routing decision in the form of an output link. This output link corresponds to the most

excited neuron, and since the RNN has a unique solution for any set of weights and input variables,

this choice is also unique. The learning process used with RNN is reinforcement learning, which uses

the observed outcome of a decision to reward or punish the routing decision, so that future decisions

are more likely to improve or maintain the desired QoS goal.

3 Identifying and addressing CPN security weaknesses

Here, we investigate potential weaknesses of CPN falling under the triad of common security aspects:

confidentiality, integrity and availability (Dhillon and Backhouse, 2000) and propose possible

solutions. Public and shared networks offer greater security challenges than private and dedicated

networks. We will make no assumptions about the type of deployment, so both the discussion and

results will be applicable to both cases. However, the discussion will be centred only on network

weaknesses and will exclude particular issues at endpoints.

3.1 Confidentiality

Confidentiality is breached when information, held or transmitted through the network, is disclosed

to unauthorised individuals or systems. Ensuring total confidentiality in a network is normally very

difficult given that packets need regular handling by routers that are managed by a third party, and

outside the sender and recipient’s domains. In that sense, a CPN is as vulnerable to confidentiality

attacks as other types of networks. Up to now there has not been any security mechanism in CPN that

could guarantee a confidential end-to-end delivery of users’ data.

A confidentiality attack could take place either at hijacked routers or links. In the former case, an

attacker could have gained access to a network node on the path from the victim’s flow and forward

a copy of the traffic content to a collection point. In the latter case, packet sniffers could have been

installed on a network link to eavesdrop incoming network traffic. An interesting point to note is that

the self-adapting path behaviour of CPN could partially prevent a confidential attack given that not all

packets for a given communication may need to pass through the same set of links and nodes unlike

traditional networks. A path adaptation may deviate packets away from the hijacked routers and links.

However, there is no way to ensure this will happen given that it will be very difficult to detect the

packet sniffing process.

Figure 1 End-to-end user data encryption and decryption as an external process

The usual solution to ensure network confidentially is to encrypt end-to-end communications, and this

approach can be applied also to CPN. In the context of a CPN implementation, at least two alternatives

are possible. Data encryption could occur before data is passed to CPN for transmission and after CPN

delivers the data (Figure 1, which could be handled either by the application or an intermediate layer

above TCP/IP, such as the transport layer security (TLS) protocol. A second possibility is that CPN

encrypts and decrypts user data at a per-packet basis at the edge routers or endpoints (Figure 2).

Figure 2 Per-packet data encryption by CPN

Figure 3 Measured transfer time over a CPN path of 5 nodes for files of the indicated length with
and without encryption (see online version for colours)

Figure 3 depicts the transfer time that was measured for files of the indicated length, with or without

encryption. The source and destination nodes (which implemented the encryption and decryption

process) run with a clock rate of 2.8 and 2.4 GHz, respectively. The path connecting the source and

destination was unique to ensure obtaining consistent results for all tests, and it consisted of five hops.

The encryption was realised via secure sockets (so the programming was external to the CPN module).

The results indicate that the encryption and decryption process add about one additional second to

the total end-to-end transfer time. This additional delay to the file transfer is the penalty caused by

the extra computation that was needed.

3.2 Integrity

Integrity refers to the security requirement for information and systems not to be altered without the

authorisation of their legitimate owners. As mentioned previously, CPN does not normally encrypt

packets, but when done as described earlier, it could also help to (at least partially) address integrity

issues given that any alteration of a packet’s payload by an attacker will trigger decryption errors at

the destination. Unfortunately, not only the users’ data could be the target of an attacker, but also

the nodes’ identity (by changing values in the packet header) and, in the particular case of CPN,

network status data and paths (by altering the CM).

Attacks to the CPN header or CM can directly affect the ability of the CPN algorithm and the RNN

to effectively respond to network and user behaviour changes, and can also affect the quality of the

routing decisions. By changing the packet header or CM, which stores real observations of the QoS

that could be achieved by the network, a malicious user could impact the RNN training process, and

therefore tweak the routing decisions to cause unexpected behaviour.

Other ways for this to happen is by changing the actual information that is stored in the

mailboxes of the nodes, by altering the RNN weights, or even by replacing the RNN-based algorithm

with an arbitrary one. Attackers could gain control of one or more nodes in the network and easily

change the RNN algorithm behaviour, either directly or indirectly through manipulation of the mailbox

entries. To illustrate the problem, consider a communication flow from nodes A to B as depicted in

Figure 4. A normal communication flow will include packets listing in their CM the path A, C, B (step

1). If node C becomes under the control of an attacker, it could rewrite the CM of the packets and

forward them to an arbitrary node D (step 2). The purpose could be either to gain access to the

packets’ contents or to simply affect the quality-of-service of packets (e.g., increase their end-to-end

latency). After being intercepted by node D, the packets could continue their normal path (step 3). As

usual, the destination will create ACKs and sent them on the reverse path (step 4) until they reach the

attacker’s nodes D and C (step 5). Node C could then rewrite the CM back to the original (step 6) to

conceal the attack from the source. Several variations of this kind of attack could occur, for example,

rather than forwarding packets to node D, node C could simply write untrue values in the CM metrics

perhaps to indicate better QoS metrics on paths passing through C so that packets become easily

available to the attacker. The key CPN weakness in these cases is in having absolute trust in the

distributed CM handling.

Figure 4 Example of CM integrity attack

To prevent such kinds of integrity attacks to the CPN header and CM, we propose introducing digital

signatures both at the source (for normal packets) and destination (for ACKs). Asymmetric

cryptography is a suitable alternative for this task given that it removes the need of secret key

distribution. Under this scheme, CPN routers will be required to have both a private and public key.

We suggest two possible implementation approaches. In the first case, we differentiate core

routers from edge routers (those connected to the end users), with edge routers signing and verifying

signatures for each flow. In a second case, all routers will participate in the signature verification

process. The advantage of the former case is speed whereas the second provides greater resilience,

as attacked packet could be removed earlier from the network. Another difference between the two

is the method of distribution of the public key. In the first case, only edges will be required to know

the public key of edge routers. In the latter case, all routers will have to have access to those keys.

The signature generation and verification process is depicted in Figure 5. The source (end-node or

edge router) will generate a message digest of the CPN normal (dumb) packet header and partial CM

(including entries that are not expected to change). The message digest will be then encrypted using

the source’s private key and inserted into the extended CPN header. The extended packet is then sent

over the CPN using its regular packet forwarding mechanism. At the receiving end (or intermediate

hop, depending on the scheme being used), the signature will be regenerated from the receiving

header and CM, and compared with the signature in the packet. If they do not match, something in

the header of the CM must have changed on the way, thus indicating the packet has been tampered

and should be discarded.

The signature generation and verification will add additional delay to a normal end-to-end packet

transmission. Measurements of these additional delays are depicted in Figure 6 for packets of

different length. We have observed that signature generation took around 6.5 ms, signature

verification was faster at 3.6 ms, and that the packet length has little impact on the execution time of

the processes. The measurements were obtained on a 2.8 GHz machine.

Figure 5 Digital signature generation and verification for the CPN header and CM

Figure 6 Measured signature creation and verification times for packets of different lengths
(see online version for colours)

3.3 Availability

Availability refers to the security requirement for information and network services to be available to

their legitimate users, and may be affected if intermediate routers behave erratically (the case of

hijacked nodes running attacker’s software) or stop working, possibly due to a denial of service attack.

Availability in CPN has been investigated previously in terms of the propagation of worms that disable

nodes (Sakellari, 2011), denial of service attacks (Gelenbe et al., 2004) and misbehaving routers (Lent

and Gelenbe, 2012). Interestingly, as we will see, the self-adapting behaviour that is natural in CPN

constitutes and inherent strength of the algorithm against all these threats.

3.3.1 Misbehaving routers

The case of hijacked routers exhibiting an erratic behaviour has been recently studied (Lent and

Gelenbe, 2012). However, this work did not introduce specific mechanisms to deal with router

misbehaviour. Two types of router misbehaviour were addressed: routers that drop a percentage of

incoming packets and routers the direct SP to the worst possible next hop decision (according to the

RNN algorithm).

Given that the reinforcement learning algorithm used in the RNN evaluates cumulative next hop

behaviour, both types of misbehaviours can be addressed by introducing packet loss metrics in the

formulation of routing goals as done in Gelenbe et al. (2002) for normal packet drops. In particular,

assuming a generic hop cost C and estimations of the packet loss ratio L, the goal function for RNN

training could be expressed as:

 L

G= P+C
 1 - L

where P is an arbitrary penalty that is usually fixed to higher value than the cost of any path.

To experimentally evaluate this case, we have deployed a CPN testbed and conducted a number

of trials and observations assuming that some of the core routers were compromised by an attacker,

and therefore, had an abnormal behaviour.

A CPN implementation for the networking stack of the Linux kernel was used to carry out our tests.

The implementation followed the algorithm described in Gelenbe (2004). The CPN implementation

was deployed on 33 virtual machines, which were hosted by 6 quad-core physical machines using the

VirtualBox hypervisor. These virtual machines allowed us to create a virtual topology, which was

modelled after a real world topology (ATT network). The exact technique that was employed to

implement the virtual network can be found in the literature (Lent and Gelenbe, 2012). Each of the

virtual machines consisted of a single core CPU with 256 KB of RAM and served to implement a

software Linux router running the CPN module. The original ATT network topology that was available

as a model for our virtual topology consisted of 27 nodes. However, six additional nodes were added

to have extra communication endpoints, making a total of 33 nodes (and 50 links), of which 8 nodes

had a single connection to the network and were used as endpoints for test traffic flows. While any

network node could be attacked in a real network, we limited the simulated attacks to any of the 25

core routers given the scope of our study.

Figure 7 A CPN testbed of virtual routers

Note: A double circle indicates the source or sink of a test traffic.

At each endpoint, a traffic generator was installed to create UDP traffic at a fixed rate λ with a given

packet size L and directed to another random endpoint, for a time period T. Rate λ was randomly

selected in the range 100.3,000 Bps. Similarly, each flow duration T was randomly assigned in the

range from 1 to 3 minutes. Packets were assumed to be small (4B). The traffic generator created flows

one after another so as to achieve an uninterrupted emission of packets from each endpoint during

any experiment.

SPs were sent as a 0.1 fraction of normal packets to maintain path adaptation if needed in the

case of a change in network conditions. At each hop, SP used a RNN to decide the next hop except for

10% of the decisions, which used a random neighbour selection that helped to facilitate network

exploration and the discovery of alternative paths to destinations. Because of the use of virtualised

resources in our tests, we opted for introducing SP routing based on router costs, which were

randomly selected at the beginning of the experiment, in the range 1.100. For any given source

destination pair, SPs had in general the task of finding the path with the minimum cost (the sum of

the router costs involved in a path) or, if requested, the path with the minimum combination of cost

and packet loss. The penalty value P was fixed to 100 units.

Hijacked routers behaved maliciously by directing SPs to the worst possible next hop as an attempt

to increase the end-to-end flow cost or to prevent route discovery. Because CPN can easily isolate

those routers, the difference of using the aforementioned goal functions to train the RNN was very

small. Nevertheless, we did observe slightly higher loss (10.4) ratio when only cost was used.

During the experiments, a number of core routers were assumed to be under the control of an

attacker. Routers will drop a percentage of all the incoming normal traffic. Figure 8 depicts the

measured ratio between the packet delivery rates for the case when the RNNs were trained using a

cost-packet loss goal vs. the case of RNNs only trained with a cost-based goal. It can be observed that

as the number of hijacked routers increased, the comparative advantage of using a combined cost-

loss goal diminished from about 20% to 5%.

Figure 8 Packet delivery improvement ratio of the RNN when trained with both cost and loss compared to only

using cost (see online version for colours)

3.3.2 Existing work on resilience of CPN to worms

Although CPN is generally very resilient to network changes, it was shown in Sakellari (2011), Sakellari

and Gelenbe (2009, 2010), and Gelenbe (2009) that it suffered worse performance during node

failures, as the loss of ACK packets led to insufficient training of the RNNs, the weights of which in a

node are updated only when an ACK packet returns to it. For that reason, CPN nodes route a fraction

of the SPs randomly, so that sudden changes of any kind could be discovered, but still in some

scenarios it may need considerable numbers of random SPs before the decision of a node changes.

The authors of Sakellari (2011), and Sakellari and Gelenbe (2009, 2010) investigated the performance

of CPN during a worm propagation which resulted in network failures. The worm was spreading

according to the analytical active worm propagation (AAWP) epidemiological model, a discrete-time

and continuous state deterministic approximation model of the spread of active worms that scan for

targets randomly (Chen et al., 2003).

A failure detection element was proposed to improve the performance of CPN in terms of packet

delays and packet loss during failures. With this enhancement, at each RNN and for each neuron i, the

timestamp of the last SP and the last ACK that used it, are stored. If no ACK has been received after

sending the last SP then the link is considered ‘under failure’ and the neuron corresponding to this link

is considered ‘expired’. Expired neurons do not participate in the calculation of the excitatory

probabilities and the subsequent decisions of the RNN. The enhanced CPN was also compared with

the open shortest path first (OSPF) routing protocol and was shown to perform better in such

situations.

3.3.3 Resilience to denial-of-service attacks

Most protection systems for DoS attacks rely on hardware or software components that are added on

top of an existing information and communication infrastructure (Loukas and Oke, 2010). Examples

have been developed by Gelenbe et al. to achieve detection and response against such attacks. The

first mathematical model for the analysis of the impact of flood-based DoS attacks was introduced in

Gelenbe et al. (2004) and insights based on its numerical results led to the development of prototype

defence implementations (Gelenbe et al., 2005). These involved mechanisms for the selective

dropping of packets based on their probability of being illegitimate, and were developed as modules

of the CPN kernel. However, a significant weakness of defence mechanisms that are based on packet

dropping is the substantial loss of valid packets due to false positives.

In Gelenbe and Loukas (2007), CPN.s defence framework was improved with the introduction of

a rate-limiting and prioritisation mechanism, where the result of validity tests against individual data

packets determined the priority by which they would be served by the nodes. In recognition of the

imperfection of any detection mechanism, by reducing the priority rather than dropping the packets

that were detected to be malicious, false positives were reduced and the legitimate traffic served in

the network was increased considerably.

Figure 9 Packet loss during a DoS attack for static and CPN dynamic routing, (a) without DoS defence and (b)
with an imperfect defence system

(a) (b)

Source: Figure from Loukas (2006)

Regardless of the specifics of the implementation of the response mechanism, the performance of a

denial-of-service defence system is always highly dependent on the precision of detection. The

detection approach presented in Oke and Loukas (2007) was based on the maximum likelihood

principle and data fusion using the RNN, in both feedforward and recurrent architectures. The input

features used were the instantaneous bitrate and its rate of increase, the delay and its rate of increase,

the entropy of the incoming traffic, as well as its Hurst parameter (Loukas and Oke, 2007). In Oke and

Loukas (2008), emphasis was placed on the distributed aspects of effective response.

In all these defence approaches, various forms of CPN were used as the underlying network

infrastructure. We argue that the choice of the RNN-based CPN as the routing paradigm plays by itself

a noticeable role in terms of the network’s inherent resilience to flood-based availability attacks.

Experiments presented in Loukas (2006) have indicated that CPN’s dynamic routing improves

considerably the performance of an imperfect DoS defence system during attacks of low to medium

intensity (Figure 9; Pf and Pd are the assumed defence system’s probabilities of false positive and

correct detection).

4 Conclusions

The inherent self-adaptive properties of the CPN constitute a significant advantage for helping it

withstand attacks against its availability. Its self-adaptation becomes even more effective after

introducing packet losses into the goal formulation for training the distributed RNNs that are used in

the routing algorithm. A denial of service defence mechanism with a given set of detection

probabilities becomes more effective if applied in conjunction with the dynamic routing of CPN. Yet,

similarly to the internet protocol, CPN was designed based on trust. By trusting the information carried

by packets and that no node could be compromised, CPN becomes vulnerable to confidentiality and

integrity attacks. It offers, by default, little support to ensure end-to-end confidential delivery of data

or integrity of packets, which is of crucial importance given that it relies on real-time packets’

information to effectively setup and maintain paths. Here, we have proposed extensions to the CPN

protocol to explicitly address these weaknesses via the introduction of encryption and digital

signatures. We have detailed the technical implementation of these mechanisms and argued that the

benefits from strengthening the confidentiality and integrity, along with the availability of information

transmitted through CPN, outweigh the disadvantage of the associated delays that are incurred.

References

Chen, Z., Gao, L. and Kwiat, K. (2003) ‘Modeling the spread of active worms’, in Proceedings of the
IEEE INFOCOM 2003, San Francisco, CA, USA, April, Vol. 3, pp.1890-1900.

Dhillon, G. and Backhouse, J. (2000) ’Information system security management in the new
Millennium’, Communications of the ACM, Vol. 43, No. 7, pp.125-128.

Gelenbe, E. (2004) ‘Cognitive packet network’, October, US Patent 6804201 B1.

Gelenbe, E. (2009) ‘Steps toward self-aware networks’, Commun. ACM, July, Vol. 52, No. 7,
pp.66-75 [online] http://doi.acm.org/10.1145/1538788.1538809 (accessed 24 May 2013).

Gelenbe, E. and Fourneau, J-M. (1999) ‘Random neural networks with multiple classes of signals’,
Neural Comput, May, Vol. 11, No. 4, pp.953-963 [online] http://dx.doi.org/10.1162/
089976699300016520 (accessed 24 May 2013).

Gelenbe, E. and Loukas, G. (2007) ‘A self-aware approach to denial of service defence’, Computer
Networks, Vol. 51, No. 5, pp.1299-1314.

Gelenbe, E., Gellman, M. and Loukas, G. (2004) ‘Defending networks against denial of service
Attacks’, in Proceedings of the Conference on Optics/Photonics in Security and Defence,
Unmanned/Unattended Sensors and Sensor Networks, London, UK, October, Vol. 5611,
pp.233-243.

Gelenbe, E., Gellman, M. and Loukas, G. (2005) ‘An autonomic approach to denial of service
Defence’, in Proceedings of the IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks, Taormina, Italy, June, pp.537-541.

Gelenbe, E., Lent, R. and Xu, Z. (2001a) ‘Design and performance of cognitive packet networks’,
Performance Evaluation, October, Vol. 46, Nos. 2.3, pp.155-176.

Gelenbe, E., Seref, E. and Xu, Z. (2001b) ‘Simulation with learning agents’, Proceedings of the
IEEE, February, Vol. 89, No. 2, pp.148-157.

Gelenbe, E., Lent, R., Montuori, A. and Xu, Z. (2000) ‘Towards networks with cognitive packets’, in
Proceedings of the 8th International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (IEEE MASCOTS), San Francisco, CA, USA, Opening Invited Paper,
August, pp.3-12.

Gelenbe, E., Lent, R., Montuori, A. and Xu, Z. (2002) ‘Cognitive packet networks: QoS and
Performance’, in Proceedings of The Tenth IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (MASCOTS), Ft. Worth, Texas, Opening
Keynote Paper, October, pp.3-12.

Gelenbe, E., Xu, Z. and Seref, E. (1999) ‘Cognitive packet networks’, in Proceedings of the 11th
International Conference on Tools with Artificial Intelligence (ICTAI .99), IEEE Computer Society Press,
Chicago, IL, USA, November, pp.47-54.

Gellman, M. (2007) Quality of Service Routing for Real-Time Traffic, PhD thesis, March, Imperial
College London, London, UK.

Lent, R. and Gelenbe, E. (2012) ‘Evaluating CPN on a large virtual network testbed’, in Proceedings of
the 27th International Symposium on Computer and Information Sciences Series: Lecture Notes in
Electrical Engineering, Paris, France, October.

Loukas, G. (2006) Defence Against Denial of Service in Self-Aware Networks, PhD thesis, University of
London, London, UK.

Loukas, G. and Oke, G. (2007) ‘Likelihood ratios and recurrent random neural networks in detection
of denial of service attacks’, in Proceedings of International Symposium of Computer and
Telecommunication Systems, San Diego, CA, USA, July, Vol. 7.

Loukas, G. and Oke, G. (2010) ‘Protection against denial of service attacks: a surve’, The Computer
Journal, Vol. 53, No. 7, pp.1020-1037.

Oke, G. and Loukas, G. (2007) ‘A denial of service detector based on maximum likelihood detection
and the random neural network’, The Computer Journal, Vol. 50, No. 6, pp.717-727.

Oke, G. and Loukas, G. (2008) ‘Distributed defence against denial of service attacks: a practical view’,
in Proceedings of the BCS International Conference on Visions of Computer Science, London, UK,
September, pp.153-162.

Sakellari, G. (2009) ‘The cognitive packet network: a survey’, The Computer Journal: Special Issue on
Random Neural Networks, June, Vol. 53, No. 3, pp.268-279, DOI: 10.1093/comjnl/bxp053.

Sakellari, G. (2011) ‘Performance evaluation of the cognitive packet network in the presence of
network worms’, Performance Evaluation, Vol. 68, No. 10, pp.927-937.

Sakellari, G. and Gelenbe, E. (2009) ‘Adaptive resilience of the cognitive packet network in the
presence of network worms’, in Proceedings of the NATO Symposium on C3I for Crisis, Emergency
and Consequence Management, Bucharest, Romania, May, pp.16:1-16:14.

Sakellari, G. and Gelenbe, E. (2010) ‘Demonstrating cognitive packet network resilience to worm
Attacks’, in ACM Conference on Computer and Communications Security, pp.636-638.

