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Abstract: Route selection in cognitive packet networks (CPNs) occurs continuously for active flows 

and is driven by the users’ choice of a quality of service (QoS) goal. Because routing occurs 

concurrently to packet forwarding, CPN flows are able to better deal with unexpected variations 

in network status, while still achieving the desired QoS. Random neural networks (RNNs) play a 

key role in CPN routing and are responsible to the next-hop decision making of CPN packets. By 

using reinforcement learning, RNNs. weights are continuously updated based on expected QoS 

goals and information that is collected by packets as they travel on the network experiencing the 

current network conditions. CPN.s QoS performance had been extensively investigated for a 

variety of operating conditions. Its dynamic and self-adaptive properties make them suitable for 

withstanding availability attacks, such as those caused by worm propagation and denial-of-service 

attacks. However, security weaknesses related to confidentiality and integrity attacks have not 

been previously examined. Here, we look at related network security threats and propose 

mechanisms that could enhance the resilience of CPN to confidentiality, integrity and availability 

attacks. 
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1  Introduction  
 

Reliable networks that provide good service quality are expected to become the norm in all 

communication aspects, especially as the information transferred between network users gets more 

complex and confidential, and as malicious users try to deliberately degrade or altogether deny 

legitimate network service. There is therefore an increased need for network stability and reliability 

which has led to the growth of autonomic networks that use quality of service (QoS)-driven 

approaches for greater stability and reliability in communications. The cognitive packet network (CPN) 

that was introduced by Gelenbe et al. (1999) has been shown to provide good network adaptation 

properties under varying network conditions and user requirements. Its performance has been 

investigated extensively and for a variety of performance metrics, but most studies have considered 

operating conditions where there is no malicious intent or security threats limited to availability 

attacks through worm propagation or network denial-of-service (Sakellari, 2009). 

In CPN, the steady-state of random neural networks (RNNs) running on network routers decides 

network paths. RNNs (Gelenbe et al., 2001b; Gelenbe and Fourneau, 1999) are trained continuously 

by enhancing network flows with packets that monitor performance. These packets store information 

about the network state as they cross the network from a source to a destination, and get updated at  

 

 



each hop in the path. In general, CPN blindly trusts the information carried by packets, but a network 

attack could result in some routers falling under the control of a malicious user, and as a consequence 

packets may be subject to tampering. The problem is aggravated as routing decisions in CPN are 

distributed. In this paper, we examine potential weaknesses of CPN and the use of RNNs in relation to 

confidentiality, integrity and availability, and identify possible solutions that could enhance the 

resilience of CPN to representative security threats. 

 

 

2  Brief overview of the CPN 
 
 

The CPN is a routing protocol that uses adaptive techniques based on online measurements to provide 

QoS to its users (Gelenbe et al., 2000, 2001a; Sakellari, 2009). The users themselves can declare 

individually their QoS goals, such as minimum delay, minimum packet loss, maximum bandwidth, 

minimum power consumption or a weighted combination of these. CPN has been designed to perform 

self-improvement in a distributed manner by learning from the experience of the packets in the 

network and by constantly probing for the current best routes. 

More specifically, CPN uses three types of packets; smart packets (SPs) for discovery, source 

routed dumb packets (DP) to carry the payload and acknowledgement (ACK) packets to bring back 

information that has been discovered by either SPs or DPs. This information is used in each node to 

train RNNs (Gelenbe et al., 2001b) and produce routing decisions. At each network node, SPs are 

routed according to the measured experiences of previous packets with the same QoS goals and the 

same destination. In order to explore all possible routes and account for sudden network changes, 

each SP might make a random routing decision instead of the one calculated by the RNN, with a small 

probability (usually 5% to 10%). 

The header of the CPN packets has been modified to allow the packets to gather network 

information according to the specified QoS goal. Therefore, as packets travel the network, they store 

QoS data (such as timestamps, counters, etc.) in a special data storage area of the packet header 

known as the cognitive map (CM) (Gellman, 2007). When a packet arrives at its destination, an ACK 

packet is generated which stores the route taken by the original packet, and the measurements it 

collected during its journey. The ACK will then return along the reverse route. At each hop the ACK 

visits, it deposits information in a special short-term memory store called mailbox. When it finally 

reaches the source, the ACK establishes the route that the DPs will follow. 

At each node a specific RNN, that has as many neurons as the possible outgoing links, provides 

the SP with the routing decision in the form of an output link. This output link corresponds to the most 

excited neuron, and since the RNN has a unique solution for any set of weights and input variables, 

this choice is also unique. The learning process used with RNN is reinforcement learning, which uses 

the observed outcome of a decision to reward or punish the routing decision, so that future decisions 

are more likely to improve or maintain the desired QoS goal. 

 

 

 
 
 
 
 
 



3  Identifying and addressing CPN security weaknesses  
 
 
Here, we investigate potential weaknesses of CPN falling under the triad of common security aspects: 

confidentiality, integrity and availability (Dhillon and Backhouse, 2000) and propose possible 

solutions. Public and shared networks offer greater security challenges than private and dedicated 

networks. We will make no assumptions about the type of deployment, so both the discussion and 

results will be applicable to both cases. However, the discussion will be centred only on network 

weaknesses and will exclude particular issues at endpoints. 

 

3.1 Confidentiality 
 
Confidentiality is breached when information, held or transmitted through the network, is disclosed 

to unauthorised individuals or systems. Ensuring total confidentiality in a network is normally very 

difficult given that packets need regular handling by routers that are managed by a third party, and 

outside the sender and recipient’s domains. In that sense, a CPN is as vulnerable to confidentiality 

attacks as other types of networks. Up to now there has not been any security mechanism in CPN that 

could guarantee a confidential end-to-end delivery of users’ data. 

A confidentiality attack could take place either at hijacked routers or links. In the former case, an 

attacker could have gained access to a network node on the path from the victim’s flow and forward 

a copy of the traffic content to a collection point. In the latter case, packet sniffers could have been 

installed on a network link to eavesdrop incoming network traffic. An interesting point to note is that 

the self-adapting path behaviour of CPN could partially prevent a confidential attack given that not all 

packets for a given communication may need to pass through the same set of links and nodes unlike 

traditional networks. A path adaptation may deviate packets away from the hijacked routers and links. 

However, there is no way to ensure this will happen given that it will be very difficult to detect the 

packet sniffing process. 

 
Figure 1 End-to-end user data encryption and decryption as an external process 
 

 



The usual solution to ensure network confidentially is to encrypt end-to-end communications, and this 

approach can be applied also to CPN. In the context of a CPN implementation, at least two alternatives 

are possible. Data encryption could occur before data is passed to CPN for transmission and after CPN 

delivers the data (Figure 1, which could be handled either by the application or an intermediate layer 

above TCP/IP, such as the transport layer security (TLS) protocol. A second possibility is that CPN 

encrypts and decrypts user data at a per-packet basis at the edge routers or endpoints (Figure 2). 

 

Figure 2 Per-packet data encryption by CPN 
 

 
 
 

Figure 3 Measured transfer time over a CPN path of 5 nodes for files of the indicated length with 
and without encryption (see online version for colours) 
 

 



Figure 3 depicts the transfer time that was measured for files of the indicated length, with or without 

encryption. The source and destination nodes (which implemented the encryption and decryption 

process) run with a clock rate of 2.8 and 2.4 GHz, respectively. The path connecting the source and 

destination was unique to ensure obtaining consistent results for all tests, and it consisted of five hops. 

The encryption was realised via secure sockets (so the programming was external to the CPN module). 

The results indicate that the encryption and decryption process add about one additional second to 

the total end-to-end transfer time. This additional delay to the file transfer is the penalty caused by 

the extra computation that was needed. 

 

3.2 Integrity 
 
Integrity refers to the security requirement for information and systems not to be altered without the 

authorisation of their legitimate owners. As mentioned previously, CPN does not normally encrypt 

packets, but when done as described earlier, it could also help to (at least partially) address integrity 

issues given that any alteration of a packet’s payload by an attacker will trigger decryption errors at 

the destination. Unfortunately, not only the users’ data could be the target of an attacker, but also 

the nodes’ identity (by changing values in the packet header) and, in the particular case of CPN, 

network status data and paths (by altering the CM). 

Attacks to the CPN header or CM can directly affect the ability of the CPN algorithm and the RNN 

to effectively respond to network and user behaviour changes, and can also affect the quality of the 

routing decisions. By changing the packet header or CM, which stores real observations of the QoS 

that could be achieved by the network, a malicious user could impact the RNN training process, and 

therefore tweak the routing decisions to cause unexpected behaviour. 

Other ways for this to happen is by changing the actual information that is stored in the 

mailboxes of the nodes, by altering the RNN weights, or even by replacing the RNN-based algorithm 

with an arbitrary one. Attackers could gain control of one or more nodes in the network and easily 

change the RNN algorithm behaviour, either directly or indirectly through manipulation of the mailbox 

entries. To illustrate the problem, consider a communication flow from nodes A to B as depicted in 

Figure 4. A normal communication flow will include packets listing in their CM the path A, C, B (step 

1). If node C becomes under the control of an attacker, it could rewrite the CM of the packets and 

forward them to an arbitrary node D (step 2). The purpose could be either to gain access to the 

packets’ contents or to simply affect the quality-of-service of packets (e.g., increase their end-to-end 

latency). After being intercepted by node D, the packets could continue their normal path (step 3). As 

usual, the destination will create ACKs and sent them on the reverse path (step 4) until they reach the 

attacker’s nodes D and C (step 5). Node C could then rewrite the CM back to the original (step 6) to 

conceal the attack from the source. Several variations of this kind of attack could occur, for example, 

rather than forwarding packets to node D, node C could simply write untrue values in the CM metrics 

perhaps to indicate better QoS metrics on paths passing through C so that packets become easily 

available to the attacker. The key CPN weakness in these cases is in having absolute trust in the 

distributed CM handling. 

 
 
 
 
 
 
 



Figure 4 Example of CM integrity attack 

 
 

 
 
 

To prevent such kinds of integrity attacks to the CPN header and CM, we propose introducing digital 

signatures both at the source (for normal packets) and destination (for ACKs). Asymmetric 

cryptography is a suitable alternative for this task given that it removes the need of secret key 

distribution. Under this scheme, CPN routers will be required to have both a private and public key. 

We suggest two possible implementation approaches. In the first case, we differentiate core 

routers from edge routers (those connected to the end users), with edge routers signing and verifying 

signatures for each flow. In a second case, all routers will participate in the signature verification 

process. The advantage of the former case is speed whereas the second provides greater resilience, 

as attacked packet could be removed earlier from the network. Another difference between the two 

is the method of distribution of the public key. In the first case, only edges will be required to know 

the public key of edge routers. In the latter case, all routers will have to have access to those keys. 

The signature generation and verification process is depicted in Figure 5. The source (end-node or 

edge router) will generate a message digest of the CPN normal (dumb) packet header and partial CM 

(including entries that are not expected to change). The message digest will be then encrypted using 

the source’s private key and inserted into the extended CPN header. The extended packet is then sent 

over the CPN using its regular packet forwarding mechanism. At the receiving end (or intermediate 

hop, depending on the scheme being used), the signature will be regenerated from the receiving 

header and CM, and compared with the signature in the packet. If they do not match, something in 

the header of the CM must have changed on the way, thus indicating the packet has been tampered 

and should be discarded. 

The signature generation and verification will add additional delay to a normal end-to-end packet 

transmission. Measurements of these additional delays are depicted in Figure 6 for packets of 

different length. We have observed that signature generation took around 6.5 ms, signature 

verification was faster at 3.6 ms, and that the packet length has little impact on the execution time of 

the processes. The measurements were obtained on a 2.8 GHz machine. 



Figure 5 Digital signature generation and verification for the CPN header and CM 
 

 
 
Figure 6 Measured signature creation and verification times for packets of different lengths 
(see online version for colours) 
 

 

 



3.3 Availability 
 

Availability refers to the security requirement for information and network services to be available to 

their legitimate users, and may be affected if intermediate routers behave erratically (the case of 

hijacked nodes running attacker’s software) or stop working, possibly due to a denial of service attack. 

Availability in CPN has been investigated previously in terms of the propagation of worms that disable 

nodes (Sakellari, 2011), denial of service attacks (Gelenbe et al., 2004) and misbehaving routers (Lent 

and Gelenbe, 2012). Interestingly, as we will see, the self-adapting behaviour that is natural in CPN 

constitutes and inherent strength of the algorithm against all these threats. 

 

3.3.1 Misbehaving routers 
 

The case of hijacked routers exhibiting an erratic behaviour has been recently studied (Lent and 

Gelenbe, 2012). However, this work did not introduce specific mechanisms to deal with router 

misbehaviour. Two types of router misbehaviour were addressed: routers that drop a percentage of 

incoming packets and routers the direct SP to the worst possible next hop decision (according to the 

RNN algorithm). 

Given that the reinforcement learning algorithm used in the RNN evaluates cumulative next hop 

behaviour, both types of misbehaviours can be addressed by introducing packet loss metrics in the 

formulation of routing goals as done in Gelenbe et al. (2002) for normal packet drops. In particular, 

assuming a generic hop cost C and estimations of the packet loss ratio L, the goal function for RNN 

training could be expressed as: 

 
       L 

G=          P+C 
     1 - L 

 

where P is an arbitrary penalty that is usually fixed to higher value than the cost of any path.  

To experimentally evaluate this case, we have deployed a CPN testbed and conducted a number 

of trials and observations assuming that some of the core routers were compromised by an attacker, 

and therefore, had an abnormal behaviour. 

A CPN implementation for the networking stack of the Linux kernel was used to carry out our tests. 

The implementation followed the algorithm described in Gelenbe (2004). The CPN implementation 

was deployed on 33 virtual machines, which were hosted by 6 quad-core physical machines using the 

VirtualBox hypervisor. These virtual machines allowed us to create a virtual topology, which was 

modelled after a real world topology (ATT network). The exact technique that was employed to 

implement the virtual network can be found in the literature (Lent and Gelenbe, 2012). Each of the 

virtual machines consisted of a single core CPU with 256 KB of RAM and served to implement a 

software Linux router running the CPN module. The original ATT network topology that was available 

as a model for our virtual topology consisted of 27 nodes. However, six additional nodes were added 

to have extra communication endpoints, making a total of 33 nodes (and 50 links), of which 8 nodes 

had a single connection to the network and were used as endpoints for test traffic flows. While any 

network node could be attacked in a real network, we limited the simulated attacks to any of the 25 

core routers given the scope of our study. 

 

 
 



Figure 7 A CPN testbed of virtual routers 
 
 

 
 
Note: A double circle indicates the source or sink of a test traffic. 

 

At each endpoint, a traffic generator was installed to create UDP traffic at a fixed rate λ with a given 

packet size L and directed to another random endpoint, for a time period T. Rate λ was randomly 

selected in the range 100.3,000 Bps. Similarly, each flow duration T was randomly assigned in the 

range from 1 to 3 minutes. Packets were assumed to be small (4B). The traffic generator created flows 

one after another so as to achieve an uninterrupted emission of packets from each endpoint during 

any experiment. 

SPs were sent as a 0.1 fraction of normal packets to maintain path adaptation if needed in the 

case of a change in network conditions. At each hop, SP used a RNN to decide the next hop except for 

10% of the decisions, which used a random neighbour selection that helped to facilitate network 

exploration and the discovery of alternative paths to destinations. Because of the use of virtualised 

resources in our tests, we opted for introducing SP routing based on router costs, which were 

randomly selected at the beginning of the experiment, in the range 1.100. For any given source 

destination pair, SPs had in general the task of finding the path with the minimum cost (the sum of 

the router costs involved in a path) or, if requested, the path with the minimum combination of cost 

and packet loss. The penalty value P was fixed to 100 units. 

Hijacked routers behaved maliciously by directing SPs to the worst possible next hop as an attempt 

to increase the end-to-end flow cost or to prevent route discovery. Because CPN can easily isolate 

those routers, the difference of using the aforementioned goal functions to train the RNN was very 

small. Nevertheless, we did observe slightly higher loss (10.4) ratio when only cost was used. 

During the experiments, a number of core routers were assumed to be under the control of an 

attacker. Routers will drop a percentage of all the incoming normal traffic. Figure 8 depicts the 

measured ratio between the packet delivery rates for the case when the RNNs were trained using a 

cost-packet loss goal vs. the case of RNNs only trained with a cost-based goal. It can be observed that 

as the number of hijacked routers increased, the comparative advantage of using a combined cost-

loss goal diminished from about 20% to 5%. 



Figure 8 Packet delivery improvement ratio of the RNN when trained with both cost and loss compared to only 

using cost (see online version for colours) 

 

 
 
3.3.2 Existing work on resilience of CPN to worms 
 

Although CPN is generally very resilient to network changes, it was shown in Sakellari (2011), Sakellari 

and Gelenbe (2009, 2010), and Gelenbe (2009) that it suffered worse performance during node 

failures, as the loss of ACK packets led to insufficient training of the RNNs, the weights of which in a 

node are updated only when an ACK packet returns to it. For that reason, CPN nodes route a fraction 

of the SPs randomly, so that sudden changes of any kind could be discovered, but still in some 

scenarios it may need considerable numbers of random SPs before the decision of a node changes. 

The authors of Sakellari (2011), and Sakellari and Gelenbe (2009, 2010) investigated the performance 

of CPN during a worm propagation which resulted in network failures. The worm was spreading 

according to the analytical active worm propagation (AAWP) epidemiological model, a discrete-time 

and continuous state deterministic approximation model of the spread of active worms that scan for 

targets randomly (Chen et al., 2003). 

A failure detection element was proposed to improve the performance of CPN in terms of packet 

delays and packet loss during failures. With this enhancement, at each RNN and for each neuron i, the 

timestamp of the last SP and the last ACK that used it, are stored. If no ACK has been received after 

sending the last SP then the link is considered ‘under failure’ and the neuron corresponding to this link 

is considered ‘expired’. Expired neurons do not participate in the calculation of the excitatory 

probabilities and the subsequent decisions of the RNN. The enhanced CPN was also compared with 

the open shortest path first (OSPF) routing protocol and was shown to perform better in such 

situations. 



3.3.3 Resilience to denial-of-service attacks 
 

Most protection systems for DoS attacks rely on hardware or software components that are added on 

top of an existing information and communication infrastructure (Loukas and Oke, 2010). Examples 

have been developed by Gelenbe et al. to achieve detection and response against such attacks. The 

first mathematical model for the analysis of the impact of flood-based DoS attacks was introduced in 

Gelenbe et al. (2004) and insights based on its numerical results led to the development of prototype 

defence implementations (Gelenbe et al., 2005). These involved mechanisms for the selective 

dropping of packets based on their probability of being illegitimate, and were developed as modules 

of the CPN kernel. However, a significant weakness of defence mechanisms that are based on packet 

dropping is the substantial loss of valid packets due to false positives. 

In Gelenbe and Loukas (2007), CPN.s defence framework was improved with the introduction of 

a rate-limiting and prioritisation mechanism, where the result of validity tests against individual data 

packets determined the priority by which they would be served by the nodes. In recognition of the 

imperfection of any detection mechanism, by reducing the priority rather than dropping the packets 

that were detected to be malicious, false positives were reduced and the legitimate traffic served in 

the network was increased considerably. 
 

Figure 9 Packet loss during a DoS attack for static and CPN dynamic routing, (a) without DoS defence and (b) 
with an imperfect defence system 
 

 
(a)                                                                                                (b) 

 
Source: Figure from Loukas (2006) 

 

Regardless of the specifics of the implementation of the response mechanism, the performance of a 

denial-of-service defence system is always highly dependent on the precision of detection. The 

detection approach presented in Oke and Loukas (2007) was based on the maximum likelihood 

principle and data fusion using the RNN, in both feedforward and recurrent architectures. The input 

features used were the instantaneous bitrate and its rate of increase, the delay and its rate of increase, 

the entropy of the incoming traffic, as well as its Hurst parameter (Loukas and Oke, 2007). In Oke and 

Loukas (2008), emphasis was placed on the distributed aspects of effective response. 

 



In all these defence approaches, various forms of CPN were used as the underlying network 

infrastructure. We argue that the choice of the RNN-based CPN as the routing paradigm plays by itself 

a noticeable role in terms of the network’s inherent resilience to flood-based availability attacks. 

Experiments presented in Loukas (2006) have indicated that CPN’s dynamic routing improves 

considerably the performance of an imperfect DoS defence system during attacks of low to medium 

intensity (Figure 9; Pf and Pd are the assumed defence system’s probabilities of false positive and 

correct detection). 

 

4  Conclusions  
 

The inherent self-adaptive properties of the CPN constitute a significant advantage for helping it 

withstand attacks against its availability. Its self-adaptation becomes even more effective after 

introducing packet losses into the goal formulation for training the distributed RNNs that are used in 

the routing algorithm. A denial of service defence mechanism with a given set of detection 

probabilities becomes more effective if applied in conjunction with the dynamic routing of CPN. Yet, 

similarly to the internet protocol, CPN was designed based on trust. By trusting the information carried 

by packets and that no node could be compromised, CPN becomes vulnerable to confidentiality and 

integrity attacks. It offers, by default, little support to ensure end-to-end confidential delivery of data 

or integrity of packets, which is of crucial importance given that it relies on real-time packets’ 

information to effectively setup and maintain paths. Here, we have proposed extensions to the CPN 

protocol to explicitly address these weaknesses via the introduction of encryption and digital 

signatures. We have detailed the technical implementation of these mechanisms and argued that the 

benefits from strengthening the confidentiality and integrity, along with the availability of information 

transmitted through CPN, outweigh the disadvantage of the associated delays that are incurred. 
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