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Abstract: The aim of this paper is to extend research results published in two 
recent papers which had investigated single-vendor single-buyer inventory 
model with lost sales and discrete delivery orders and a model in which a single 
buyer orders a product from multiple vendors who deliver their products to the 
buyer as joint shipments. We extend the two models studied in the literature by 
considering a multi-product three-echelon supply chain including multiple 
suppliers, single manufacturer and single distributor with discrete delivery 
orders for raw materials and products. We assume that each product needs a 
specific raw material provided by the suppliers and the raw materials are 
delivered in batches to the manufacturer, which produces n products through n 
types of raw materials, and sends them to the distributor. All the products are 
manufactured utilising one machine and delivered in batches to the distributor. 
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We also assume that a portion of the batches sent to the distributor by the 
manufacturer are defective. We have developed two heuristics based on genetic 
algorithm (GA) and biogeography-based optimisation (BBO) algorithm and our 
numerical results indicate that the GA-based heuristic slightly outperforms that 
of the BBO algorithm. 

Keywords: supply chain; inventory; discrete delivery ordering; shipment 
consolidation; meta-heuristic algorithms. 
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1 Introduction 

Inventory overhead is one of the costly elements in many organisations, but because its 
effective deployment contributes to business success, organisations invest in inventory 
management of raw materials, work in process, finished goods and etc. With 
globalisation trends and increase in competition, inventory management has become a 
key factor to remain in today’s competitive markets since customers expect to receive 
their commodities quickly. Despite extensive researches in this field, there is a significant 
gap between real-world problems and existing theoretical researches. 

Appropriate inventory management is one of the challenging activities of every 
production system since excessive inventory accumulation results in unnecessary holding 
costs, e.g., perishability, obsolescence, capital recession, insurance and etc. Therefore, 
determining optimal inventory level for accurately estimated production requirements is 
quite essential. Such approach can trigger a proper balance between customer demand 
and production capacity, reduce ordering, production and inventory costs and increases 
customers’ satisfaction. 

One of the key questions about firms involved with outside suppliers is to determine 
the order quantity and the reorder point. One of the first, simplest and widely used studies 
in inventory control problems is economic order quantity (EOQ) model proposed by  
Ford Whitman Harris (Cárdenas-Barrón et al., 2014a). He was the first researcher who 
investigated optimal lot sizing in production systems, by publishing a paper titled: “How 
many parts to make at once?” in February 1913. Harris assumed that orders are received 
at once; however in production systems this assumption is not practical. As a result, a 
modified version of this model was proposed by Taft (1918) by considering production 
rate and proposing basic economic production quantity (EPQ) model for manufacturing 
units. 

Although, the EOQ and EPQ models are widely employed in the real-world problems 
(Tersine, 1994; Silver et al., 1998), their inherent assumptions for the addressed basic 
models restrain their actual implementation. Many researchers have tried to extend the 
addressed basic models in the past few decades. 

In this paper, a multi-product three-echelon supply chain including multiple suppliers, 
single manufacturer and single distributor with discrete ordering system is considered. 
Each product needs a specific raw material provided by the suppliers. The raw materials 
are delivered in batches to the manufacturer. All the products are manufactured utilising a 
machine and delivered in batches to the distributor. Some practical examples for this kind 
of problem can be found in the manufacturing of concentrated juice and fruit packaging 
industries. Each kind of fruit can be purchased from an outside supplier (farmer) or own 
farm in batches (truck loads). However, considering seasonality of fresh fruit production, 
items can also be purchased from third parties who possess both farms and cold storages. 
The reason behind purchasing each fruit from an independent supplier is related to the 
dependency of fruit’s quality to its nurturing climate. 
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The structure of the rest of the paper is as follows: literature review and mathematical 
model are presented in Sections 2 and 3, respectively. Section 4 describes solution 
procedure. Section 5 presents computational results. Conclusions and future research 
recommendations are given in Section 6. 

2 Literature review 

Batch production and shipment is one of the main concerns in production systems and 
inventory control models. This concern stems from real world cases where the system has 
items produced in batches with a known size, for instance production of bottle caps by 
cap compression molding machines and so forth. One of the first studies in this area has 
been performed by Pasandideh and Niaki (2008). They studied multi-product EPQ model 
considering discrete order delivery with storage constraint. All products are produced by 
a single supplier and given to a company in pallets. The company as the customer makes 
all the decisions on pallet sizes and the number of shipments. Furthermore, a minimal and 
maximal number of shipments are considered. In another study, Pasandideh and Niaki 
(2010) optimised discrete deliveries in EPQ inventory model, i.e., the contractor shipped 
orders in form of pallets, for a problem with one product where shortage and delays were 
not allowed. 

Pasandideh et al. (2010) extended Pasandideh and Niaki (2008) model considering 
unsatisfied demand to be backlogged. They proposed a parameter tuned genetic algorithm 
(GA) to solve the problem. Widyadanaa and Wee (2009) extended Pasandideh and Niaki 
(2008) as a mixed integer non-linear programming (MINLP) model with budget 
constraint under Just in Time (JIT) mode of operation. They developed a branch and 
bound solution procedure using Lagrangean technique in order to reach global optimum. 
Recently, Cárdenas-Barrón et al. (2014b) proposed two heuristic algorithms in order to 
solve the addressed problem. The solution time of the given heuristics increase linearly 
while that of Widyadanaa and Wee (2009) increases exponentially with the problem size. 

Another assumption considered in production planning and inventory control systems 
is producing all products with same machine. Some of the first studies that studied the 
aforementioned assumption are Bomberger (1966), Madigan (1968), Baker (1970) and 
Elmaghraby (1978). Due to the complexity of single machine problems, no exact solution 
procedure for them could be provided. However, Hanssmann (1962) proposed a solution 
procedure for this class of problems by considering a common cycle length for all items 
produced on the machine. In this approach, in every production cycle, i.e., common cycle 
(T), each item was produced once. This method has a simple solution procedure and 
guarantees finding a feasible schedule. It was shown by Jones and Inmann (1989) that 
common cycle method performs well in many real world problems by providing optimal 
or near optimal solutions. 

Following these studies, Johnson and Montgomery (1974) proposed an exact solution 
procedure for multi-product single machine problems under assumption of common cycle 
when there is no priority for the production of items. Then, Haji et al. (2008) studied a 
production system consists of a machine producing defective items and considered  
non-zero setup times for rework cycle in the model. Afterwards, Taleizadeh et al. (2010)  
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studied an EPQ problem for an imperfect production producing with a repair failure. 
Then, Taleizadeh et al. (2014) considered maintenance policies and modelled an 
imperfect production system with shortages for a single machine problem. In a more 
recent study, Pasandideh et al. (2015) investigated a multi-item economic production 
model for an imperfect production system with several types of failure. In this study the 
shortage was allowed in backorder form. Nobil and Taleizadeh (2016) proposed a multi-
item single machine problem for an imperfect production system where the faulty items 
can either be repaired by rework or be sold in their current shape with a discounted price. 
Finally, Nobil et al. (2016) extended the single machine problem, proposing an EPQ 
problem for an imperfect production system consists of multi-machine with wastages, 
assuming some items can be produced on several machines. 

Since chain of producing items, i.e., material flow from suppliers to final products 
delivery to customers, is one of the main issues in inventory control systems and supply 
chain problems, some researchers have developed models that consider the supply chain 
as a whole. For instance, Wee and Widyadana (2013) investigated a single-vendor single-
buyer inventory model with lost sales. Machine’s unavailability time was considered to 
be two types; uniform and exponential distributions and orders were delivered in batches. 
They could derive some conditions which guaranteed the convexity of the model. 

Jha and Shanker (2013) studied a supply chain consists of a wholesaler that 
manufactures a product in batches and sell it to a number of customers. The demand rate 
of each customer followed an independent normal distribution and its lead time was 
reducible at a cost. The customers employed a continuous review policy, and the excess 
demand was fully backordered. The optimal combination of production-inventory policy 
of the system obtained by optimising collaborative expected cost of the system. 
Subsequently, Glock and Kim (2014) proposed a model in which a single buyer buys a 
product from multiple vendors with shipment consolidation. The study showed that 
consolidating shipments to the buyer from the vendor groups may lead to a significant 
reduction in total cost. Finally, they proposed a three-step solution procedure using 
steepest-descent approach in order to solve the proposed problem. Next, Muniappan et al. 
(2015) proposed optimal order quantity for a perishable production-inventory model in 
presence of rework and backordering under two different scenarios, coordination and 
incoordination. They assumed when coordination is in effect, the customer itself manages 
screening and disposal process, discount is available but shortage is not allowed. On the 
other hand, when there is no coordination in effect, producer is responsible for screening 
and disposal process but shortage is allowed for customers. 

Treviño-Garza et al. (2015) studied a vendor-buyer with defective items considering 
two different cases for lot size, discrete and continuous. The optimum solution was 
derived using discrete shipments value which is a more realistic assumption. In a recent 
study, Seifbarghy et al. (2016) proposed a two-level supply chain model consists of an 
item, a single producer and multiple retailers that were coordinated by a vendor-managed 
policy. Moreover, producer employed EPQ policy and some contracts based on the 
retailers’ sales number, sales value and a set production rate. Due to the nature of the 
problem, a nonlinear integer programming model employing a discrete particle swarm 
algorithm was used to solve the problem. Next, Hariga et al. (2016) studied a wholesaler  
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and a retailer coordination as a mixed-integer non-linear programming model, where 
packaging was performed employing returnable transport items (RTIs), for instance 
pallets, to guarantee its safety. After emptying the RTIs, they would be repaired and 
returned to the wholesaler. However, due to the unforeseen events, e.g., damages, the 
return time of the RTIs was assumed to be random and a rental option for providing them 
was considered. 

Based on the literature, we can say that most studies in production planning and 
inventory control systems concentrated on vendor, i.e., manufacturer or wholesaler; and 
customer, i.e., retailer or seller; relationship and the raw material and consumers were 
neglected. In this study, we investigate an inventory control system which includes three 
levels, i.e., supplier, producer and distributor, with several raw materials and products. 
The raw materials shipped in a fixed size, e.g., pallets, trucks and etc., then produced on a 
single machine and sent to distributors in packages. We have developed two heuristics 
based on GA and biogeography-based optimisation (BBO) algorithm in MATLAB 
environment to both solve the problem and validate the accuracy of its generated result. 
Compared to other researches in the field, our approach is more practical rather than 
theoretical. 

3 Problem definition and notation 

As mentioned in the Literature review, Wee and Widyadana (2013) investigated a single-
vendor single-buyer inventory model with lost sales, discrete delivery orders and 
stochastic machine unavailability time. Glock and Kim (2014) investigated a model in 
which a single buyer orders a product to multiple vendors. The vendors deliver their 
products to the buyer as joint shipments. 

In this paper, we extend the two aforementioned models considering a multi-product 
three-echelon supply chain including multiple suppliers, single manufacturer and single 
distributor with discrete delivery orders for raw materials and products. The manufacturer 
produces n products through n types of raw materials, and sends them to the distributor. 
The required raw materials are replenished from the suppliers (i.e., product i requires raw 
material i which is received from supplier i). In this model, we assume that a part of the 
batches sent to the distributor are defective due to imperfect manufacturing systems, 
inefficient vehicles, improper packaging and etc. The defective products are scrapped 
after inspection by the distributor at the end of each shipment period of the distributor. 

The notations and assumptions of the model are given as follows: 

i index of products (raw materials) 

n the number of products (raw materials) 

αi the percentage of defectives of product i at each batch delivered to the distributor 

Di the demand rate of product i at the distributor in a given time horizon 

Pi the production rate of product i at the manufacturer ((1 – αi) Pi ≥ Di) 

 

 

 



   

 

   

   
 

   

   

 

   

    Considering discrete delivery ordering and shipment consolidation 253    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Ri the production rate of raw material i at the supplier i (Ri ≥ Pi) 

Si the machine setup time to manufacture product i 

yi the unit inspection cost of product i at the distributor 

di the unit scrapping cost of product i at the distributor 
P
iA  the setup cost of producing a batch of product i at the manufacturer 

S
iA  the setup cost of producing a batch of raw material i at the supplier 

P
ic  the unit production cost of product i at the manufacturer 

S
ic  the unit production cost of raw material i 

S
ih  the unit holding cost of raw material i per unit time at supplier i 

ih  the unit holding cost of raw material i per unit time at the manufacturer 

M
ih  the unit holding cost of product i per unit time at the manufacturer 

D
ih  the unit holding cost of product i per unit time at the distributor 

P
io  the ordering cost of raw material i by the manufacturer 

D
io  the ordering cost of product i at the distributor 

S
ik  the transportation cost of each shipment of raw material i from supplier i to the 

manufacturer 
P
ik  the transportation cost of each shipment of product i from the manufacturer to the 

distributor 
S
iJ  the maximal number of shipments of raw material i from supplier i to the 

manufacturer during the time horizon 
P
iJ  the maximal number of shipments of product i from the manufacturer to the 

distributor during given time horizon 

TRi the consumption cycle of raw material i at the manufacturer 

Tpi the production uptime of product i 

Tdi the production downtime of the product i 

T the cycle time, where T ∈ (0, 1]. If T = 1, the cycle time is equal to the time 
horizon 
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N the number of cycles per unit time (N = 1/T) 

Gi the shipment quantity of raw material i from supplier i to the manufacturer 

Qi the shipment quantity of product i from the manufacturer to the distributor 

wi the number of shipments of product i during the cycle time of T 

mi the number of shipments of product i during the production time 

xi the number of shipments of raw material i from supplier i to the manufacturer 

tsi the normalised shipment period of raw material i from supplier i to the 
manufacturer with respect to T, where tsi ∈ (0, 1]. 

The mathematical model is developed based on the following assumptions: 

1 since all products are manufactured on a single machine with a limited capacity 
based on joint production strategy, an identical cycle time for all products is 
considered; i.e., 

1 2 1 1
P P P

n n n n nT T T T or w t w t w t T= = = = = = = = . 

2 based on relationship between consumption of each raw material and the 
manufactured product, the cycle time of raw material i is equal to the corresponding 
production uptime which means 

.i iTR Tp=  

3 the first shipment of raw material i arrives when product i is to be produced  
(see Part A and B in Figure 1). 

3.1 Average inventory analysis 

Figure 1 illustrates the on-hand inventory of the system considering single-supplier  
(i.e., single raw material), the manufacturer and the distributor. Part A in Figure 1 
represents the raw material inventory of the supplier where the supplier provides the raw 
material and sends to the manufacturer. Part B illustrates the raw material inventory of 
the manufacturer, wherein raw material is converted into a product with consumption rate 
of (–P); i.e., the system needs one unit of raw material to manufacture one unit product. 
Part C illustrates the product inventory of the manufacturer send to the distributor in 
batches. Part D represents the product inventory of the distributor, wherein the product is 
consumed with demand rate of (–D). 

Initially, based on Figure 1, the production uptime and downtime for product i is 
given in equations (1) and (2). 

i
i

i

m TTp w
⎛ ⎞= ⎜ ⎟
⎝ ⎠  

1, 2,...,i n=
 (1) 

( )i i
i

i

w m TTd w
−⎛ ⎞= ⎜ ⎟

⎝ ⎠  
1, 2,...,i n=  (2) 
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Figure 1 On-hand inventory of the system with single product 
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The consumption cycle time of raw material i at the manufacturer is given as in  
equation (3). 

i i
i i

i

m TTR Tp w
⎛ ⎞= = ⎜ ⎟
⎝ ⎠  

1, 2,...,i n=
 (3) 

 The following equations can be obtained from Figure 1: 

i i i
i i i i

i

R ts m TG R ts Tp
w

= =
 

1, 2,...,i n=
 (4) 

( )1
i

i
i i

D TQ
wα

=
−  

1, 2,...,i n=  (5) 

i
i

i

PT
w

μ =

 
1, 2,...,i n=

 (6) 

where μi represents the production quantity during the production time. 
Based on Part A and B of Figure 1, the equation is obtained: 

i i i ix G PTp=  
1, 2,...,i n=

 (7) 

where this equation is clearly shown in Figure 2. Replacing Tpi and Tdi in equation (7) 
with the given values in equations (1) to (4), the equation (8) is obtained: 

i
i

i i

Pts
R x

=
 

1, 2,...,i n=
 (8) 

Figure 2 Part B of the system with single product 
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The average inventory of raw material i at supplier i (ISRi) can be given by equation (9). 

2
i i i

i i
ts Tp GISR x

T
⎛ ⎞= ⎜ ⎟
⎝ ⎠  

1, 2,...,i n=
 (9) 

Replacing the corresponding values from equations (1), (4) and (8), ISRi can be given as 
by equation (10). 

( )
( )

2

22
i i

i
i i i

P m T
ISR

R x w
=

 
1, 2,...,i n=

 (10) 

The average raw material i inventory of the manufacturer in one cycle can be given as in 
equation (11). 

( )11
2 2

i ii i i
i i i i

x xx G TpIMR G ts Tp
T
⎛ ⎞⎛ − ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

1, 2,...,i n=
 (11) 

Using equations (1), (2) and (8), equation (11) can be stated as equation (12). 

( )
( )

( )
( )

2 2 2

2 22 2 2
i i i ii i

i
i i i i i i

P m T P m TP mIMR
T w R x w R w
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

 

1, 2,...,i n=
 (12) 

Referring to Wang and Sarker (2006), the average product i inventory of the 
manufacturer in a single cycle is given as in equation (13). 

( )1
2

i i i
i

Q w m
IMP

− +
=

 
1, 2,...,i n=

 (13) 

Using equation (5), equation (13) can be stated as equation (14). 

( )
( )

1
2 1

i i i
i

i i

D T w m
IMP

wα
− +

=
−  

1, 2,...,i n=
 (14) 

The average product i inventory of the distributor in one cycle is given as in  
equation (15). 

( )1 1
2

i i
i i

i

Q T
IDP w

w T
α+⎛ ⎞

= ⎜ ⎟
⎝ ⎠  

1, 2,...,i n=
 (15) 

Using equation (5), equation (15) can be stated as equation (16). 

( )
( )

1
2 1

i i
i

i i

D T
IDP

w
α

α
+

=
−

 
1, 2,...,i n=

 (16) 
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3.2 Total cost of the whole supply chain 

The total cost function of the chain is the sum of the setup (CS), ordering (CO), 
producing (CP), transportation (CT), inspection (CI), scrapping (CD) and holding costs 
(CH). It can be computed from equation (17). 

TC CS CO CP CT CI CD CH= + + + + + +  (17) 

The total setup cost of the suppliers and the manufacturer is given as in equation (18). 

( )
( )

1

1

n
S P
i in

S P i
i i

i

A A
CS N A A

T
=

=

+
= + =

∑
∑

 (18) 

The total ordering cost of the suppliers and the manufacturer is given as in equation (19) 

( )
( )

1

1

n
P D
i in

P D i
i i

i

o o
CO N o o

T
=

=

+
= + =

∑
∑

 (19) 

The total production cost is the sum of production cost of all products and production 
cost of all raw materials. The total production cost is given as in equation (20). 

( )
( )

1

1

n
S P

i i i i i in
S P i

i i i i i i
i

x c G w c Q
CP N x c G w c Q

T
=

=

+
= + =

∑
∑

 (20) 

From equations (4), (5) and (8), equation (20) can be stated as in equation (21). 

( )1 1

S Pn
i i i i i

i i i

c P m c DCP
w α=

⎛ ⎞
= +⎜ ⎟⎜ ⎟−⎝ ⎠
∑

 (21) 

The total transportation cost is the sum of the transportation costs of all products and all 
raw materials. It is given as in equation (22). 

( )
( )

1

1

n
S P

i i i in
S P i

i i i i
i

x k w k
CT N x k w k

T
=

=

+
= + =

∑
∑

 (22) 

The total inspection cost is the sum of the inspection costs of all shipments. It is given as 
in equation (23). 

( )
( )

1

1

n

i i in
i

i i i
i

y w Q
CI N y w Q

T
=

=

= =
∑

∑
 (23) 
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Using equation (5), equation (23) can be stated as in equation (24). 

( )1 1

n
i i

i i

y DCI
α=

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠
∑

 (24) 

αiQi is the quantity of scrap items in each delivered order. Thus, the total scrapping cost 
can be given as in equation (25). 

( )
( )

1

1

n

i i i in
i

i i i i
i

d w Q
CD N d w Q

T

α
α =

=

= =
∑

∑
 (25) 

Using equation (5), equation (25) can be stated as in equation (26). 

( )1 1

n
i i i

i i

d DCD α
α=

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠
∑

 (26) 

Considering Figure 1 and equations (9)-(16), the total holding costs can be given by 
equation (27). 

1

n
S M D
i i i i i i i i

i
CH h ISR h IMR h IMP h IDP

=

⎡ ⎤= + + +⎣ ⎦∑
 (27) 

In the joint production systems, the sum of production and setup times must be smaller 

than the cycle length. Which means, 
1 1

n n
i

i i i
i i i

m TTp S S
w= =

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
∑ ∑  must be less 

than or equal to T. This constraint of the model is given as in equation (28). 

1 1

n n
i

i
i ii

m T S T
w= =

⎛ ⎞
+ ≤⎜ ⎟

⎝ ⎠
∑ ∑

 (28) 

Then, equation (28) can be stated as in equation (29). 

1

1
1

n

i
i

n
i

i i

S
T

m
w

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟ ≤
⎜ ⎟−⎜ ⎟
⎝ ⎠

∑

∑
 (29) 

Constraint (30) must be satisfied in order to have a feasible solution. 

1
1

n
i

i i

m
w=

<∑
 (30) 



   

 

   

   
 

   

   

 

   

   260 A.H. Nobil et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Through Constraint (31), we ensure that the delivery times of raw material i at supplier i 
is less than or equal to the production uptime of product i. 

i i i ix ts Tp Tp≤  1,2,...,i n=  (31) 

Constraint (31) can be simplified into constraint (32). 

1i ix ts ≤  1,2,...,i n=  (32) 

Considering equation (8), constraint (32) can be stated as Constraint (33). 

i iP R≤  1,2,...,i n=  (33) 

Based on the problem’s assumptions, this constraint is redundant. In the joint production 
systems, the sum of consumption time of raw material and first shipment period of raw 
material i should be smaller than the cycle length. Which means, Tpi + TsiTpi must be less 
than or equal to T. This constraint is shown in (34). 

i i iTp ts Tp T+ ≤  1,2,...,i n=  (34) 

Using equations (1) and (8), constraint (34) can be stated as Constraint (35). 

1 1i i

i i i

m P
w R x

⎛ ⎞
+ ≤⎜ ⎟

⎝ ⎠  1,2,...,i n=  (35) 

Based on the definition of the problem, the number of shipments of product i during the 
cycle time must be larger than the number of shipments of product i during the 
production time; this can be given by (36). 

i im w<  1,2,...,i n=  (36) 

The number of shipments of raw material i during the time period must be smaller than or 
equal to delivery orders, given by (37). 

Si
i i

xx N J
T

= ≤
 

1,2,...,i n=
 (37) 

The number of shipments of raw material i during the time period should be smaller than 
delivery orders, demonstrated given by (38). 

Pi
i i

ww N J
T

= ≤
 

1,2,...,i n=
 (38) 

In addition, decision variables related to the number of raw materials and products 
delivery must have positive values, given by (39). 

, , 0 integeri i ix m w >  1,2,...,i n=  (39) 

 



   

 

   

   
 

   

   

 

   

    Considering discrete delivery ordering and shipment consolidation 261    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

The last constraint specifies time period as in (40).The maximal value of T must be the 
time horizon. 

( ]0,1T ∈  (40) 

3.3 The final mathematical model 

Based on the given costs in (18), (19), (21), (22), (24), (26), (27); and constraints (29), 
(30), (35), (36), (37), (38), (39) and (40), the final model is stated as in equations (41) to 
(49). 

( ) ( ) ( )
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s.t. 

1

1
1

n

i
i

n
i

i i

S
T

m
w

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟ ≤
⎜ ⎟−⎜ ⎟
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∑
 (42) 

1
1

n
i

i i

m
w=

<∑

 

(43) 

1 1 1,2,...,i i

i i i

m P i n
w R x

⎛ ⎞
+ ≤ =⎜ ⎟

⎝ ⎠  
(44) 

1, 2,...,i im w i n< =  (45) 
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1, 2,...,S
i ix J T i n≤ =  (46) 

1, 2,...,P
i iw J T i n≤ =  (47) 

, , 0 integer 1, 2,...,i i ix m w i n> =  (48) 

(0,1]T ∈
 

(49) 

4 Solution methods 

In this section, the solution procedure for proposed MINLP model is presented. It 
contains large numbers of variables, constraints and a non-linear objective function. Such 
attributes make the problem complex and hard to solve using exact methods. Hence, we 
used GA to solve the problem, which is efficient and extensively deployed in the field of 
inventory problems (e.g., Pasandideh and Niaki, 2008; Pal et al., 2009; Pasandideh et al., 
2010; Moin et al., 2011; Taleizadeh et al., 2013; Saracoglu et al., 2014). We also used 
BBO to validate GA’s results. 

GA is a heuristics formed based on stochastic search and imitate the natural selection 
process. The most significant difference between GA and traditional search procedures is 
using a set of randomly generated solutions known as population. Each one of these 
solutions, which is called a chromosome, evolve to form a new generation. The 
chromosomes are assessed by the criteria of fitness function; the fitter chromosome has 
more chance to take part in breeding next generation. Moreover, to reproduce a new 
chromosome from its parents, there are two kinds of operators called crossover and 
mutation. Convergence of the algorithm happens after a number of iterations. 

On the other hand, BBO is another evolutionary algorithm which searches the best 
solution using biogeography’s principles: speciation, migration and extinction. 
MacArthur and Wilson (1967) proposed a mathematical model for this problem. 
Thereafter, Simon (2008) introduced an adaptation of BBO logic for optimisation 
problems. In this method, the solutions are represented by islands; these islands have a 
population and immigration rate. The solutions improve by either immigrating or 
mutation operator. 

4.1 Proposed GA-based heuristic 

The proposed GA-based heuristic’s steps for solving the MINLP are as follows. 

4.1.1 Decision variables’ boundaries 
The first step in solving the problem is to obtain the upper and lower bounds of decision 
variables. These boundaries reduce the solution space and subsequently lessen the 
computational time. These boundaries can be obtained as follows: 
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• Boundaries of T: based on (49), the acceptable interval for this variable  
is [0, 1]. 

• Boundaries of xi: considering constraint (48) the lower bound of xi is equal to 1.  
On the other hand, based on constraint (46), we have: 

1
i

S
i i

T x

T x J

↑ ⇒ ↑

= ⇒ ≤
 (50) 

According to constraint (50) the upper bound of xi is represented by S
iJ . 

• Boundaries of wi: with respect to constraints (45) and (48), wi is higher than or equal 
to 2. On the other hand based on constraint (47), we have: 

1
i

P
i i

T w

T w J

↑ ⇒ ↑

= ⇒ ≤
 (51) 

According to constraint (51) the upper bound of wi is represented by P
iJ . 

• Boundaries of mi: based on constraints (45) and (48), mi is higher than or equal to 1; 
On the other hand, based on constraints (45) and (51) we have: 

1P
i im J= −  (52) 

4.1.2 Initial definition 
Chromosome: every solution to the proposed MINLP is called a chromosome. 

• Generation population: equals to the number of chromosomes showed  
by nPoP. 

• Crossover probability (Pc): shows the probability of crossover occurring for a 
chromosome. Generally, in each generation the number of crossovers can be 
obtained by Pc × nPoP. 

• Mutation probability (Pm): shows the probability of mutation occurring for a 
chromosome. Generally, in each generation the number of mutations can be  
obtained by Pm × nPoP. 

4.1.3 Chromosome representation 
The proposed chromosome contains four decision variables including T, xi, mi, wi. As a 
result, this chromosome has 3n + 1 genes, in which one gene used for T and n genes  
for each one of the remaining variables. An example of this chromosome illustrated in 
Figure 3. 
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Figure 3 An example of proposed chromosome 

T
nx  3x 2x 1x

nm  3m 2m 1m

nw  iw iw iw
 

4.1.4 Initial population 
The initial population, including nPoP individuals, is randomly generated in two steps. 
The first step consists of generating a random number (=k) from [0, 1] interval for genes 
of these chromosomes. In the second step, these numbers are normalised by adding the 
lower bounds of each gene to a product of gene’s interval length and k. 

4.1.5 Penalty function 
In this algorithm the chromosomes with less fitness function values are more favourable. 
Since the constraints in inequalities (42) to (45) could adversely affect the solution’s 
feasibility, we add a penalty to objective function in terms of potential violations. This 
penalty performs based on equation (53), where M, g(x), and P(x) represent a reasonably 
large number, the constraint under investigation (g(x) ≤ b), and penalty function of 
infeasible solution (chromosome), respectively. Afterwards, updating cost function is 
done using equation (54), where A(x) represents the fitness function value of a solution. 

( )( ) ( 1) , 0g xP x M M a x
b

⎧ ⎫= − × −⎨ ⎬
⎩ ⎭

 (53) 

( ) feasible region
( )

( ) ( ) feasible region
f x x

A x
f x P x x

∈⎧
= ⎨ + ∉⎩

 (54) 

4.1.6 Crossover 
Note that, in this algorithm the single point crossover operator is used to generate new 
chromosomes. For the first step, two chromosomes (parents) are randomly selected from 
former generation then employing crossover operator two new chromosomes (offspring) 
are obtained. To obtain offspring, T part of parents are swapped then three random 
numbers from {1, 2, …, n – 1} will be chosen to obtain cutting points of x, m, w parts of 
chromosomes. Finally, we will exchange these parts of chromosomes to form offspring; 
this procedure is performed in a generation to achieve the Pc × nPoP new chromosomes. 
An example of the mentioned procedure is illustrated in Figure 4. 
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Figure 4 An example of proposed crossover (see online version for colours) 

0.2 Random number 0.1 

2 5 4 3 2 5 4 3 2 

2 3 3 2 3 3 1 2 1 

4 4 5 4 

Parent 2 

1 6 4 3 3 

Parent 1 

           

0.1  0.2 

5 4 4 3  2 5 3 2 

3 3 3 2  3 1 2 1 

6 4 3 4 

Offspring 2 

 4 4 5 3 

Offspring 1 

 

Figure 5 An example of the mutation operator (see online version for colours) 

0.1  

3 4 2 5 Random = 2 

2 1 4 2  
Parent Ω = 2 

3 2 5 6 Random = 3 

       

0.1  

3 7 2 1  

2 1 4 2  
Offspring  

5 4 5 5  
 

4.1.7 Mutation 
Initially Pm × nPoP chromosomes are chosen randomly from last generation then using 
random mutation, new chromosomes will be obtained as follows: 
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• Ω is a randomly generated number from 1 to 4 (the number of decision variables). 

• Choose Ω decision variables by chance. 

• Based on the selected genes, some genes are chosen and reproduced randomly.  
An example of the mentioned mutation operator demonstrated in Figure 5. 

4.1.8 Stopping criteria 
After minIt iterations if the algorithm converged, it will stop. The algorithm must be run 
minIt times to prevent early convergence. 

4.2 Proposed BBO-based heuristic 

BBO inspired from natural investigations of species distribution during different eras 
among diverse places (Simon, 2008, 2009). This population-based algorithm uses a set of 
candidate solutions to solve an optimisation problem. In this algorithm each habitat 
represents a candidate solution (an individual) and has its habitat suitability index (HSI) 
to show the degree of suitability. In other words, higher-HSI habitat characterises better 
solutions and vice-versa. 

Solution features emigrate from high-HSI habitats (emigrating habitat) to low-HSI 
habitats (immigrating habitat), however this emigration is not equivalent to their 
distinction. This is because low-HSI habitats have the potential to accept a large number 
of new features from high-HSI habitats through an immigration process. Consequently, 
emigration and immigration operators are employed to improve solutions of this 
optimisation problem. 

Just to illustrate, let us consider Figure 6 in which curve I and E denote the maximum 
possible immigration and emigration rates, respectively. In this setting, Smax indicates the 
largest possible numbers of species that a habitat can support (where the immigration rate 
equals to zero) while S0 is the point where immigration and emigration rates are equal. 

In this study a BBO is employed to assess performance of the proposed GA. In spite 
of the tendency to consider similar operators for both BBO and GA, there are some 
differences due to their features. A brief comparison between proposed GA and BBO is 
as follows. Initialisation phase of proposed BBO consists of random distribution of 
species among diverse habitats (=chromosomes) with specific characteristics (=genes) 
and calculating overall rating of suitability index (=fitness function). In the BBO the 
population of a habitat balances based on a migration operator. This operator acts as a 
function of immigration and emigration probabilities, presented by λ and μ respectively. 
These probabilities are a function of the habitat population, for a habitat with a great deal 
of species due to the surviving chance reduction and resource limitations, immigration 
and emigration probabilities will decrease and increase, respectively  
(see S1 and S2 in Figure 6). On the other hand cataclysmic operator can change the 
habitats’ suitability indices. Thus it can be concluded that the migration and cataclysmic 
operators act similar to the crossover and mutation operators. 
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Figure 6 Immigration curve with two candidate 
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5 Computational results 

This section provides an analytical framework for the proposed GA and BBO algorithms 
and represents numerical results. In the subsection, the input parameters of the MINLP 
are chosen randomly from Table 1. 
Table 1 Initial parameters of the MINLP problem 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

~ 10000,  12000 ; ~ 8000,  9000 ;
~ 6000,  7000 ; ~ 0.07,  0.10 ;

~ 12,  15 ; ~ 2,  8

~ 0.00001,  0.00020 ; ~ 180,  200 ;

~ 210,  240 ; ~ 10,  20 ;

~ 30,  40 ; ~ 15,  25

~ 40,  50 ; ~ 80,  100 ;

~ 100,  120 ; ~ 30,  40 ;

S

P S

M

D S

P P

R U P U

D U U

d U y U

S U A U

A U h U

h U h U

h U c U

c U o U

α

( ) ( )
( ) ( )
( )

~ 40,  50 ; ~ 5,  15

~ 20,  30 ; ~ 2000,  4000 ;

~ 2000,  4000

D S

p S

P

o U k U

k U J U

J U

 

Note: U: uniform distribution 
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5.1 Parameters tuning 

In this study, a number of normalised responses such as fitness function (Y1) and CPU 
time (Y2) are optimised using response surface methodology (RSM) with regard to 
initialisation parameters, for instance, population size (X1), crossover probability (X2), 
mutation probability (X3), and minimum number of iteration (X4). 

Table 2 The search range and the levels of the input variables 

Parameters Range Low level 
(–1) 

Mean level 
(0) 

High level 
(+1) 

nPop 500–700 500 600 700 

Pc and λ 0.6–1 0.6 0.8 1 

Pm and μ 0.1–0.3 0.1 0.2 0.3 

minIt 300–500 300 400 500 

Table 3 The parameters of the MINLP with six items 
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In the beginning, experiments were performed on 20 treatment combinations based on the 
levelled variables in Table 2, where every individual response was the average result of 
ten times running MINLP with six items (see Tables 3 and 4). In addition, the time 
horizon is considered one year for this problem. Afterwards, fitting the responses were 
performed using corresponding parameters according to equations (55) and (56).  
Moreover, employing ANOVA the accuracy of fitness functions were examined  
(Tables 5 and 6). At the end, related parameters for suggested GA were derived by 
solving optimisation model of equation (57) (see Table 7). Besides, BBO calibrated 
parameters can be determined using the same procedure (shown in Table 8). 

1 1 2 3 4  5336058 27047 16113 40259 12086 Y X X X X= − − − −  (55) 

2 1 2 3 4 224  1.29   1.09   3.76   6.60 Y X X X X= + + + +  (56) 

1 1 2 2

1 1 2 3 4

2 1 2 3 4

 
s.t:   5336058 27047 16113 40259 12086 

 224  1.29   1.09   3.76   6.60 
1 1; 1,2,3,4i

Min W Y W Y
Y X X X X
Y X X X X

X i

= +
= − − − −
= + + + +

− ≤ ≤ =

 (57) 

where Wj denotes the weights of the jth objective in which W1 + W2 =1. We assumed  
W1 = 0.8and W2 = 0.2. 
Table 4 The results of RSM experiment for the proposed GA algorithms 

CPU time Fitness function minIt Pm Pc nPop Runs 
226.086668 5309278.6002 0 0 0 0 1 
217.897345 5334952.2856 –1 1 –1 1 2 
212.648000 5340157.5546 0 –1 0 0 3 
227.049377 5407305.1054 1 –1 1 –1 4 
229.509773 5291412.9374 1 1 –1 –1 5 
228.273019 5332966.1026 0 0 0 1 6 
226.461997 5329706.7298 0 0 –1 0 7 
227.667692 5371521.1112 1 –1 –1 1 8 
226.843630 5355357.2000 0 0 0 0 9 
227.143637 5355357.9822 1 0 0 0 10 
226.718661 5313615.8710 0 1 0 0 11 
225.749729 5303456.1427 0 0 0 0 12 
218.706946 5322697.0291 –1 1 1 –1 13 
227.980103 5317298.6541 0 0 0 0 14 
223.358278 5410048.0092 0 0 0 –1 15 
228.977875 5314904.3320 0 0 1 0 16 
230.524559 5211157.4429 1 1 1 1 17 
220.947138 5342532.2093 –1 0 0 0 18 
205.597685 5423518.4432 –1 –1 –1 –1 19 
212.777544 5333919.0457 –1 –1 1 1 20 
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Table 5 Analysis of variance for the fitness function 

Source DF SS MS F P 

Regression 4 27,579,746,908 6,894,936,727 7.61 0.001 

Residual error 15 13,592,155,879 906,143,725   

Total 19 41,171,902,787    

Table 6 Analysis of variance for the CPU times 

Source DF SS MS F P 

Regression 4 605.26 151.31 8.99 0.001 

Residual error 15 252.46 16.83   

Total 19 857.72    

Table 7 Optimum value of input variables of proposed GA 

Parameter GAMS output Optimum value 

nPop (X1) 1 700 

Pc (X2) 1 1 

Pm (X3)  1 0.3 

minIt (X4) 1 500 

Table 8 Optimum value of input variables of proposed BBO 

Parameter GAMS output Optimum value 

nPop (X1) 1 700 

λ (X2) 1 1 

μ (X3)  0 0.2 

minIt (X4) 0 400 

5.2 Numerical results 

The proposed GA and BBO algorithms were run on a personal computer equipped with 
2.4 GHz CPU and, 4 GB of memory and MATLAB 2014a software. These algorithms 
were run 10 times on 10 different problems, the average of CPU time and total costs are 
shown in Table 9. The input parameters of these algorithms were similar to the ones 
shown on Table 1. The input parameters were randomly selected from Table 1 and 
incorporated into the algorithm parameters shown in Tables 7 and 8. Based on the total 
cost and time, it can be concluded that GA performed slightly better than BBO. Although 
non-parametric Kruskal-Wallace test showed no significant difference between the two 
algorithms (see Table 10). 
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Table 9 Comparison of algorithms for two measures 
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Table 10 Summary of Kruskal-Wallis test for two measures according to information given in 
Table 9 

Measure P-value Result 
Total cost 0.437 H0 is not rejected 
CPU time 0.437 H0 is not rejected 

5.3 Sensitivity analysis 

This subsection shows result of the sensitivity analysis performed on important 
parameters of the problem (i.e., raw materials’ production rate, manufacturing rate of end 
product, demand’s rate and rate of failure). In the process, each parameter was changed 
while maintaining other parameters’ original value (see Table 11). As it can be seen from 
Table 11, the proposed MINLP has the least sensitivity to Ri. 
Table 11 Sensitivity analysis of initial parameters 

Parameter 
Percentage of 

variations  
(PV) 

The proposed GA 
Average  

(total cost) 
Cost variation ratio 

(CV) (CV-1)/(PV) 

Initial 
conditions 

0% 5,211,157.4429 1 0 

Ri 3% 5,226,213.9169 1.002889 0.096309 
6% 5,244,547.3334 1.006407 0.106790 

Pi 1% 5,259,623.5961 1.009300 0.930046 
3% 5,277,935.0770 1.012814 0.427145 

Di 1% 5,271,380.6773 1.011557 1.155659 
2% 5,293,105.3922 1.015725 0.786274 

αi 2% 5,285,319.5702 1.014231 0.711571 
5% 5,355,643.1061 1.027726 0.554524 

6 Conclusions and future research 

In this study, a non-linear three-echelon inventory model was considered in which the 
delivery of ordered raw materials and final products were done in batches. The addressed 
system in this paper was a three echelon supply chain including a supplier, a producer 
and a distributor. Moreover, based on real world instances that items are shipped in 
discrete sizes, we assumed the raw materials and products are shipped in batches and the 
objective was to find optimal batch size and shipping time so as to minimise the total 
costs. Each final product needs a specific raw material which is produced by a specific 
supplier. The studied model was under single machine assumption with a limited joint 
production capacity for the cycle length of all products in the manufacturer. Considering 
our practical assumption of imperfect production system, the final product needs 
inspection in order to separate defective items and enhance customer satisfaction. 

The number of shipments of each raw material from the supplier to the manufacturer, 
the numbers of shipments of each product from the manufacturer to the distributor and 
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the cycle length were determined in such a way that minimises the inventory system, 
including setup, ordering, producing, transportation, inspection, scrapping and holding 
costs. We adopted a more practical approach by developing two heuristics based on GA 
and BBO algorithm in MATLAB environment to both solve the problem and validate the 
accuracy of its generated result. The GA-based heuristic was used to solve this problem 
and the BBO-based heuristic was employed to evaluate its validity. Moreover, RSM was 
utilised for tuning the parameters of the heuristics. Finally, a slightly better solution for 
the proposed GA was obtained compared with the proposed BBO. 

For further studies, the following developments are proposed: 

• considering multiple suppliers for each raw material 

• considering multiple distributors in the model 

• considering storage constraint 

• studying the model when reproduction is allowed 

• studying the model when shortage is allowed 

• considering maintenance policies for machine 

• studying a relatively same system when rework is permitted 

• considering marketing and pricing to enhance customer demands 

• model the system when postponement policy is allowed by producing large amounts 
of items in beginning of the period and postponing some to the end of the period 

• each machine has its own unavailability times. 
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