
Please do not remove this page

Prioritisation mechanisms to support
incremental development of agent systems
Padgham, Lin; Perepletchikov, Mikhail
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Prioritisation-mechanisms-to-support-incremental-development/992186316180
1341/filesAndLinks?index=0

Padgham, L., & Perepletchikov, M. (2007). Prioritisation mechanisms to support incremental development
of agent systems. International Journal of Agent-Oriented Software Engineering, 1(3/4), 477–497.
https://doi.org/10.1504/IJAOSE.2007.016269

Published Version: https://doi.org/10.1504/IJAOSE.2007.016269

Document Version: Accepted Manuscript

Downloaded On 2024/03/19 23:19:50 +1100
© 2007 Inderscience Enterprises Limited
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Prioritisation-mechanisms-to-support-incremental-development/9921863161801341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/Prioritisation-mechanisms-to-support-incremental-development/9921863161801341
http://doi.org/doi:https://doi.org/10.1504/IJAOSE.2007.016269
https://researchrepository.rmit.edu.au

Prioritisation mechanisms to support

incremental development of agent systems

Lin Padgham∗ and Mikhail

Perepletchikov

School of Computer Science and Information Technology,
RMIT University,
Melbourne, Australia
Fax: +61 3 9662 1617
E-mail: linpa@cs.rmit.edu.au, mikhailp@cs.rmit.edu.au
∗Corresponding author

Abstract: It is often necessary to partition a project into different
priority levels and to develop incrementally. This paper presents a mech-
anism whereby a developer can prioritise scenarios on a five point scale,
leading to automated, coherent partitioning of all required design en-
tities, according to the three IEEE defined priority levels of essential,
conditional and optional, which are used in many companies. This al-
lows for automated support to guide the developer as to what design
artefacts need to be developed at each phase. The developer can indi-
cate the relative sizes desired for the three partitions and the algorithm
described will attempt to get as close to this as possible. It is also pos-
sible to move items manually to achieve better sized partitions, as long
as priority orderings are not violated. The approach is fast and easy to
apply at various times during development, as needed.

Keywords: Agent Development methodologies; Prometheus; Itera-
tive incremental development; System prioritisation.

Reference to this paper should be made as follows: L. Padgham and
M. Perepletchikov, ‘Prioritisation mechanisms to support incremental
development of agent systems, Int. J. Agent-Oriented Software Engi-
neering, Vol. x, No. x, pp.xxx–xxx.

1 Introduction

Agent oriented software systems, like any software system, are best developed
incrementally, with multiple releases, where each release incorporates additional
functionality, as suggested by the Rational Unified Process model (RUP) (Kroll
and Kruchten, 2003; Kruchten, 2004), well known within Object Oriented Software
Engineering. This allows developers to concretely demonstrate milestones to clients.
It also ensures that if resources are expended before the desired system is complete,
there is at least a functioning system, though perhaps without all the functionality
originally hoped for. This is (usually) far preferable to a partially completed larger

Copyright c© 200x Inderscience Enterprises Ltd.

E72964
Typewritten Text

E72964
Typewritten Text
Citation:
Padgham, L and Perepletchikov, M 2007, 'Prioritisation mechanisms
to support incremental development of agent systems', International
Journal of Agent-Oriented Software Engineering, vol. 1, no. 3/4,
pp. 477-497.

E72964
Typewritten Text

system.

In developing a system incrementally there are at least two important activities.
First the required functionalities must be prioritised, often into three levels (essen-
tial, conditional, optional), used by many organisations (Firesmith, 2004; Wiegers,
1999), and compatible with the IEEE standards (IEEE-Std830, 1998). Secondly the
developer must identify the parts of the system that are necessary in order to realise
each level of functionality. It is also desirable to be able to estimate the amount of
work in each level, in order to be able to manage the project appropriately.

The Rational Unified Process (RUP) is perhaps the most widespread and well
known iterative and incremental software development process. It suggests a spi-
ralling iteration over four phases including activities of business modelling, require-
ments gathering, analysis and design, coding, testing, and deployment. The RUP
model also suggests that there should be iterative, incremental releases of the
software being developed, with each release incorporating additional functional-
ity (Kruchten, 2004).

To the authors’ knowledge there is no work yet done in the Agent Oriented
Software Engineering (AOSE) community that specifically supports this kind of
iterative development in any structured way. The Prometheus methodology for
developing agent systems (Padgham and Winikoff, 2004) suggests that an iterative
approach should be applied, but has previously had no specific mechanisms to sup-
port such. The work presented in this paper provides some structured support for
iterative development by taking prioritisations given at a high level of abstraction,
and then using these to partition the system into three coherent levels for iterative
development. The Prometheus Design Tool (PDT) can then support the developer
in focussing only on things within the current priority level.

In the absence of any mechanisms for principled estimation of size of a devel-
opment task in AOSE, the approach here is to use a coarse level of granularity
for partitioning the system, which has the advantage of being quick to redo if new
requirements are added, or if requirements need to be re-prioritised. Future work
in how to estimate development effort for agent systems, may well motivate a more
detailed and fine grained approach to prioritisation and specification of develop-
ment levels. However even if such mechanisms exist, it is likely that there will be
situations where a fast, coarse grained approach is preferable to a time consuming
more accurate approach to determining the content of the incremental iterations.

Our approach requires an initial prioritisation of scenarios, which we then par-
tition into three levels, allowing for developer input into the relative sizes of these
levels. The algorithm we have developed then propagates this prioritisation to goals
in a principled manner, and further propagates priorities to all design entities. This
is made possible by the structured nature of the Prometheus design artefacts, which
supports the automation of this process.

In the following sections we first briefly introduce the Prometheus methodology,
and the design artefacts produced. Next, we describe the prioritisation process
and algorithms, an initial version of which can be found in (Perepletchikov and
Padgham, 2005a). This leads to a system specification consisting of the three
prioritised levels (essential, conditional, optional), previously mentioned. We also
describe how the prioritisation process is applied using incremental development
through the phases of architectural and detailed design, as well as implementation
and testing. This is then illustrated using the electronic bookstore case study from

“Developing Intelligent Agent Systems: A practical guide” (Padgham and Winikoff,
2004). Finally we briefly review related work in prioritisation of requirements out-
side of Agent-Oriented SEa. The prioritisation mechanisms described have been
incorporated into a version of the Prometheus Design Tool (PDT)b and is in the
process of being integrated into the publicly available version of PDT.

2 Overview of the Prometheus methodology

Prometheus consists of three main design phases, plus implementation and test-
ing which are not currently covered in much detailc. The design phases are:

1. System Specification,

2. Architectural Design,

3. Detailed Design.
The prioritisation process that we introduce is based on a full system specifica-

tion. However, it is possible to specify less completely those aspects of the system
which are a lower priority. In this case one may want to compensate for this by hav-
ing a larger system determined essential partition, recognising that those partitions
which are not yet fully developed are likely to increase in size.

We describe each phase briefly, noting the artefacts that are produced.

2.1 System Specification

System Specificationd consists of the following steps:

• Identification of actors and their interactions with the system;

• Developing scenarios illustrating the system’s operation;

• Identification of the system goals and sub-goals;

• Specifying the interface between the system and its environment in terms of
actions, percepts and any external data;

• Grouping goals and other items into the basic roles of the system.

Firstly we identify actors as being any persons or entities which will interact
with the system, as well as any other stakeholders whose goals should be considered.
Actors may be other software systems, as well as humans. The concept of actor used
here is similar to that found both in UML use-case diagrams and in the Tropos agent
oriented methodology (Bresciani et al., 2004), although Prometheus actors may be
software as well as people. The principal difference between actors and agents is
whether they are external or internal with respect to the system boundary. Actors
are external to the agent system under development, whereas agents are software
entities within this system.

aTo the authors’ knowledge there has not been any work done in this area specifically within
AOSE.

bPDT is available at www.cs.rmit.edu.au/agents/pdt
cThere is substantial work (e.g. (Padgham et al., 2005)) on using Prometheus design docu-

ments in debugging, but this is not yet fully integrated.)
dThe system specification process has been refined and modified since (Padgham and Winikoff,

2004), and it is the most current version which is presented here. A study evaluating the benefits
of the refinement can be found at (Perepletchikov and Padgham, 2005b).

Initial scenarios are then identified associated with the actors that will interact
with the system, similarly to use case identification in object oriented analysis. The
input from actor to agent system is then identified as a percept, while the outputs
from system to actors are defined as actions.

Each scenario is associated with a goal (which the scenario is one way of achiev-
ing). Multiple scenarios can be associated with a single goal. The scenarios are
then developed as a number of detailed steps, where each step is a (sub)goal,
(sub)scenario, action or percept. Figure 1 provides an example of a scenarioe.

Scenario: Query Late Delivery Scenario1
Goal: Manage Late Delivery Query Trigger: Late Delivery Query

Type Name

1 Goal Determine delivery status (check records)
2 Goal Log delivery problem (enter in log)
3 Action Request delivery tracking (contact courier or P.O.)
4 Goal Inform customer (email that its being followed up)
5 Goal Monitor Tracking Request (follow up if no response)
6 Percept Tracking info (in this case ’lost’)
7 Goal Arrange delivery (replacement item)
8 Goal Log books outgoing (keep internal stock logs updated)
9 Goal Inform customer (email that replacement sent)

10 Goal Update delivery problem update internal logs
Figure 1 Example Scenario: Query Late Delivery

The linking of scenarios and goals is inspired by the Goal-Scenario coupling
framework (GSCF) (Rolland et al., 1998) which is based around the notion of a
Requirement Chunk (RC) (a pair of <Goal, Scenario>). However, we allow a single
goal to be linked to multiple scenarios, whereas GSCF is one-to-one.

Initial goals are identified partially from the initial scenarios, as well as by
consulting project stakeholders, and by examining the initial system description.
Further goals are then identified by a process of abstraction and refinement (van
Lamsweerde, 2001). For each goal, asking the question how? and why?, potentially
identifies new subgoals and parent goals, forming a goal hierarchy. This process
continues until all the stakeholders’ (external) goals have been elicited and then
sufficiently refined in order to reach operational level (internal) goals of suitable
granularity for assigning to a role. Elicitation processes for goals and scenarios are
interlinked and highly iterative.

We allow the (optional) notion of two kinds of goal refinement: AND-refinement
and OR-refinement as described by van Lamsweerde (van Lamsweerde, 2001). If
a goal is AND-refined, subgoals (or answers to the question how?) are steps in
achieving the overall goal, and each step must be done. If it is OR-refined, then
subgoals are alternative ways of achieving the goal, and doing any one of them
is sufficient. Agent systems typically have both these kinds of refinements. OR-
refinements allow for choice in the way of achieving goals, while AND-refinements
allow for breaking down into smaller pieces. For example, figure 2 shows a partial
goal hierarchy related to the ’Query a Late Delivery’ scenario. If neither refinement
is specified, AND-refinement is assumed for the purpose of prioritisation.

eAdditional information is also attached to the scenario which is not shown here, and which is
not required for this discussion.

OR OR

OR

OR

AND ANDAND AND

Figure 2 Partial goal hierarchy for the Electronic Bookstore

After goals and scenarios are sufficiently developedf, goals are grouped based on
their functional relatedness and then associated with roles. Actions and percepts
are also allocated to roles and scenarios are then annotated with information about
which role each step belongs to.

2.2 Architectural Design

The architectural design phase refines the system specification to determine the
agent typesg within the system, and specifies the interactions between these agent
types. The main steps in this phase are as follows:

• Deciding what agent types will be implemented and developing the agent
descriptors

• Describing the dynamic behaviour of the system using interaction diagrams
and interaction protocols.

• Capturing the system’s overall (static) structure using the system overview
diagram.

The major decision to be made during the architectural design is which agent
types should exist. Waiting until architectural design to decide types, by grouping
the more limited and abstract roles, allows for consideration of a range of design
issues although space restrictions prevents us from describing these here. They
include data coupling and cohesion, as well as issues specific to particular types of
application, such as the coupling arising due to participation in decision making in
control systems (Bussmann et al., 2004).

fThe point at which goal and scenario development is sufficient is subjective, and based on
experience.

gWe refer to agent types rather than simply agents, as it is possible that there will be mul-
tiple instantiations of any given agent type. For example a customer assistance agent may be
instantiated each time a new customer logs into the system.

Once the agent types have been decided it is possible to start to define the
interactions between them. The scenarios developed earlier assist in this process.
The first step is to convert each scenario to an agent interaction diagram, which is
similar to a UML sequence diagrams but with agents rather than objects. This is
not something which can be automated, but there are heuristics which can be used
to assist in the process. Due to lack of space we do not explain this here, but refer
the interested reader to (Padgham and Winikoff, 2004).

The developed interaction diagrams are then generalised to interaction protocols
which fully define the interactions between agents. This is done by merging related
interaction diagrams, and by considering at each point in the interaction diagram,
what else could occur at that point. AUML-2 (Huget and Odell, 2004) is the current
notation used to specify interaction protocols as it appears to be an emerging
standard. However any similar notation would be suitable.

The system overview diagram is perhaps the single most important product
of the design process. It ties together agents, data, external input and output,
and shows the communication between agents. It is obtained by linking interface
entities (percepts, actions and external data) to specific agent types, and by showing
the interaction protocols connecting agent types. Shared internal data can also be
shown.

Figure 3 shows an example system overview diagram. It should be noted that
all information for the system overview diagram exists within the design specified
so far, and can be automatically assembled via a support tool. The system overview
diagram simply brings information together in an easy to visualise summary.

Legend ActionProtocol Percept External DataAgent

Figure 3 System overview diagram for electronic bookstore

2.3 Detailed Design

The focus of detailed design is on developing the internal structure of each agent
and how it will achieve its functioning within the system. The details of agent
functioning are specified using plans, which are essentially recipes for agent acting.
Plans may be abstract, referring to subgoals, or subtasks. The process allows for
progressive refinement, first defining capabilities (modules within the agent), and
then plans along with internal messages or events, and detailed data structures. We
also use the protocols to define process diagrams showing the internal processing
within each agent. Process diagrams in turn guide the development of plans. The
various aspects of the detailed design process are as follows:

• Identifying and developing capabilities and their inter-relationships, resulting
in an agent overview diagram.

• Development of process diagrams showing the internal processing of each
agent related to the protocol specifications.

• Development of plans, events and data and their inter-relationships.

The agent overview diagram is similar in structure to the system overview dia-
gram, but focuses on agent internals. The content of the internals of each agent is
defined by the functionalities developed during system specification. Internals can
be initially conceptualised as capabilities. These are eventually described in terms
of plans and triggers for those plans. Triggers can be percepts from the environ-
ment, messages from another agent, or internally instantiated goals, subgoals or
events.

Process diagrams are similar to UML activity diagrams, with some modifica-
tions. They describe the processing of a single agent, with respect to a single
protocol within the system. Consequently, they can be related back to scenarios.

3 Prioritisation Process

The prioritisation process that we propose uses the scenarios as the primary ar-
tifact for prioritisation, and then prioritises goals, and other artefacts based on this.
The goal(s) associated with a scenario is clearly an important factor in the prioriti-
sation of the scenario. However in some cases a particular goal may have multiple
alternative scenarios, some of them of high priority, and some of them capturing
more advanced, but lower priority behaviour. This makes it more appropriate to
prioritise the scenarios than simply the goals. Also the nature of scenarios ensures
that a particular prioritised partition has a completeness in terms of expected sys-
tem processes. In addition there are usually fewer scenarios than goals, and they
are more detailed, enabling a better understanding of what is being prioritised.

3.1 Prioritising System Specification Artefacts

After discussing with various stakeholders (such as clients, users or managers),
the developer is required to assign a priority ranking of one to five to each scenario
that has been identified. Where a scenario is included as a step in another scenario

it must be assigned at least the ranking of the parent scenario. If it is used in
multiple scenarios it must receive at least the ranking of the highest ranked parent.
It may also be ranked higher than the parent(s), but cannot be ranked lower as it
is needed to support achievement of its parent scenario.

We will eventually arrive at three priority-based partitions, according to common
practice. However we start with five initial rankings, in order to provide a broader
range of options and to assist in avoiding the trap of insufficiently prioritised re-
quirements, where, for example “more than 90% of the requirements are classified
as high priority” (Wiegers, 2000)h.

Once all scenarios have been assigned a priority, we apply a prioritisation algo-
rithm which attempts to partition the scenarios into three suitably sized partitions
based on the rankings obtained. The relative sizes of the essential, conditional
and optional partitions can be specified as ranges by the developer, depending on
the particular application constraints. For illustrative purposes we use an essential
partition of 35-45% of use-case scenarios, a conditional partition of 20-40%, and an
optional partition of 25-35%.

The prioritisation algorithm will attempt to stay as close to these partition sizes
as is possible, given the rankings supplied, maintaining the constraint that ranking
1 should map to the essential partition, and ranking 5 should map to the optional
partition. Consequently, if too many level one (or level five) priorities are given, it
may not be possible to stay within the recommended partition sizes.

The rankings from one to five give us six different possibilities (A-F) for how to
assign rankings to partitions as is shown in figure 4. We calculate the percentage
of scenarios in each partition, for the different options and then score the various
options by giving a point for each partition that is within the desired range as
shown in figure 5.

A

B

Essential
scope

Conditional
scope

Optional
scope

1

2,3

3,4,5

4,51

2C

D

E

1

4 5

3

F

1,2

2,3,4

5

5

1,2

3,4

4,5

1,2,3

Figure 4 Possible groupings into prioritised partitions

hWhile it is still the case that too many scenarios can be prioritised at level one, giving a
finer granularity is likely to encourage use of the full scale, most likely resulting in fewer level one
categorisations.

Assume 50 scenarios in total, with 10 scenarios at each rank of 1-5

Desired sizes of the partitions:

Essential: 35-45%; Conditional: 20-40%; Optional: 25-35%

The possible partitions are shown below.

Partitions that are within the desired range are marked with a tick.

Essential partition Conditional partition Optional partition SCORE

A 0

B 1

C 1

D 2

E 2

F 1

Choose option E, as Conditional partition is smaller than option D

20% 20%60%

20%

20%20%

20%

20%

20% 20%

40% 40%

40%

60%

60%

40%

40% 40%

Figure 5 The process of selecting the ’best’ partitioning option

If more than one option shares the highest score, we by default choose the
one with the smallest essential partition. However, it is also possible to present
the options visually to the developers (or other stakeholders) and allow them to
choose. If no options have all partitions within desired ranges, we prefer partitions
with two partitions of appropriate size, and within this set, we prefer those with the
essential partition of the approved size. Other things being equal, we also prefer,
by default, to have fewer scenarios in higher ranked partitions. Again, it is possible
to present all groupings to the developers and allow them to choose the preferred
one. Alternatively, one could introduce additional information such as ranking of
actors (or stakeholders), with prioritisation of scenarios involving actors’ rankings.

Although it has not been done here, scenarios within a given rank (other than 1
or 5) could be split and placed in different partitions, while maintaining the relative
partial ordering given by the original ranking. For example some scenarios initially
ranked three may be placed in the essential partition and some in the conditional
partition. However none should be placed in the essential partition if there are
scenarios ranked two, placed in the conditional partition (as these are above the
level three scenarios). It would also be possible to provide support whereby the
developer could move particular scenarios between partitions in order to achieve
better distributions, again maintaining the originally specified relative rankings.

Once scenarios are assigned to partitions, other artefacts are assigned based
on their connections to scenarios. Actions and percepts are assigned to the same
partition as the scenario(s) in which they occur. If they occur in multiple scenarios,
from different partitions, then they are assigned to the highest priority partition.

Goals are somewhat more complex, as not all goals will be mentioned in sce-
narios. Also goals are structured with respect to each other, and the prioritisation

must be consistent with this structure. The initial step is that for each goal that
is linked to a scenario, the goal is assigned the same priority as the scenario. The
remaining goals are then assigned priorities according to the rules described in the
following sub-section.

Roles are assigned to a partition according to the highest priority goal that is
included in the role. However roles will be developed incrementally, taking first
only those aspects which are related to high priority goals. We prioritise the roles
themselves as, if it is possible to exclude an entire role from a partition, this sim-
plifies prioritisation of other artefacts such as protocols.

Prioritising Goals

Many goals can be prioritised directly according to associated scenarios. If the goal
is linked to a scenario, the priority of this goal is equal to the priority of the linked
scenario. Where a goal is a step in a scenario it is assigned to the same priority
partition as the scenario it is a step in. Where a goal receives different priorities
from different scenarios, the highest priority level is used.

The assignment of remaining goals to some partition involves considering both
parents and children of the goal to be assigned. The Prometheus guidelines require
that all goals should be covered by some scenario, where being covered involves
either a parent goal being included in or linked to a scenario, or subgoals being
included in a scenario in a way that adequately covers the parent goal. With the in-
troduction of AND vs OR refinement, adequate coverage by subgoals implies either
one OR-refined goal being included in or linked to a scenario, or all AND-refined
goals being included in or linked to some scenario. If these guidelines regarding
coverage are not followed it will be necessary for the developer to explicitly assign
priorities to non-covered goals. In describing the prioritisation rules we assume that
all goals are covered by scenarios. The system checks this and generates a warning
if it is not the case.

There are three rules which must be maintained for a set of allocations of goals
to the partitions to be acceptable:

• All goals must be in a partition at least as high as that of the scenario they
are included in or linked to.

• All AND-refined subgoals must be assigned to a partition at least as high as
their parent.

• Some OR-refined subgoal must be assigned to a partition at least as high as
the parent.

The first constraint is fulfilled by the initial allocation described above. We then
ensure the second constraint is satisfied by allocating all unallocated goals with
AND-refined subgoals, and all AND-refined subgoals, as illustrated in Figure 6. If
an AND-refined subgoal is unallocated it receives the priority of it’s parent. If an
AND-refined parent is unallocated it receives the priority of its lowest prioritised
child. The Prometheus rule that all goals are covered by a scenario disallows both
a parent and its AND-refined child to be unallocated.

We also reallocate any AND-refined subgoals whose initial allocation from sce-
nario linking was too low to meet the constraint. This leaves us with potentially
unallocated OR-refined subgoals along with any unallocated top level goals that
are OR-refined.

Find cheapest price

?

Order books

Find cheapest price Organise delivery

CE

Order books

Organise delivery

C

C

?

O

C

C

E

C

O

Essential Partition

Conditional Partition

Optional Partition

Unknown Partition

Legend

?

Derived/Updated Partition

GOALAND

AND

Figure 6 Allocations involving AND-refinement

When an unallocated top level goal is OR-refined we assign it to the same par-
tition as its highest priority subgoal, as this is the partition in which it will be
achieved. However, we note that this is an inherited priority. In the event that
a role is receiving its priority level based on this goal, further assessment may
need to be done. Each unallocated OR-refined subgoal is assigned to a partition
depending on whether the current prioritisation fulfils the third constraint above.
Consequently, if a sibling subgoal is already assigned to a partition at least as high
as the parent, then the goal under consideration is assigned to the lowest partition.
Otherwise it is assigned to the same partition as the parent goal. Figure 7 illus-
trates these allocations.

Prioritising Roles

The priority of a role is determined by the highest priority goal assigned to this
role. For example, if the role X includes three goals that belong to the essential,
conditional, and optional partitions respectively, the priority of role X will be es-
sential. However, the role will only be developed to the extent required within each
partition. The one exception to this is the case where the priority of the role is
being determined by a goal which has an inherited priority. In this case further
analysis needs to be done, to determine whether the inherited priority was justified.

We recall that the inherited priority occurs only when a top level goal is OR-
refined, and is initially unallocated, in which case it inherits the priority of the
highest child. This is justified if the child has no other parent (in which case it
must have received its priority directly from a scenario). However, if the child has
some other parent which reflects its priority, then the prioritisation of the goal in
question should be reassessed. It should receive the priority of the child (with the
highest priority) for which it is the sole parent.

Maintain large
range of books

Order books
Borrow books from

other libraries

OE

inherited priority

OR

? E

Maintain large
range of books

Order books
Borrow books from

other libraries

E

E OR ? O

Maintain large
range of books

Order books
Borrow books from

other libraries

E

OOR
? E

Figure 7 Allocations involving OR-refinement

3.2 Prioritising Architectural Design Artefacts

In moving to architectural design, it is necessary to decide the agent types within
the system, based on the full set of rolesi. Once this is done, agents can themselves
be prioritised. The agent type needs to be placed within the priority partition of its
highest prioritised role. There is a potential risk of having all/most agent types in
the essential partition, but as the agents are also prioritised internally, only those
aspects which relate to goals and scenarios within the essential partition will be
developed as part of the initial phase.

At the architectural design phase, it is the development of protocols which is
potentially most affected by the prioritisation. Interaction diagrams should be
developed only for scenarios in the prioritised partition. When generalising the
interaction diagrams to protocols (by merging interaction diagrams from alternative
scenarios, and by asking at each point, “what other message may be sent here”?),
it is necessary to consider options only to do with goals and scenarios that are in
the desired partition. For example, consider an alternative scenario to that shown
in figure 1 for the goal Manage Late Delivery Query, that is as shown in figure 8,
and assume that only the goals Determine Delivery Status and Inform Customer
are in the essential partition. This scenario is associated with a simpler version of
the system which automates fewer aspects and relies on manual coverage of some
functionality.

iWe note however that if as requirements change in later iterations, possibly adding new goals
and scenarios, a new role can be added, and this can then be assigned to a new or existing agent
type.

Scenario: Query Late Delivery Scenario2
Goal: Manage Late Delivery Query Trigger: Late Delivery Query

Type Name

1 Goal Determine delivery status (check records)
2 Goal Inform customer (email that its being followed up)
3 Goal Alert customer service (email to follow up)

Figure 8 Alternative Scenario: Query Late Delivery

The interaction diagram and the generalisation to an AUML protocol for this
is shown in figure 9. When the partition containing the scenario in figure 1 is
developed, this protocol will need to be further developed. Messages are defined in
line with the protocols, and as these are developed in more detail, new messages are
added. Some protocols (and agents) may not exist at all in the essential partition.
Others are likely to exist in a reduced form which then need to be modified as a
new partition level is added.

late delivery query

Customer Customer
Relations

Agent

Delivery
Manager

Agent

Customer
Service

Department

status late

check status

Query Late
Delivery Protocol

alt

check status

status late

status ok

Customer Customer
Relations

Agent

Delivery
Manager

Agent

Customer
Service

Department

late delivery query

follow up alert

LEGEND: Agent

message

AgentActor Actor

actionpercept

follow up alert

Figure 9 An example interaction diagram (on the left) and interaction protocol (on
the right)

3.3 Prioritising Detailed Design Artefacts

In developing the detailed design, only the aspects of the agent that have to do
with the goals from a current partition are addressed. Consequently, agent overview
diagrams will be incrementally developed, with new capabilities and plans being
added in successive increments to address the goals within the particular partition.
Process diagrams follow directly from the reduced protocols, and thus are also
developed according to the relevant prioritised partition.

As with the protocols and agents in architectural design, capabilities, process
diagrams, and even plans may exist in a reduced form within a given partition, as
well as being absent from higher priority partitions.

3.4 Iterative development of prioritised partitions

Dividing the system into three clearly separated priority levels results in the
identification of three separate releases. In the first incremental iteration (release)
we develop the system specification of an agent system. We then apply the priori-
tisation process to identify the essential partition which will go through the whole
Software Development Life Cycle (SDLC) resulting in the first release. The second
incremental iteration includes the development and integration of the conditional
features, while the third release covers the optional features.

Including prioritisation mechanism within the Prometheus Design Tool (PDT)
allows iterative development to be supported in a structured manner. In the process
of developing the partitions, the developer (or any other project stakeholder) can
interact with the tool to come to a desired partitioning, with the tool ensuring that
necessary constraints are maintained. Once a partitioning has been determined,
the developer can work within a particular partition, and all aspects of the system
which are in a lower partition can be deactivated.

Prioritisation can be applied at any stage - and indeed if things are added to the
specification, then priorities should be recalculated. The ability to prioritise system
artefacts, thus allocating them to some priority partition, at any stage results in
a flexible development model since the developer can apply the prioritisation pro-
cedure at any point of system design. For example, it is possible to fully design
the system, and only then apply the prioritisation mechanism. This will then be
propagated through the system, allowing implementation and testing to proceed in
incremental iterations.

Also, there is often a “rapid descoping phase” late in a project, when it is
necessary to determine features that can be cut down due to the lack of time and
resources (Wiegers, 2000). Again, we can apply the proposed procedure to the final
design artefacts in order to determine the less important system features.

4 Case Study

In order to illustrate how the prioritisation mechanism works in practice, we
have used the case study of an Electronic Bookstore developed in “Developing
Intelligent Agent Systems: A practical guide” (Padgham and Winikoff, 2004), and
applied our procedures to it. We have augmented the original design with the actor
diagram as described in the system specification phase. We have then provided
rankings of 1-5 for all the scenarios, choosing those that are most basic/critical as
1, and those that are most advanced as 5, with others in between. While this was
subjective and somewhat arbitrary, it seems a reasonable process for then exploring
what support the proposed prioritisation mechanisms do actually give.

The initial description of the (desired) Electronic Bookstore system is as follows:

We would like to develop a fully online system for worldwide sale of
books. This system will offer a broad range of books to customers, and
a personalized, friendly user interface. The system must facilitate fast
and reliable service at all stages, from locating a desired book, to delivery
of the purchase. The store should have competitive prices.

The resulting system as developed within (Padgham and Winikoff, 2004), can
be described with the actor diagram as shown in figure 10.

Top-Level ScenarioLegend Actor/Stakeholder

Figure 10 Overview of Actors and top level Scenarios for the Electronic Bookstore

The full list of identified scenarios from (Padgham and Winikoff, 2004) is as
follows:

• Query Late Books scenario (5)

• Book Finding scenario (3)

• Order Book scenario (1)

• Pending Order Arrives scenario (2)

• Order Stock scenario (2)

• Stock Arrival scenario (2)

• Stock Delayed scenario (3)

• Missed Stock Arrival scenario (3)

• Order Status Query scenario (4)

• Customer Profile Update scenario (4)

• WWWsite Arrival scenario (3)

• Cheaper Price Notification scenario (4)

• New Catalogue scenario (4)

The numbers in parentheses after each scenario name are the rankings from
1 to 5 that we assigned to each scenario, with 1 being most critical and 5 least
critical. The rationale for these rankings were that stocking books (Order Stock),
and selling books (Order Book) are the core aspects of the system, and should
therefore be priority 1. The scenario Cheaper Price Notification which actively
monitors competitor prices to remain under them is something to be added later,
as is the ability for customers to interact with the system regarding their orders
(Query Late Books), so these received priority 5. Pending Order Arrives was ranked
2, as it is the scenario which allows for a book that was not in stock when ordered,
to be sent out immediately it arrives. The rest were ranked 3 and 4 based on a
quick decision about relative importance.

4.1 Prioritisation Results

Running the prioritisation algorithm on the above initial rankings resulted in
an Essential partition with three level 1 scenarios, a Conditional partition with
five level 2 and 3 scenarios, and an Optional partition with five level 4 and 5
scenarios. Checking these against the desired percentages in each partitionj, only
the conditional partition was actually in the desired range with respect to number
of scenarios. The Essential partition with 15.4% was well under, while the optional
with 38.5% was slightly over. However, scenarios are very coarse granularity. When
we look at the partitioning with respect to goals, actions and percepts - the entities
which are the building blocks of the application, we find that the Essential partition
contains 46.5%, the Conditional has 18.6% and the Optional has 34.9%.

The most important aspect of the algorithm is that it does partition the appli-
cation into coherent chunks for further development. With this approach all aspects
required for a particular scenario will be developed within a given partition. In the
absence of accurate measures of development timek a coarse level of granularity
seems appropriate.

In this example, although the Optional partition is the only one within the de-
sired bounds, the other two are close. However if the developer wishes to increase or
decrease a particular partition size to be closer to the specified range for that parti-
tion, it is simply a matter of providing an interface for moving scenarios manually
between partitions and rerunning the algorithm.

Figure 11 shows the roles (containing goals, actions and percepts) contained
in each of the partitions. Each sub-figure shows the complete application at that
level, with the new items for that partition circled. As can be seen, the Essential
partition contains only 5 roles, of the total 12, while the Conditional contains 3
new roles, and the Optional 4 new rolesl.

When we come to the architectural overview, we find that all agents are repre-
sented, even in the Essential partition. However their functionality is substantially
reduced. Of the seven protocols required in the full system, only two are required
in the Essential partition, with another two in the Conditional, and the final three
in the Optional partition. The Sales Assistant agent has two of its four roles in the
essential partition, but all the other agents have only one role. As the main work
of developing the agents is in their interactions (the protocols) and the internal
capabilities and plans to implement the roles, we consider this quite successful.

As we move into Detailed Design, we note that the Sales Assistant will have
two capabilities developed within the Essential partition, and two within the Con-
ditional partition. In this case, each of the capabilities are fully developed within
the relevant partition. However it can happen that some aspect of a capability
is added when developing the later partition. It can then be implemented as a
sub-capability, if desired. In the Stock Manager agent the aspects of the Stock
management role having to do with handling delays, are within the Conditional

jessential: 35%-45%, conditional: 20%-40%, optional: 25%-35%
kThis is an area for further research.
lThe size of the images showing the Essential and Conditional partitions (top part of figure 11)

has been decreased in order to fit all three partitions into one figure, for ease of comparison. The
system structure (including the artefacts and relationships) shown in the Essential and Conditional
partitions in the top part of the figure, is the same as the enlarged Optional partition, though
without the extra elements. The reader can refer to the Optional partition for details of entities.

Essential Partition

Optional Partition

Conditional Partition

Legend Action PerceptRole Goal

Figure 11 Prioritisation of roles, goals, actions and percepts: each partition includes
the entities from the previous level, and the new entities are circled.

partition, although other aspects of this role are Essential.

The process diagrams within the detailed design are taken directly from the
protocols, and thus these are also successfully limited within each of the agents,
and developed incrementally within the different partitions.

4.2 Discussion

The case study indicates a very successful partitioning of the system, even
though the initial partitioning of scenarios mostly did not result in the partition
sizes specified. Using the scenarios as the basic prioritisation entity, ensures that
the system pieces developed enable a coherent subset of the full functionality. The
protocols were partitioned cleanly in the different levels, thus avoiding difficulties

of incrementally developing them. While this will not always happen, using the
scenarios as the basic entity for partitioning does assist in this.

Prioritising and partitioning the system based on scenarios is quite a coarse
granularity approach and may not provide a very accurate view of the relative
sizes of different partitions. Therefore, there are a number of ways in which the
current approach could be modified, and perhaps improved. In particular a more
complex algorithm could be developed in order to obtain better initial partition
sizes, that considered not just the numbers of scenarios, but also the numbers of
resulting goals, percepts and actions. Also, the algorithm could be modified to
incorporate a scenario measure based on number of goals new to the priority level,
with some adjustment for goals that were shared amongst scenarios. However it is
not clear that this would lead to substantial improvement. We feel that it is better
to first gain some substantial experience with the simpler approach, and to extend it
based on experienced difficulties. It is particularly pleasing, that taking a previously
developed example, and then applying the prioritisation algorithms to it led to such
a clean separation which would clearly have facilitated incremental development.
We plan to obtain further experience with this approach, in collaboration with our
industry partners, and to then modify aspects of it as needed. We note that the
basic approach easily allows for a range of refinements.

5 Related work

Requirements prioritisation is recognised as an important, but difficult activ-
ity in software development process since it lays the foundation for release plan-
ning/system partitioning (Lehtola et al., 2004). Having a systematic requirements
prioritisation process is a challenge because such process involves decision making,
domain knowledge, and estimation skills (Wiegers, 1999).

Unfortunately, there is little agreement within industry as to how, when, and
why requirements should be prioritised. Requirements can be prioritised along
many different dimensions, such as: stakeholders preference, business value, risk
avoidance, cost, difficulty, and frequency of use (Firesmith, 2004). Also, there are a
number of prioritisation dimensions that target a particular application types (such
as systems where reliability is one of the major concerns e.g. military systems). For
example, Coit et al. defined a reliability-prediction prioritization index (RPPI) in
order to provide a relative initial requirements rankings based on their potential
for improving the system-level reliability (Coit and Jin, 2001).

In addition, various techniques can be used to determine, and develop a consen-
sus regarding the priorities of the requirements. According to Firesmith (Firesmith,
2004) the most widely used prioritisation techniques are pair-wise comparisons,
scale of 1-to-10 rankings, and voting schemes. Additionally, there are a number
of more advanced techniques, for example Avesani (Avesani et al., 2005) used
various machine learning techniques to induce requirements ranking approximation
for the available data (initial ranks). Also, Xiaoqing Liu et al. (Liu et al., 2004)
developed a framework that assigns initial priorities using an inter-perspective re-
lationship matrix. This matrix facilitates the prioritisation process by assigning
priorities to the requirements based on their relationships captured by multiple
stakeholder perspectives. Such techniques can be used to deal with very large sets

of requirements and associated priority rankings.

Note that any of the above mentioned prioritisation approaches can be readily
added to our partitioning mechanism in order to provide for a more systematic
allocation of initial ranking. The only constraint is that the priority rankings must
be integers ranging from 1 to 5 with value 1 indicating the highest priority and 5
indicating the lowest.

Another important issue is the granularity at which the requirements prioritisa-
tion occurs. A large-sized project can have thousands of functional requirements,
hence we need to choose an appropriate level of abstraction for the prioritisation
procedure. Traditionally this can be at the use case, feature, or individual func-
tional requirement levels (Wiegers, 1999).

We decided that the scenario level is most suited for Prometheus. This decision
was influenced by the practices prescribed by the Unified Software Development
Process (UP) (Jackobson et al., 1999). One of the activities in the Requirements
workflow of UP is ‘Prioritize Use Cases’. The purpose of this activity is to determine
which of the use cases should be developed in early iterations, and which can
be developed in later iterations. The Rational Unified Process (RUP) which is a
specific and detailed instance of UP also regards use case prioritisation activity
as one of the most important in the Requirements discipline (Kroll and Kruchten,
2003; Kruchten, 2004).

We have adopted a similar strategy to UP/RUP where we prioritise scenarios
rather than goals, but in our case, the process of deciding on what to be developed
within a given iteration is automated based on the algorithms described in the pre-
vious sections. As such, the presented approach requires less effort than the existing
manual approaches such as (Blahunka, 1999). Also note that there are commer-
cial products, such as the ReleasePlanner (http://www.releaseplanner.com/), that
assist in release planning by considering factors not covered in this research (e.g.
consideration of different resource types, budget constraints, regulatory consider-
ations). Such products mainly target business-level operations (such as strategic
product and release planning, road-mapping, project portfolio management, etc.)
and are not suited for the task of automated system partitioning at the lower level.

None of the existing agent development methodologies support the prioritisation
of system specification components, such as goals or scenarios.

6 Conclusions

This paper has described a prioritisation process which supports incremental
development of an agent based system. If the Prometheus design process is used,
the scoping can be automatically supported, and consistency enforced, within the
Prometheus Design Tool. The process is flexible in that it allows the developer to
specify the desired size ranges of the three partitions, and it also allows prioritisation
mechanism to be applied at any stage after the initial system specification. There
are plans to verify this work by using it in collaboration with our industry partner
to obtain experience in practice, with substantial applications. We also hope that
by making it available within the Prometheus Design Tool which is used by external
groups, that we will obtain feedback on its usefulness as well as on modifications
which may improve estimations of size.

The process of partitioning system functionality into manageable, coherent
pieces is a crucial part of managing large software development projects. The
presented approach provides structured and automated support for incremental de-
velopment according to the proposed partitions. To the authors’ knowledge there
is currently no other work on system partitioning, or other mechanisms for sup-
porting incremental development in an automated and structured fashion in agent
systems. In future work it will be important to develop mechanisms for estimations
of development time that can be used to more accurately determine partition sizes
if desired. However detailed cost estimation is usually a time consuming procedure,
so the coarser granularity approach to partitioning may well be a useful approxima-
tion, even if more accurate costing is available. While the described mechanisms are
developed for Prometheus and integrated within the Prometheus Design Tool, the
basic principles could readily be adjusted to suit any agent development method-
ology which has suitable structured relationships between design artefacts.

Acknowledgements

We would like to acknowledge the support of the Australian Research Council
(ARC) and Agent-Oriented Software, under grant LP0453486 ”Advanced Software
Engineering Support for Intelligent Agent Systems”, ARC Linkage Grant, 2004-
2006.

References

Avesani, P., Bazzanell, C., Perini, A., and Susi, A. (2005). Facing scalability issues
in requirements prioritization with machine learning techniques. In Proceedings of
the 13th IEEE Conference on Requirements Engineering (RE’05), Paris, France.

Blahunka, R. (1999). Iterative project scoping: An approach to sensibly selecting
business requirements for iterative dss deployment. DM Review Magazine, 3(6).

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A. (2004).
TROPOS: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236.

Bussmann, S., Jennings, N. R., and Wooldridge, M. (2004). Multiagent Systems
for Manufacturing Control. Springer-Verlag.

Coit, D. and Jin, T. (2001). Prioritizing system-reliability prediction improvements.
IEEE Transactions on Reliability, 50(1):17–25.

Firesmith, D. (2004). Prioritizing requirements. Journal of Object Technology,
3(8):35–47.

Huget, M.-P. and Odell, J. (2004). Representing agent interaction protocols with
agent uml. Proceedings of the AAMAS04 Agent-oriented software engineering
(AOSE) workshop.

IEEE-Std830 (1998). IEEE Std 830-1998, IEEE Recommended practice for software
requirements specifications. IEEE.

Jackobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Devel-
opment Process. Addison-Wesley, Reading, USA.

Kroll, P. and Kruchten, P. (2003). The Rational Unified Process Made Easy.
Addison-Wesley, Reading, USA.

Kruchten, P. (2004). The Rational Unified Process: An Introduction, Third Edition.
Addison-Wesley, Boston, USA.

Lehtola, L., Kauppinen, M., and Kujala, S. (2004). Requirements prioritization
challenges in practice. In Proceedings of the 5th International Conference on
Product Focused Software Process Improvement, pages 497–508, Kansai Science
City, Japan.

Liu, X., Veera, C., Sun, Y., Noguchi, K., and Kyoya, Y. (2004). Priority as-
sessment of software requirements from multiple perspectives. In Proceedings of
the 28th Annual International Computer Software and Applications Conference,
Honk Kong.

Padgham, L. and Winikoff, M. (2004). Developing Intelligent Agent Systems: A
Practical Guide. John Wiley And Sons Ltd, West Sussex, England.

Padgham, L., Winikoff, M., and Poutakidis, D. (2005). Adding debugging support
to the Prometheus methodology. Journal of Engineering Applications in Artificial
Intelligence, 18(2).

Perepletchikov, M. and Padgham, L. (2005a). Systematic incremental development
of agent systems, using Prometheus. In Proceedings of the 1st International Work-
shop on Integration of Software Engineering and Agent Technology (ISEAT05),
Melbourne, Australia.

Perepletchikov, M. and Padgham, L. (2005b). Use case and Actor driven Require-
ments Engineering: An evaluation of modifications to Prometheus. In Proceed-
ings of the Fourth International Central and Eastern European Conference on
Multi-Agent Systems (CEEMAS’05), Budapest, Hungary.

Rolland, C., Souveyet, C., and Achour, B. (1998). Guiding goal modelling using
scenarios. IEEE Transactions on Software Engineering, Special Issue on Scenario
Management, 24(12):1055–1071.

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A guided
tour. In Proceedings of the 5th IEEE International Symposium on Requirements
Engineering, pages 249–263, Toronto, Canada.

Wiegers, K. E. (1999). First things first: Prioritizing requirements. Software De-
velopment, 7(9).

Wiegers, K. E. (2000). Karl Wiegers describes 10 requirements traps to avoid.
Software Testing and Quality Engineering, 2(1).

