

 Int. J. Agent-Oriented Software Engineering, Vol. 6, No. 1, 2018 3

 Copyright © 2018 Inderscience Enterprises Ltd.

Team PUCRS: a decentralised multi-agent solution
for the agents in the city scenario

Rafael C. Cardoso*,
Ramon Fraga Pereira,
Guilherme Krzisch,
Maurício C. Magnaguagno,
Túlio Baségio and Felipe Meneguzzi
Faculdade de Informática,
PUCRS,
Avenida Ipiranga, 6681 – Porto Alegre, RS, Brazil
Email: rafael.caue@acad.pucrs.br
Email: ramon.pereira@acad.pucrs.br
Email: guilherme.krzisch@acad.pucrs.br
Email: mauricio.magnaguagno@acad.pucrs.br
Email: tulio.basegio@acad.pucrs.br
Email: felipe.meneguzzi@pucrs.br
*Corresponding author

Abstract: The 2016 edition of the multi-agent programming contest used the
agents in the city as its new scenario, which consisted on the execution
of various logistics tasks within a realistic city topology using a number of
different vehicle types. The complexity of the scenario and variety of tasks
posed a challenging problem suitable for a decentralised multi-agent solution.
In this paper we describe the winning solution for the contest, providing
insights into how we designed our solution and organised our team, as well as
some discussion on a few of our matches.

Keywords: multi-agent programming contest; MAPC; decentralised
multi-agent systems; agents in the city; contract net protocol; CNP; JaCaMo.

Reference to this paper should be made as follows: Cardoso, R.C.,
Pereira, R.F., Krzisch, G., Magnaguagno, M.C., Baségio, T. and Meneguzzi, F.
(2018) ‘Team PUCRS: a decentralised multi-agent solution for the agents in
the city scenario’, Int. J. Agent-Oriented Software Engineering, Vol. 6, No. 1,
pp.3–34.

Biographical notes: Rafael C. Cardoso is a PhD student in Computer Science
at PUCRS. He obtained his Master’s degree in Computer Science from the
same institution in 2014. His main research interests are in multi-agent systems
and multi-agent planning. Specifically, he is interested in multi-agent
programming languages, benchmarks of agent-based languages, goal allocation
mechanisms, multi-agent planners, and coordination mechanisms.

Ramon Fraga Pereira is a PhD student in Computer Science at PUCRS. He
obtained his Master’s degree in Computer Science from the same institution
in 2016. He was recognised as having the second best MSc dissertation in
Artificial Intelligence in Brazil (Title: Landmark-Based Plan Recognition), in

 4 R.C. Cardoso et al.

BRACIS/CTDIAC 2016. His main research interest is in goal and plan
recognition using automated planning techniques for both single-agent and
multi-agent systems.

Guilherme Krzisch is a Master student in Computer Science at PUCRS. His
main research interest is in normative systems; specifically, he is interested in
how to effectively monitor norm violations and in how agents need to change
their reasoning in such systems.

Maurício C. Magnaguagno is a PhD student in Computer Science at PUCRS
and he received his Master’s degree in Computer Science from the same
institution in 2016. His research focus is on automated planning.

Túlio Baségio is a PhD student in Computer Science at PUCRS and he received
the Master’s degree in Computer Science from the same institution in 2007. His
research interests include multi-agent and multi-robot systems, specifically
focused on distributed coordination and task allocation mechanisms.

Felipe Meneguzzi is an Associate Professor at the School of Computer Science
at PUCRS where he leads the Group on Autonomous Systems. His main
research interests are automated planning, plan recognition, norm-driven
reasoning and their application to multi-agent systems. Having received his
PhD from King’s College London and worked for Carnegie Mellon University
prior to his current appointment, he has authored over 100 peer-reviewed
papers and articles, as well as a number of industrial patents. He is currently
in the program committee of all major AI and agents conferences, including
AAAI, IJCAI, AAMAS, and a number of smaller venues. He received
Google’s 2016 Research Award for Latin America and was a runner up to
Microsoft’s 2013 Microsoft Research Faculty Fellowship.

1 Introduction

The multi-agent programming contest (MAPC) 2016 introduced a new and complex
scenario, agents in the city. This scenario consists of two teams competing to accomplish
logistic tasks in the streets of a realistic city. Each team controls 16 autonomous vehicles
divided into four different types: car, drone, motorcycle, and truck. Teams win points for
having more money than the opposing team at the end of a round and earn money by
successfully bidding for and completing logistic tasks. In this paper we focus on
describing our team’s solution and leave the interested reader to find more details about
the scenario in (Ahlbrecht et al., 2017).

Although our team was originally formed in 2014, 2016 was the first time that we
participated in the MAPC. We chose not to participate in 2014 for two main reasons.
First, we did not have enough time to familiarise with the server’s API back in 2014.
Second, the agents on Mars scenario was in its fourth iteration, giving a disadvantage to
any new teams. As soon as the MAPC 2015 was announced, we started to develop our
solution, using the multi-agent oriented programming language JaCaMo. Due to the
complexity of developing the new agents in the city scenario, the contest was pushed to
2016.

We had many team members over this three year period, and as a result our code
shifted considerably throughout the development process. Our team has members from

 Team PUCRS: a decentralised multi-agent solution 5

two different research laboratories, SMART-PUCRS and LSA-PUCRS. We started with
a centralised solution and gradually decentralised it as much as possible with one key
change over the year. Specifically, after receiving advice on how to improve our code
from one of the developers of JaCaMo, we decided to completely overhaul the way that
we structured the plan library of our agents. The resulting agent code moved from
entirely reactive agents to agents that are more proactive, but are still able to react when
appropriate.

This paper is structured as follows. In the next section, we explain the design process
we used in our implementation: we describe how we managed the team, how we
modelled the system, and how we tested our software. Section 3 describes the details of
our architecture, with a brief description of JaCaMo and other parts of the architecture
that are used throughout our solution. In Section 4, we discuss the main the strategies the
agents employ as they play the scenario and explain how they work. Section 5 briefly
analyses the results that contributed to our team obtaining first place. Finally, we
succinctly answer the questions posed by the organisers for each team in Section 6, and
we end the paper with some closing remarks in the final section.

2 System analysis and design

In this section we discuss how our meetings were organised and provide some thoughts
on collaborative programming with GitHub. We briefly comment on the use of the
Prometheus methodology as a modelling tool for our multi-agent system (MAS). We end
the section providing some information on how we tested our system, using bug tracking
and evaluation of preliminary implementations.

2.1 Team management and meetings

Our team had weekly meetings ranging from 15 minutes to 3 hours, organised by the
team leader. We had three different types of meetings: progress report, strategy
discussion, and programming meetings. Progress report were short meetings (15 to
30 minutes) where each team member would report on the progress of the task allocated
to them. Strategy discussion were medium-length meetings (one to two hours) where we
did in-depth discussions about possible strategies for a particular feature, such as job
evaluation, by writing viable strategies on a whiteboard until we all agreed on which one
to implement. Programming meetings were lengthy meetings (three or more hours),
usually done when we felt that we were behind schedule, where each team member
brought their laptop and focused on implementing some important feature that we needed
to proceed. At the end of any of these meetings, we verified what was left to be done and
allocated tasks that should be prioritised.

Programming meetings were not very common, we usually had to program on our
own free time. We used GitHub to host our repository online, making it easier to
collaborate and track development, especially because we had a large group of people.
Besides using it for source code management, distributed version control, and access
control, we also took advantage of collaboration features such as issue tracking, task
management, and wikis. When trying different strategies or adding a big feature, we
would often create new branches in order to test the code first, before merging it into the
master branch.

 6 R.C. Cardoso et al.

In Figure 1(a), we show a chart with the number of commits sent to our repository,
from the first commit on the day that we started programming (May 17, 2015), to the last
commit on the last day of the competition (September 13, 2016). This chart indicates that
the bulk of the code was done in 2015, when most of the architecture was implemented.
Conversely, the chart in Figure 1(b) indicates that the month before the 2016 competition
had the most number of additions to the code, when most of our strategies were
implemented. In both charts, there is a large hiatus in activity separating 2015 and 2016,
indicative of when the 2015 contest was cancelled.

We initially created GitHub wikis for sharing some important information about the
contest, such as agents’ roles and their parameters, contest schedule, and how to execute
the server. We quickly noticed the complexity of the problem and decided to write and
save our meeting minutes. We used wikis to do so, creating one page for each of the
meetings that we had scheduled, and updating it after a meeting ended. Our first recorded
meeting minute is from 27/05/2015 (available in our GitHub wiki section), all subsequent
meetings can be found in the wiki’s sidebar. This was very useful since not everyone was
able to attend all meetings, allowing any absent members to quickly catch up on what
was discussed and what were the next steps.

Figure 1 (a) Number of commits from May 17, 2015 – September 13, 2016
(b) Number of additions (see online version for colours)

(a)

(b)

Source: GitHub

2.2 Modelling methodology

The MAPC 2016 introduced agents in the city, a novel and complex scenario. In order
to provide a better understanding of this scenario, we opted to use the Prometheus
(Padgham and Winikoff, 2004) methodology to model the system and our agents.
Because of time constraints, we had to intercalate modelling in Prometheus with
implementing the system in JaCaMo (Boissier et al., 2011), and through this process we
discovered some limitations and conceptual divergences when using Prometheus to
model MAS developed in JaCaMo. We discuss these differences in a previous paper
(Freitas et al., 2016).

In Figure 2, we show the system overview diagram, modelled using the Prometheus
design tool. This diagram includes initiator and bidder agents from our task allocation

 Team PUCRS: a decentralised multi-agent solution 7

strategy (see Sections 3.4 and 4.5), and an overview of the interaction between vehicle
agents and the server’s environment. For more information about how the server and its
environment work, we refer the reader to (Ahlbrecht et al., 2017).

Prometheus was invaluable for the initial development of our solution, but because it
does not contain the same concepts found in JaCaMo’s environment and organisation
dimensions, we decided to stop using it once we got further in the development. For
future MAPCs, it would be interesting to investigate the use of the AEOlus methodology
(Uez and Hübner, 2014) to model our MAS. AEOlus extends Prometheus to allow
support for the environment and organisation dimensions found in JaCaMo.

Figure 2 System overview diagram (see online version for colours)

Source: Image adapted from Freitas et al. (2016)

2.3 Software testing

Software testing is important throughout the development of any system, especially when
we are considering the inherent complexity and dynamics of multi-agent systems such as
in the agents in the city scenario. The purpose of a test phase is to find as many defects as
possible in the system. Thus, it would be ideal to test all possible input combinations.
However, factors such as the amount of people available, time and, especially, the
enormous amount of possibilities, make this impossible for the vast majority of projects,
including ours. Due to time constraints, in our project we did not follow the traditional
development cycle of well-defined start and end dates for development and testing
phases. In fact, these two phases occurred simultaneously throughout our project.

 8 R.C. Cardoso et al.

The test phase of our project can be divided into several different parts. We initially
had the developers running tests on their own codes. Some developers, that were more
experienced with JaCaMo, also performed tests in the code of other developers (these
phases would be equivalent to unit test phases and integration test in a traditional
development process). However, even while performing tests, programmers continued
coding in parallel. Later on, we assigned a team member to work Specifically with tests,
characterising what would be called system testing in a traditional development process.
Programming and testing took place in parallel, but always in accordance with the
availability of team members.

During software testing, we used GitHub’s issue tracking system to keep track of the
reported bugs during the project. When creating issues using the tracker, it is possible to
add labels on them that work as meta data for the issue and that can also be used to filter
them. There are some default labels such as bug, duplicate, and enhancement, but the user
can also create other labels. As shown in Figure 3(a), we used issues to report different
aspects such as bugs, ideas, news, ask questions, request help, and so on. Table 1
provides some data about the number of bugs reported during the testing.
Table 1 Number of bugs reported in GitHub’s issue tracker

Status #Bugs
Closed 30
Open 11
Invalid 1
Total 42

Figure 3 (a) Examples of issues created during the contest (b) Example of a reported issue
(c) Example of test data used for a test scenario (see online version for colours)

(a)

 Team PUCRS: a decentralised multi-agent solution 9

Figure 3 (a) Examples of issues created during the contest (b) Example of a reported issue
(c) Example of test data used for a test scenario (see online version for colours)
(continued)

(b)

(c)

The reported bugs were discussed and prioritised during team meetings and informal
conversations. As GitHub lacks a specific feature for prioritising the bugs (although this
could be done through labels such as low, medium, and high), the prioritisation list was
not kept in the tracker. Another interesting aspect on working with issues in GitHub, is
that you can make references to other issues and also for the code used during testing.
This was especially useful to us since sometimes the code that was tested could have
been changed already.

 10 R.C. Cardoso et al.

GitHub’s issue tracking system allowed us to record important aspects about the
bugs, such as who reported the bug, the time it was created, a description about the error
(including how to reproduce it), who worked on it, and its current status. Figure 3(b)
shows an example of a bug reported in our project.

The testing phase occurred dynamically and, most of the time, without documentation
about the tests that were performed. However, in some situations the tests were
documented through the description of test scenarios and input test data. The following
are examples of test scenarios documented during these tests:

• verify the behaviour of the agents when there is a priced job where the reward is less
than the total amount needed to deliver the job

• verify the behaviour of the agents when there is an auction job with a short time
(impossible) to complete it

• verify the behaviour of the agents when a job requests a material which needs a tool
that is not available to the agents

• verify the behaviour of the agents when there is a job for which agents need to buy
bases (items that are not assembled) at different shops to assemble a specific item.

Figure 3(c) shows an example of input test data used for one of the test scenarios.
It is important to note that most of our tests occurred against the basic scripted team

made available by the organisers of the contest, whilst later tests were performed against
old versions of our own code. It is also important to comment that small bugs found when
programmers were testing their own code were not reported in the system.

3 Software architecture

This section begins with a brief description of JaCaMo and how we used each of its
technologies. Then, we describe several segments of our architecture that are later
explored in our strategies: each agent’s environment artefact, a centralised team artefact,
our map helper, two contract net protocol (CNP) artefacts, and four Jason internal
actions.

JaCaMo (Boissier et al., 2011) is a MAS development platform that explores and
exploits the use of three MAS programming dimensions: agent, environment, and
organisation. Figure 4 shows how each of these programming dimensions interact with
each other. In the top-most level, the organisation dimension is composed of a scheme, a
set of missions, and a set of roles. These roles are adopted by the agents that inhabit the
agent dimension. In the bottom-most dimension, the environment houses artefacts that
relate information about the environment, grouped into workspaces that agents can
access. These workspaces can be distributed across multiple network nodes, effectively
distributing the MAS.

Jason (Bordini et al., 2007) handles the agent dimension. It is an extension of the
AgentSpeak(L) (Rao, 1996) language, based on the BDI agent architecture. Agents in
Jason react to events in the system by executing actions on the environment, according to
the plans available in each agent’s plan library. One of the extensions in Jason is the
addition of Prolog-like rules to the belief base of agents. These rules were fundamental in
expressing some of the intricacies of this year’s MAPC scenario.

 Team PUCRS: a decentralised multi-agent solution 11

CArtAgO (Ricci et al., 2009) is based on the agents and artefacts (A&A) model
(Omicini et al., 2008), and manages the environment dimension. Artefacts are usually
used to represent the environment, but in our case we also use them as an interface
between the agents and the server’s environment. Artefacts have observable properties –
beliefs that are added to the agent’s belief base; and provide operations – actions that can
be executed by the agents.

Figure 4 An overview of JaCaMo MAS programming dimensions

Moise (Hübner et al., 2007) operates the organisation dimension, regulating the
specification of organisations in the MAS. Moise adds first-class elements to the MAS
such as roles, groups, organisational goals, missions, and norms. Agents can adopt roles
in the organisation, forming groups and subgroups. Missions are defined to achieve the
organisation’s goals. The behaviour of the agents that adopt roles to accomplish these
missions is guided by norms. Our solution did not use any elements from the organisation
dimension, this is something that we plan on exploring in our future MAPCs’ solutions.

Project files

We used the JaCaMo Eclipse plugin to develop our solution. Our project is available at
<https://github.com/smart-pucrs/mapc2016-pucrs> (pruned code, final repository) or
<https://github.com/lsa-pucrs/mas-pc-pucrs-2016> (development code, repository with
our progress), and contains the following main folders:

• conf: server’s configuration for simulations.

• doc: documentation from the MAPC 2016, does not include any documentation to
our code.

 12 R.C. Cardoso et al.

• lib: assortment of libraries required to run the server and JaCaMo.

• osm: OpenStreetMap files containing map data of cities that can be used in
simulations.

• src: architecture’s and agents’ source code, divided into four subfolders:
a actions: internal actions described in Section 3.5
b agt: strategies (see Section 4) employed by Jason agents
c cnp: CArtAgO artefacts that implement CNP (Section 3.4)
d env: environment architecture programmed in Java and described in

Sections 3.1, 3.2, and 3.3.

• test: this folder has two executables: ScenarioConnectToServer.java and
ScenarioRunServer.java. The former is used to connect our agents to a server that is
already running (e.g., connecting to the contest’s server), while the latter first runs
the server locally, and then connect our agents and starts the simulation (used for
experiments and tests). The JaCaMo project configuration file, scenario.jcm is also
located in this folder.

3.1 Agent environment artefact

To act and receive perceptions in the server’s environment we use a CArtAgO artefact
called EISArtifact. This artefact is responsible for three tasks: register agents, receive
(filter) perceptions into observable properties, and send executable actions. When a round
starts, all of our agents use this artefact to register with the server by associating them to
an entity in the EnvironmentInterface of the MassimServer. Registering agents is an
essential task in the simulation, agents that are not registered in the MassimServer are not
represented in the environment and can not act in it.

Initially, we were using only one environment artefact for all agents to perceive and
act in the server’s environment. However, as we progressed to a more decentralised
solution, we realised that it made more sense, from a MAS perspective, to have one
artefact for each agent. This minimised the bottleneck of sending actions to the server,
since each agent would use its own artefact instead of all trying to use the same one. This
did not remove the bottleneck entirely, because we were still limited by the number of
cores in the computer running our solution. It could provide much better results if the
agents were distributed in multiple computers, something that we plan to experiment with
in future MAPCs.

At every step of a simulation’s round we receive new perceptions, and to deal with
them the artefacts can filter any useful perception into an observable property by
adding/updat-ing/removing them in the artefact’s observable properties. We decided to
filter perceptions for two reasons:

1 Some perceptions do not change during the simulation, so there is no reason to keep
updating them (each addition/update/removal generates an event in Jason).

2 There were some perceptions that had no use to our agents (e.g., auction jobs), and
could be ignored so as to not overload their belief base.

 Team PUCRS: a decentralised multi-agent solution 13

We use two sets of filters: match and steps observable properties. Match observable
properties are perceptions that the artefact receives only once, such as simStart, map,
steps, product, role, and among others. Steps observable properties are those that the
artefact receives at every step, such as chargingStation, shop, storage, dump, lat, lon,
inFacility, step, and among others.

When our agents decide to act in the environment, they send to their artefact the
desired action with the respective parameters (i.e., agent name, action name, and action
parameters) that they want to perform in the server. In this scenario, actions can fail due
to various reasons, such as wrong parameters, unknown agent (unregistered), uncertainty
factor (actions fail with a 1% probability), and among others.

Translator

We developed a Translator that contains a set of methods for translating perceptions and
actions that the agents receive/send from/to the MassimServer into structures that we use
in our solution. In summary, at every step, this set of methods basically translates the data
structure of the Massim API into Jason and CArtAgO data structure (e.g, terms, literals).

3.2 Team artefact

One of the few centralised aspects in our solution is the Team Artefact. This artefact is
responsible for storing and sharing agents available loads (their capacity to carry items,
its value decreases for each item the agent is carrying) and the price of items found in
shops. When an agent is located in a shop facility, it receives the prices and available
quantity of all items within that shop (this information is not available otherwise). We
store in the artefact the price of all items that are available to buy in this shop. It is
important to emphasise that we store the price of an item only once, we do not update or
add this value when another agent revisits that shop, as the items’ prices do not change
during the simulation.

After an agent adopts a role, we add in the artefact an observable property that
corresponds to the load associated with it. We also update the load of an agent when this
agent wins a contract to do (part of) a job (this is a projected load, the agent still has in
his belief base its true load value), and after delivering a job (i.e., the agent has delivered
all items that he had, therefore his available load consequently increases).

3.3 Map helper using GraphHopper

To obtain routes to locations in the city where agents act and interact, we developed a
graph data structure called MapHelper. This graph data structure uses the GraphHopper
API, an open source Java road routing engine that uses OpenStreetMap.

We use MapHelper to obtain routes to facilities and locations from the city map in
order to avoid executing the environment action goto (which also returns a complete
route between two locations), because we would have to waste at least one step to
execute it, potentially wasting even more steps as this action can fail (e.g., failed_random
or failed_no_route). MapHelper provides two types of routes: air (drones) and road
(motorcycles, cars, and trucks) routes. Routes contain a sequence of waypoints that go
from an initial position to a destination.

 14 R.C. Cardoso et al.

These routes are used by our agents to calculate their effectiveness to do a job, that is,
the use of MapHelper allows agents to estimate the number of steps that would take them
to get to a location. These routes still have to be divided by the speed of each vehicle,
which we do in the agent’s code whenever we call MapHelper.

3.4 CNP artefacts

Our agents use CNP (Smith, 1980) to allocate tasks from jobs that are announced in the
environment. CNP is a protocol for decentralised task allocation, it has an initiator who
announces tasks and awards contracts, and bidders who bid for contracts and execute
tasks. CArtAgO’s source code includes an implementation of CNP, using two artefacts, a
task board and a contract net board.

We extended their implementation with a few extra features such as: a bid class with
additional parameters to improve the initiator’s bid selection plan which awards
contracts; and a CArtAgO internal operation – an operation that can only be executed by
the artefact itself – that closes bidding for a contract once all agents have placed their
bids. The latter only happens if the contract has not already been closed because the
deadline was past. Our agents only place bids once (i.e., they do not update their bids),
thus, if all agents have already placed their bid, there is no reason to wait for the deadline,
which can save some important time considering that agents also have a deadline to send
their actions to the server in each step of the simulation.

One instance of the task board artefact is created by the initiator at the start of the
system. All agents focus – while an agent is focusing on an artefact, it is able to see its
observable properties and execute its operations – on the artefact as soon as it is
available. The artefact has a single operation, announce, that allows an initiator to
announce new tasks by creating a new observable property task, containing information
relevant to that particular task. Figure 5 contains a sequence diagram with an overview of
how our agents use the CNP artefacts.

Figure 5 Sequence diagram of how our agents use CNP

Source: Image adapted from Freitas et al. (2016)

For each new task, an appropriate instance of the contract net board is created, which can
then be used to manage its contract. Similarly to the task board, agents will focus on new
instances of a contract net board as soon as they are created. A contract net board artefact
has a bid operation, which agents can execute to place bids on a contract, and a getBids
operation, used by an initiator to collect the bids placed for a contract. Two internal

 Team PUCRS: a decentralised multi-agent solution 15

operations can close and terminate the bidding process over a contract, checkDeadline
when the deadline is past, and checkAllBids when all agents have placed their bids.

3.5 Internal actions

An action usually performs changes in the environment. That is not the case with Jason
internal actions. Internal actions in Jason are executed within the agent, and they can
return results that can be used to aid in the agent’s reasoning. Jason provides some default
internal actions (such as .send and .broadcast for message passing), as well as allowing
the developer to create its own internal actions in Java, such as the ones we describe
below.

3.5.1 Closest

The closest internal action can be used by the agent to identify the nearest facility, either
from the agent position, from the position of another facility, or from specific latitude and
longitude coordinates. It is used, for example, to identify the nearest shop, dump, or
charge station. This internal action calculates the route to each facility (from a list of
facilities received as parameter), identifying the nearest from an initial position (also
received as a parameter). It returns the closest facility found.

3.5.2 Get location

The getLocation internal action is used to get the location’s latitude and longitude
coordinates of a specific facility. It returns that facility’s latitude and longitude
coordinates.

3.5.3 Route

The route internal action returns the route length from an initial position to a specific
facility. The route length is calculated from an initial position, which could be: the
current agent position; another facility; a set of latitude and longitude coordinates.

3.5.4 Paths to facilities

The pathsToFacilities internal action is used by the agent to calculate the number of steps
required from the agent current position to each facility available in a facility list received
as a parameter. The number of steps is based in the route length and the agent’s speed.

4 Strategies

We start this section by explaining the code in vehicle.asl, which contains the code that is
loaded by all agents when our solution is executed. Then, we present in-depth discussions
on each of our strategies, providing a more detailed description of the following: shop
exploration, job evaluation, task allocation, and battery recharge.

In the beginning of vehicle.asl, several other asl files are included – Jason includes
are similar to imports in Java, they add all beliefs, goals, and plans from the file being
included. new-round.asl and end-round.asl contain plans that are used, respectively, in the

 16 R.C. Cardoso et al.

start and end of a round. We separated common code (to be used by all agents) into
several different files: common-plans.asl, common-rules.asl, common-actions, and
common-strategies.asl. We did this so that agents could also include specific asl files
related to the vehicle role that they received from the environment, but we never got
around to developing strategies for specific types of vehicles, something we plan to do in
future MAPCs.

All agents are also bidders, so they also include bidder.asl, along with the default
common-cartago.asl for interfacing with CArtAgO artefacts. We chose to have only
initiator (for reasons that we discuss in Section 4.5), thus, only vehicle15 includes
initiator.asl. The rest of the code is straightforward, agents register with the server’s
environment and update some information about themselves in the team artefact. All
agents then wait for the first step of the simulation, when our first strategy begins: shop
exploration.

4.1 Shop exploration

We now present a strategy for exploring shop facilities at the beginning of a round. This
strategy prioritises sending agents to the shop that is nearest to them in order to obtain the
prices of available items. The exploration is coordinated with a token ring
communication, in which every agent estimates their distance to all shops in the map.
Then, they form a proposal containing all of these estimated distances to each shop.
Figure 6 illustrates how the shop exploration strategy works.

Figure 6 Shop exploration strategy overview

Only one agent is sent to each shop, in order to minimise any unnecessary battery
recharge costs. To decide which agent is sent to explore each shop, we implemented a
token ring communication that can occur in several iterations. Each iteration, an agent
sends its proposal to explore all available shops (i.e., shops that have not yet been
assigned to be explored by another agent) to the next agent in the ring.

 Team PUCRS: a decentralised multi-agent solution 17

An iteration ends once the last agent has formed its proposal, which he then compares
to all previous proposals before allocating the exploration of shops to the best proposals.
If all shops have been allocated, then the allocation ends and each agent that committed
to explore a shop starts to do so. If any shops remain not allocated, then another iteration
begins containing only these shops.

4.2 Battery recharge

Vehicles consume battery when moving in the city; in order to continue moving, they can
recharge in any of the charging station available in the map. If their battery becomes
empty, they can call the breakdown service, which fully recharges its battery after
25 steps. An agent must send the call breakdown service action to the server for each of
the 25 steps in order for it to work. As calling this service takes time, and also costs
money, we want to minimise these situations.

We implemented a strategy, described in Algorithm 1, which always try to foresee the
need to recharge its battery. Whenever a vehicle has a task to go to some facility, it first
checks if its current battery level is enough to go to this facility, and then to the nearest
charging station to that facility. Note that it is not enough to just check if the vehicle is
able to reach the facility, because then nothing prevents it from not having enough battery
to go to other facilities or charging stations.

Algorithm 1 Plan for going to a facility.
1: procedure goto(Facility)
2: if enough battery to go to facility and from there to the nearest charging station then
3: goto(facility)
4: else
5: closestChargingStation ← closestFromFacility
6: if empty(closestChargingStation) then
7: closestChargingStation ← closestToMyPosition
8: end if
9: if enough battery to go to closestChargingStation and then to facility then
10: goto(closestChargingStation)
11: goto(facility)
12: else
13: goto(facility)
14: end if
15: end if
16: end procedure

If the agent reaches the conclusion that it does not have enough battery, it tries to find a
route to this facility that includes a charging station on the way for which he does have
enough battery to get to. In order to choose the best charging station, that is, one that does
not incur a great increase in the route length to the facility, we consider only the ones that

 18 R.C. Cardoso et al.

are between the vehicle current position and the facility position. If there is no such
charging station, we simply choose the closest charging station from the agent’s current
position. Now, again, the vehicle needs to check if it has enough battery to go the chosen
charging station and then to the desired facility; if it has, then it simply follows this route.

However, there are cases where all of these options are not possible, and it is thus
impossible for the agent to go to the facility without stopping on the way because its
battery was emptied, even if it does recharge in between. In such cases, the vehicle tries
to go to the desired facility anyway, calling the breakdown service when necessary. The
complete code for our battery recharge strategy can be found in common-strategies.asl
(lines 43–123).

4.3 Simultaneous jobs

Besides the constraints we impose when deciding if our team is going to undertake a job,
described in Section 4.4, we also limit the number of simultaneous jobs that our team can
handle at the same time. We decided to use this strategy because, as the number of
simultaneous jobs increases, and consequently the number of available agents decreases,
these remaining agents tend to give worse job estimates. This occurs because faster
vehicles, like drones and motorcycles, have a higher chance of giving better estimates
than slower vehicles, like cars and, primarily, trucks. Therefore, when our team is already
committed to a given number of jobs, the set of available agents is mainly consisted of
these slower vehicles, and it becomes no longer cost-effective to accept new jobs.

We empirically tested different limits for the number of simultaneous jobs; the limit
of three jobs at the same time gave the best results with the configuration used in the
simulations of MAPC 2016. When this limit is reached, new incoming jobs are dropped
without further analysis; we only start to consider taking new jobs when we complete one
of the simultaneous jobs that were in progress.

4.4 Job evaluation

We consider job evaluation to be one of our major strategies that contributed to the good
performance of our team in MAPC 2016. We identified two broader types of job
evaluation: decide if a job could potentially reward more than it costs; and decide if a
new job is more profitable than jobs that we were already pursuing. Because we have a
limit of three simultaneous jobs (see Section 4.3), and because we believe that it is too
costly to abandon a job, we focused on the first type of job evaluation. During the
contest, we ignored auction jobs and concentrated only on priced jobs, simply because
our code for auction jobs was not polished enough in time for the contest.

In Algorithm 2, we have a high-level version of a plan used by the initiator to
evaluate new priced jobs. The complete code for priced job evaluation can be found in
initiator.asl (lines 81–150). Our job evaluation consists of multiple conditional tests:

1 We only consider undertaking a new priced job if we are not in the shop exploration
phase and if we are not in the endgame phase.

2 Our team commits to at most three simultaneous priced jobs. Should the team
already be at maximum capacity, then the job is ignored. The job is also ignored if
we do not have enough available agents for the total number of tasks in the job
(i.e., number of different items that comes with the job’s perception).

 Team PUCRS: a decentralised multi-agent solution 19

3 Agents in our team do not use assemble actions, as we noticed that buying any
assembled item required for a job was faster than trying to assemble them. Thus, we
ignore any job that contains assembled items that are not available in a shop. From
our tests and matches in the MAPC 2016, we noticed that this would never happen,
every item (including assembled items) was available in at least one shop.

4 Next, we calculate an estimate of how many steps it would take to complete the job.
We calculate this step estimate by using the distance from the centre of the map,
using a car (best results in our experiments), to the closest shop and to the storage
that the job has to be delivered. Then, we add these two values and multiply by the
number of tasks in the job, which should be equal to the number of agents that will
work on the job (we consider the worst case scenario). We add 35 steps to our
estimate to improve our chances of not undertaking jobs that could expire before we
are able to finish them, and check if the result is lower than the step that the job
expires, (End) minus the current step of the simulation.

5 The last conditional test is to check if the job offers more money than it costs (i.e., it
is a profitable job). In order to check that, we calculate the cost of buying all the
items required for the job, plus an estimated battery fee. The battery fee estimation is
calculated by multiplying the previously calculated shop step estimate and the
storage step estimate by ten (the cost of battery for every one step of using the goto
action), then multiplying both values for the number of tasks, and finally adding
them together. If the sum of the cost estimate and the battery fee estimate are lower
than the money reward offered by the job, then the job passes our evaluation.

Algorithm 2 Plan for evaluating priced jobs
1: procedure pricedJob(JobId, StorageId, Begin, End, Reward, Items)
2: if not exploring shops and not endgame then
3: if jobs committed < 3 and number of tasks <= available agents then
4: verifyAssembled(Items, Assembled)
5: if (Assembled = 0) or required assembled items are buyable at a shop) then
6: calculate_step_estimate(T otalEstimated)
7: if TotalEstimated + 35 < End -CurrentStep then
8: calculate_price_estimate(Cost, BatteryFee)
9: if Cost + BatteryFee < Reward then
10: separate_tasks(Items, JobId, StorageId)
11: end if
12: end if
13: end if
14: end if
15: end if
16: end procedure

As the map centre information is not promptly available, we calculate an approximation
at the start of each simulation. In order to approximate it, we get the average latitude and
longitude of existing shop locations. Although this does not give the exact centre of the
map, empirically it resulted in a good approximation.

 20 R.C. Cardoso et al.

These estimates are rough projections, used to discard conspicuous bad jobs. Real
calculations are done during task allocation, should the priced job pass our job
evaluation. That is, our bid evaluation does not guarantee that a job is doable. We may
still choose to ignore the priced job during task allocation if the job is impossible with the
current configuration of available agents at that particular moment in the simulation.

4.5 Task allocation

We wanted to integrate agent techniques in our strategies in order to demonstrate the
advantages of using MAS, especially in a decentralised setting. The agents in the city
scenario has many opportunities to use such techniques. Task allocation is one of these
opportunities, and has many uses in MAS. We choose to use CNP (Smith, 1980) as the
task allocation mechanism. Agents use CNP artefacts, described in Section 3.4, to
announce new tasks and post bids to contracts.

Our implementation of CNP used during the contest has an important characteristic
that makes it different from classical CNPs, the initiator is always the same agent
(vehicle15, a truck). Although all agents are able to receive the perception that a new
priced job was created, we did not find any particular reason for alternating initiators.
However, we have some experimental code that allows bidders to become initiators if
they need any help to fulfil a contract, and plan on adding that feature when we include
assemble actions, in future versions of our code.

4.5.1 Initiator

If a priced job has been evaluated and deemed useful, the initiator decomposes the job
into several tasks. The number of tasks is equal to the number of different items that the
job requests. Then, the initiator announces these tasks concurrently (Jason allows
concurrent execution of the agents’ intentions), one contract for each task. The deadline
(two seconds) starts counting from this point forward, and the initiator waits for it to
close (either by deadline or by all agents placing their bids) before collecting the bids to
all existing contracts.

The next step is to select the winner bid and award an agent with the contract.
Whenever bidding is closed for a contract, the initiator increases a counter by 1 (starting
from 0), and will only start to process the bids once the counter reaches the same number
of announced contracts. For each contract, the initiator selects the lowest bid value and
add that agent to a winner’s list. If an agent is already on the winner’s list, its bid will
only be eligible to be selected for subsequent contracts if items from these contracts can
be bought at the same shop of the first contract that it won.

Finally, when the winning bids of all contracts have been selected, the initiator sends
a message to all agents in the winner’s list, prompting their task execution plan
(see Section 4.6). The number of jobs in progress is incremented, and the initiator goes
back to its previous task. After the initiator has received confirmation that a contract has
been fulfilled from all agents that were undertaking a priced job, it decrements the
number of jobs in progress.

 Team PUCRS: a decentralised multi-agent solution 21

4.5.2 Bidder

As soon as a bidder agent perceives that new tasks have been announced, it starts
preparing its bid for that task. Agents that are already undertaking another task, or are
busy dumping items from failed job attempts, send a bid value of –1, which represents
that it is ineligible for achieving the task (the initiator ignores all –1 bids). If the agent
does not have enough load left to carry all of the task’s items, it will also send a bid value
of –1. Otherwise, if the agent is available, it calculates its bid. The value of the bid is
calculated by the sum of the number of steps required to arrive at the closest shop that
contains the items of the task and the number of steps from that shop to the storage that
the task needs to be delivered.

Figure 7 Bidder overview (see online version for colours)

Source: Image adapted from Freitas et al. (2016)

 22 R.C. Cardoso et al.

Bidders that won a contract receive a message with the winner perception from the
initiator. For all contracts that a bidder receives, it creates a buyList belief with the items,
and their quantity, that it has to buy for that contract. Then, agents proceed to try and
fulfil their contracts (see task execution in the next section). In Figure 7, we show the
agent overview diagram for bidder agents, the capability overview diagram for bid
procedure, and a corresponding (shortened) JaCaMo code.

4.6 Task execution

When an agent is awarded with a contract, it activates the plan go_work, shown in
Listing 1, from its plan library. We simplified some of the code to improve readability,
the complete code can be located in common-strategies.asl (lines 15–41). We collect
some beliefs from the agent’s belief base in the context of the plan (line 2). Then, the
body of the plan begins with a subgoal to go to (see Algorithm 1 for more details) the
shop specified in the contract.

Listing 1 Plan for working a contract (see online version for colours)

1 +!go_work(JobId,StorageId)
2 : buyList(_,_,ShopId) & .my_name(Me) & role(_,_,LoadCap,_,_)
3 <-
4 !goto(ShopId);
5 for (buyList(Item2,Qty2,ShopId)) {
6 while (buyList(Item,Qty,ShopId)) {
7 !buy(Item,Qty);
8 !skip;
9 }}
10 !goto(StorageId);
11 !deliver_job(JobId);
12 while (failed_random)
13 !deliver_job(JobId);
14 if (failed_job_status | useless)
15 !go_dump;
16 .send(initiator,tell,done(JobId));
17 updateLoad(Me,LoadCap);
18 !free;
19 .

An agent might have multiple contracts for items that can be bought in the same shop,
thus, once it arrives in a shop, the agent will buy all items (from all of its contracts) that
can be bought in that specific shop. The while loop is used to guarantee that the agent
will keep trying to buy the item, should the buy action fail. The buy action can fail in one
of two ways: the agent is trying to buy more items than the shop has available (shops

 Team PUCRS: a decentralised multi-agent solution 23

restock each step, so it makes sense to keep trying to buy); or because of the 1% chance
of random failure that all actions have.

After all items required for the contract have been bought, the agent proceeds to the
storage specified in the contract. Similarly to the buy action, if the deliver_job action
randomly fails, the agent will keep trying to deliver the job. The deliver job action can
also fail if: the job has already been completed; or if the agent does not have the correct
items for that job. Should the action fail for any of these two reasons, and it is still
carrying any items, then the agent will go to a dump (see Section 4.7) facility to dispose
of them.

Finally, the agent updates its load in the team artefact (Section 3.2), and makes itself
available again by adopting the subgoal free. There are several plans for this subgoal, but,
in summary, agents will keep sending skip actions to the server for as long as they have
the free subgoal.

4.7 Dump

As agents have limited carrying capacity, it is important to not let them carry superfluous
items, in order to allow them operate at full capacity. When this happens the agent will go
to the closest dump facility, and dump all items that it is currently carrying.

The most common cause for this to happen is if another team completed one job
before us; in this case, when our agents try to deliver the job (i.e., deliver an item at a
storage location), this action will fail (with status useless or failed_job_status). Another
possible cause can be due to an unknown bug in our code, where the agent could not
finish its current allocated task.

4.8 Endgame strategy

We implemented the endgame strategy to limit the execution of some strategies in the last
steps of a round in the simulation, in order to avoid wasting money with unnecessary
actions. This strategy is referenced as go horse in our code, a fictitious development
methodology that prioritises finishing the project at all costs.

During endgame, the initiator stops announcing any job, since agents will not have
enough time to complete the necessary tasks. Therefore, only existing jobs from before
the endgame will have its tasks being executed and eventually completed. To save
money, agents also stop doing the dump. Because no further tasks will be allocated, there
is no drawback in agents keeping their items from failed job attempts.

Our default strategy is to enable the endgame strategy in the last 100 steps. However,
in our first match with Flisvos-2016 we detected that this made our agents stop too early
(at step 916 they were done with all jobs from before the endgame); for the second match
we decreased it to 80 steps, and for the last match we decreased it to 60 steps.

4.9 Post jobs

We implemented a strategy to post jobs which are guaranteed to give a reward lower than
what a team would spend to complete it. Teams that do not reason whether a job is worth
its cost (i.e., perform some kind of job evaluation) could potentially accept our jobs and

 24 R.C. Cardoso et al.

give us an advantage, since they would lose money trying to complete them. As we added
this feature on the second day of the contest, we did not have time to implement a more
complex strategy; furthermore, as we did not have another team implementation to test
against, thus limiting our tests.

In order to avoid flooding the environment with jobs, we select only one agent to
keep creating and posting jobs each step. This agent will only post jobs during the shop
exploration or the endgame phases, and only agents who are not participating in these
phases can be selected (usually trucks). Therefore not impacting its performance and
readiness during the important task allocation and task execution phases. This is
necessary because posting a job is an action, and we would not want to waste the actions
of agents that are committed to completing a job.

We can post either a priced or an auction job, with equal probability. For the priced
job we have a reward of ‘1’, and for the auction job we have a MaxBid of ‘1,000’ and a
fine of ‘1’. This job is composed of [(Number of products / 3)] +1 product items. For each
of these items we need to choose the number of required items of this type; in order to
make this job worse, we select a number such that only a truck vehicle would be able to
carry all of them at the same time. As we know that a volume of 600 to 900 will
guarantee that only a truck would be able to carry everything, we select a random number
between this range, and then calculate how many items are necessary to reach this value.
Finally, we also choose a random storage for the job to be delivered; one example of a
priced and an auction job created by our agent is shown in example 4.1.

()
(

)

4.1: 1 5(30); 6

1,000; 1; 11(11);

3(24); 7

Example PricedJob Reward Item Qty Storage storage

AuctionJob MaxBid Fine Item Qty

Item Qty Storage storage

= = =

= = =

= =

4.10 Round change

At each round we need to perform some setup and clean-up. For each agent we reset the
charging, dump, storage, and shop facility lists, which will be populated when this
information is received from the server when another round starts. We also remove all
current beliefs and drop all intentions, desires, and events, using Jason internal actions.

To prepare for the next round we update the map to be used (London, then Hannover,
and finally San Francisco). Close to the contest date we noticed that we had a bug in the
map change function of our MapHelper that would unable the use of MapHelper to find
routes when a round changed. We were not able to fix this bug in time for the contest,
and thus, we had to reconnect our agents between each round, setting the correct map
manually.

5 Result analysis

In this section, we analyse the performance of our team in two of our matches in the
contest. First, we analyse some issues (e.g., connection problem and bugs) that we had in
the last round of the match against team lampe. Second, we discuss the three rounds of
the match against the most competitive team that we have faced during the contest
(Flisvos-2016), in which we had our only loss.

 Team PUCRS: a decentralised multi-agent solution 25

5.1 PUCRS vs. lampe

During the third round against lampe, a bug occurred that made our agents send
skip actions for most steps of the simulation, yet we manage to fix it just in time to win.
Figure 8 shows how the money of each team (PUCRS vs. lampe) fluctuated during the
simulation steps. While our team sacrificed a lot of money in the first steps to profit later,
lampe remained stuck at 50,000. Their agents got disconnected and were not able to
reconnect in time, thus, resulting in noAction from all agents in team lampe.

Our bug happened around step 260, when some agents alternated their continue
action with a skip action. The continue action is only useful when executed after a goto,
charge, or another continue action that preceded either goto or charge. When executed
after a skip action, it only repeats the skip. This caused several of our agents to get stuck,
they stopped and skipped an action while going somewhere else, and were not able to
recover. Because of our limit of three simultaneous jobs, eventually agents from each of
our three active jobs got stuck, and that led our whole team to execute skip actions.

Figure 8 PUCRS vs. lampe, round 3 out of 3 (see online version for colours)

We believe that the skip action while moving was sent as a countermeasure to some
noActions that happened with our agents, which in turn, we suspect were originated from
low internet bandwidth at the time of the round. Although we could have won at that
time, we decided to reconnect our agents to see if that fixed our bug. Unfortunately, it
just made it worse, since some agents were still carrying items for previous jobs, which
they did not know how to get rid of (we had not implemented our dump strategy yet), and
then started accepting new jobs and ultimately got stuck again. Fortunately, we managed
to implement a simple dump strategy (while the simulation was still running) and
reconnect our agents at around step 890, which then took around 60 steps for our team to
turn the game and eventually win by a margin of 11,000.

Even though we were basically playing alone, should our team finish under 50,000,
which team lampe scored by simply not moving, we would have lost and it would
probably cost us our first place. Thus, our on-the-fly implementation of a simple dump
strategy allowed our team to come back from defeat in the last 100 steps, and secure a
win which should have been easy if not for that bug.

 26 R.C. Cardoso et al.

5.2 PUCRS vs. Flisvos-2016

We lost the first round against Flisvos-2016 for two reasons:

• Due to a bug with our recharge strategies where two agents got stuck moving
between two charging stations and would never move to their final destination,
causing a lock of one of three simultaneous jobs (from that point forward we were
only able to do two simultaneous jobs).

• Due to the use of our endgame strategy, in which our agents stopped doing any
action that would cost money (e.g., buy items, battery charge, and others) near the
end of the simulation.

Namely, our agents stopped trying to do new jobs at step 916, while Flisvos-2016 has
continued working, and eventually surpassed us at step 961, as shown in Figure 9(a).
Despite being a competitive first round in which our team kept a lead most of the time,
we eventually stabilised and lost during the last few steps.

Subsequently, in the second round against Flisvos-2016, both teams stopped
delivering jobs near step 930, as shown in Figure 9(b), but this time we win as the
recharging bug did not happen. Although we controlled most of this second round,
Flisvos-2016 did some impressive jobs near the end, and almost managed to surpass our
team.

Differently from previous rounds against Flisvos-2016, our team dominated the third
and final round, winning with a high margin of money, as shown in Figure 9(a). This
could be the result of our team simply doing better jobs in this third round, but we may
also have missed the occurrence of a bug in round 2. Because of the results in the first
round, we lowered a bit the number of steps from the end of the round that would activate
our endgame strategy. This was immediately employed for the second round (another on-
the-fly change), and third round, when we lowered it a bit more.

Figure 9 (a) PUCRS vs. Flisvos-2016, round 1 out of 3 (b) PUCRS vs. Flisvos-2016, round 2 out
of 3 (c) PUCRS vs. Flisvos-2016, round 3 out of 3 (see online version for colours)

(a)

 Team PUCRS: a decentralised multi-agent solution 27

Figure 9 (a) PUCRS vs. Flisvos-2016, round 1 out of 3 (b) PUCRS vs. Flisvos-2016, round 2 out
of 3 (c) PUCRS vs. Flisvos-2016, round 3 out of 3 (see online version for colours)
(continued)

(b)

(c)

6 Team overview: short answers

6.1 Participants and their background

• What was your motivation to participate in the contest?

 Our motivation was to improve our knowledge about agent technologies and to put
them into practice in a complex multi-agent scenario. We also wanted to compare
and check how effective a JaCaMo implementation could be against other agent
development platforms.

 28 R.C. Cardoso et al.

• What is the history of your group? (course project, thesis,...)

 This was a side project to everyone in our team. As much as we wanted to add our
PhD and MSc techniques to our agents, the scenario was simply too complex to add
yet more layers of complexity on top of it. Furthermore, the deadline for each step
would severely limit the usage of our approaches (e.g., multi-agent planning).

• What is your field of research? Which work therein is related?

 All of our members are from computer science – artificial intelligence. Research
topics include but are not limited to: automated planning, multi-agent planning,
plan recognition, machine learning, and task allocation. We used the JaCaMo
(see Section 3) platform to develop our agents, which some of us were already using
in our research.

6.2 The cold hard facts

• How much time did you invest in the contest (for programming, organising your
group, other)?

 Approximately 252 man hours. 156 in 2015 and 96 in 2016. Versions from 2015 and
2016 differ significantly, moving from 2015’s purely reactive plans to a mixture of
proactive and reactive plans.

• How many lines of code did you produce for your final agent team?

 2,191 total. 1,166 lines of agents’ code, 118 of configuration, and 907 of Java code.
Measurements were taken by using Linux wc command plus sed for removing blank
lines. Please note that comments and extra lines that we used to improve code
readability were not removed in this count.

• How many people were involved?

 A total of 13 people were involved. 11 team members and 2 collaborators. We had at
most a group of 4 to 6 people active in any given week, who would then cycle in and
out with others.

• When did you start working on your agents?

 We started working on our agents on May of 2015. A significant shift in the way that
we dealt with the environment and in the way our agents reasoned happened at the
end of 2015, but we only started implementing these new changes around August of
2016. Instead of using one artefact that would communicate with the environment,
receive actions and send perceptions to agents, we added one artefact for each agent
in order to decentralise the information and execution loops. The biggest change was
related to the way that we were writing agents’ plans. Initially, we made them
entirely reactive to each step of the simulation, but after some suggestions from one
of the developers of JaCaMo, we completely overhauled our plans to be declarative,
making our agents a lot more proactive while still keeping some elements of
reactivity.

 Team PUCRS: a decentralised multi-agent solution 29

6.3 Strategies and details

• What is the main strategy of your agent team?

 Our main strategy is task allocation (see Section 4.5). By using CNP the agents
themselves can decide who is best for the tasks that a job requires.

• How does the team work together? (coordination, information sharing,...)

 Coordination in our shop exploration strategy is decentralised using a token-ring
message passaging mechanism. Coordination for job allocation and execution is
based on CNP. An initiator is responsible for evaluating jobs, announcing tasks, and
allocating tasks to bid winners. We also use an artefact that all agents can access to
share important information that is unique to them and otherwise unattainable.

• What are critical components of your team?

 The main components of our team are: each agent’s environment artefact, the CNP
artefacts, and the team artefact. The main strategies employed by our team are: shop
exploration, task allocation, and battery recharge.

• Can your agents change their behaviour during runtime? If so, what triggers the
changes?

 Our agents can change their behaviour based on the step that the simulation is
currently in, after a specific strategy concludes, or upon receiving feedback from the
last action that was executed. Initially we ignore all jobs, agents decide who will
explore shops, while idle agents post jobs and send skip actions. After shop
exploration has ended, agents now have access to all items’ prices, and thus they can
start evaluating new jobs. If a job failed during a deliver action, agents dump their
items before trying to accept new jobs. Close to the end of the match, agents adopt
the endgame strategy stance (see Section 4.8), which limits some of the plans that
they can use.

• Did you make changes to the team during the contest?

 During the contest we did mostly bug fixes and optimisation of parameters/options.
We did implement the dump strategy (see Section 4.7) for the second day of the
contest which we did not have ready for the first few rounds of day one. We also
added a simple post job strategy (see Section 4.9 for the second day).

• How do you organise your agents? Do you use e.g. hierarchies? Is your organisation
implicit or explicit?

 A truck agent act as the initiator. The rest of our organisation is defined implicitly by
contract net bid winners’.

• Is most of your agents’ behaviour emergent on an individual or team level?

 Mostly individual, although we do have a few team aspects for control purposes,
such as which agents are awarded with more than one task, and which ones are free
to take on new jobs. For example, a bidder agent might be eligible to win more than
one contract, which can occur concurrently, but the initiator agent will make sure

 30 R.C. Cardoso et al.

that it only wins more than one if the bidder agent is able to carry all necessary
items, and if these tasks have the same destination.

• If your agents perform some planning, how many steps do they plan ahead?

 Our agents plan their routes before placing their bids for tasks. We developed
experimental code that can plan the full route, including any recharging stops, but the
code was not ready in time for the contest. Instead, we use an estimate of the route
that ignores the need to recharge battery for the agent’s bid. Since JaCaMo does not
have any look ahead planning mechanism (Meneguzzi and De Silva, 2015), we used
the GraphHopper library to plan our routes in advance.

• If you have a perceive-think-act cycle, how is it synchronised with the server?

 Synchronisation is done through each agent artefact (see Section 3.1), on a
step-by-step basis. These artefacts receive all of the perceptions from the server,
filter the ones related to their agent, send them to it, the agent then reasons about it,
chooses an appropriate course of action, send the action to their artefact, who finally
sends it to the server.

6.4 Scenario specifics

• How do your agents decide which jobs to fulfil?

 The contract net initiator first checks if the number of tasks (different items required
by the job) is smaller than or equal to the number of available agents (agents without
a job). It proceeds to test if all assembled items can be found in at least one shop.
Then, the initiator evaluates if the number of steps that the job will be active is
within a calculated estimative. After that, it estimates the cost of doing the job, and if
that estimated cost is less than the reward offered, the job will accepted (read more
details in Section 4.4).

• Do your agents make use of less used scenario aspects (e.g. dumping items, putting
items in a storage)?

 Our agents use dump (see Section 4.7), call service breakdown (see Section 4.2), and
post jobs (see Section 4.9) actions.

• Do you have different strategies for the different roles?

 Roles have an impact in each agent’s bid during task allocation for jobs. Roles that
move faster tend to have a lower route, making their bid more favourable, as long as
they can carry all items needed for the task. We also decided to use a truck as the
initiator for our contract nets.

• Do your agents form ad-hoc teams for each job?

 The team responsible for a job is formed of all contract net winners related to that
job. These agents should, in theory, be the best ones available for the job.

 Team PUCRS: a decentralised multi-agent solution 31

• What do your agents do when they do not pursue any job?

 They can explore shops, dump items, and post jobs. Although if an agent is not
pursuing a job, we prefer them to stay still to save battery (money) while waiting for
a new job.

6.5 And the moral of it is…

• What did you learn from participating in the contest?

 Coordinating a development team with more than four people can be very difficult.
The different number of perspectives are most of the time very advantageous, but
can make it difficult to choose a specific approach to implement. We have
strengthened our knowledge of agent technologies, and many of us have learned
several new things from our strategy discussions.

• What are the strong and weak points of your team?

 We believe our strong points are how we evaluate potential jobs (see Section 4.4),
the use of contract net for task allocation (see Section 4.5, and our battery recharge
strategy (see Section 4.2). Our weak points are the round changing bug, the battery
recharge bug, no use of assemble actions, and the fact that we ignore auction jobs.

• How viable were your chosen programming language, methodology, tools, and
algorithms?

 The Prometheus methodology was useful in providing an overview of our system
before and during development. We did not use it as much in later strategy
development stages as a result of conceptual divergences between Prometheus and
JaCaMo [see (Freitas et al., 2016)]. We did not have any major problems
programming our agent team in JaCaMo, everything we wanted to do was possible
and very easy to program, despite some difficulties with debugging the interaction
between agents and artefacts that were the source of some of our bugs. We did not
use Moise, the organisation layer of JaCaMo, because we did not have enough time
to model an organisation for this scenario, but we believe this may be possible and
potentially useful in future agent teams. The use of Github for source code
management, access control, and collaboration features such as bug tracking and
wikis, made it a lot easier to manage our team more efficiently.

• Did you encounter new problems during the contest?

 We encountered more problems than we expected to. There are a lot of random
elements in this scenario, making it harder to properly test all of our team’s code. We
managed to fix most of them between matches (sometimes even between rounds),
while for the most complex ones we had to develop workarounds (see Section 5).

• Did playing against other agent teams bring about new insights on your own agents?

 We were more occupied in looking out for possible bugs in our code, and trying to
fix them, instead of analysing the behaviour of other teams. We did notice that some

 32 R.C. Cardoso et al.

teams had very active agents, which made us try a few adjustments such as
increasing the number of simultaneous jobs, and lowering some of our job estimates.

• What would you improve if you wanted to participate in the same contest a week
from now (or next year)?

 A week from now: focus on fixing bugs, and perhaps tweaking some of our
parameters and options. Next year: definitely develop an assemble strategy that
works, start to consider auction jobs, and possibly distribute our agents in several
machines (1 to 1 would be great).

• Which aspect of your team cost you the most time?

 Switching from a purely reactive code to a more proactive one cost us a lot of time.
The scenario had a few changes as well (new actions added, bug fixes, parameters
changed) that also had an impact. From our strategies, the use of CNP and our
battery recharge strategy cost us the most time.

• What can be improved regarding the contest/scenario for next year?

 Teams that do assemble will always lose to teams that do buy only, since buying is
much faster than assembling (once a team delivers a priced job, the opposing team
cannot complete it any more). We hope this is fixed for next year, since assemble is a
much more interesting problem for agents to solve. A simple solution would be to
have some jobs with assembled items that could not be bought from any shops.
Perhaps by adding a random parameter with a small chance for assembled items to
spawn (or to not spawn) in shops.

• Why did your team perform as it did? Why did the other teams perform better/worse
than you did?

 We believe our job estimates, simultaneous job execution, task allocation, and our
battery recharge strategy were the deciding factors in how we won first place. Most
teams had bugs in their code (we also had several), some were more severe than
others. We have reasons to believe that the only match we lost was due to a bug in
which two of our agents got stuck for many steps in a recharge loop between two
charging stations
(see Section 5).

7 Conclusions

The agents in the city scenario provided us with a complex challenge, one that put many
of our skills to the test, such as team work, agent-oriented programming, and
decentralised techniques for coordination of agents. As such this project allowed team
members with previous experience with JaCaMo development to improve their
proficiency in JaCaMo programming, as well as provided a working introduction to the
platform for the team members without such background.

JaCaMo was used by the winner of the last two previous MAPCs, in 2013 (Ahlbrecht
et al., 2013) and 2014. Ours was the third consecutive win of a team that uses JaCaMo to
program their agents. We were able to intuitively program all of our strategies and take
advantage of the agent and environment dimensions available in JaCaMo. However, we

 Team PUCRS: a decentralised multi-agent solution 33

faced some difficulties when we had to debug our code, and sometimes we had to change
our approach completely in order to avoid the bug instead of trying to fix it, since we
could not find any reliable way of fixing it. This could be, partially due to some of our
inexperience with JaCaMo programming, and partially due to the complexity of the
scenario, but nevertheless, JaCaMo’s debugging features could be improved, especially
the link between agents and artefacts.

Although we developed a strategy for evaluating and placing bids to auction jobs, as
well as a strategy for determining if our team should try to assemble items instead of
buying them, we were unable to fix some game breaking bugs in time to include them for
the contest, and thus, we do not describe them in this paper. For future contests we plan
on adding these strategies, as well as fixing the bugs that we found in our current
strategies during the contest’s matches, such as the bug in our round change and battery
recharge strategies.

Acknowledgements

We are grateful for the support given by CAPES and CNPq. Túlio thanks the support
given by the Federal Institute of Rio Grande do Sul (IFRS) – Campus Feliz. We would
like to thank the contributions given by fellow teammates: Alison Roberto Panisson,
Anibal Heinsfeld, Artur Freitas, Guilherme Azevedo, and Tabajara Krausburg. The team
also extends their thanks to all the JaCaMo developers (Olivier Boissier, Rafael Bordini,
Jomi Hubner, Alessandro Ricci), especially to Rafael and Jomi for their feedback.

References
Ahlbrecht, T., Dix, J. and Fiekas, N. (2017) ‘Multi-agent programming contest 2016’, Int. J.

Agent-Oriented Software Engineering.
Ahlbrecht, T., Dix, J., Köster, M. and Schlesinger, F. (2013) Multi-Agent Programming Contest

2013, pp.292–318, Springer Berlin Heidelberg, Berlin, Heidelberg.
Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A. and Santi, A. (2013) ‘Multi-agent oriented

programming with JaCaMo’, Science of Computer Programming, Vol. 78, No. 6, pp.747–761.
Bordini, R.H., Wooldridge, M. and Hübner, J.F. (2007) Programming Multi-Agent Systems in

AgentSpeak using Jason, John Wiley & Sons [online]
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html.

Freitas, A., Cardoso, R.C., Vieira, R. and Bordini, R.H. (2016) ‘Limitations and divergences in
approaches for agent-oriented modelling and programming’, Workshop on Engineering
Multi-Agent Systems (EMAS-16), Singapore.

Hübner, J.F., Sichman, J.S. and Boissier, O. (2007) ‘Developing organised multiagent systems
using the Moise+ model: programming issues at the system and agent levels’, Int. J.
Agent-Oriented Software Engineering, Vol. 1, Nos. 3/4, pp.370–395.

Meneguzzi, F. and De Silva, L. (2015) ‘Planning in BDI agents: a survey of the integration of
planning algorithms and agent reasoning’, The Knowledge Engineering Review, Vol. 30,
pp.1–44.

Omicini, A., Ricci, A. and Viroli, M. (2008) ‘Artifacts in the A&A meta-model for multi-agent
systems’, Autonomous Agents and Multi-Agent Systems, Vol. 17, No. 3, pp.432–456.

Padgham, L. and Winikoff, M. (2004) Developing Intelligent Agent Systems: A Practical Guide,
John Wiley & Sons, Inc., New York, NY, USA.

 34 R.C. Cardoso et al.

Rao, A.S. (1996) ‘Agentspeak(l): BDI agents speak out in a logical computable language’,
Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, MAAMAW ‘96, Secaucus, NJ, USA, pp.42–55.

Ricci, A., Piunti, M., Viroli, M. and Omicini, A. (2009) ‘Environment programming in CArtAgO’,
Multi-Agent Programming: Languages, Tools and Applications, Chapter 8, pp.259–288,
Springer, Boston, MA, USA.

Smith, R.G. (1980) ‘The contract net protocol: high-level communication and control in a
distributed problem solver’, IEEE Trans. Comput., December, Vol. 29, No. 12, pp.1104–1113.

Uez, D.M. and Hübner, J.F. (2014) ‘Environments and organizations in multi-agent systems: from
modelling to code’, 2nd International Workshop on Engineering Multi-Agent Systems,
pp.181–203.

