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Abstract: The increasing number of public clouds, the large and varied range of VMs they offer, 
and the provider specific terminology used for describing performance characteristics, makes 
price/performance comparisons difficult. Large performance variation of identically priced 
instances can lead to clouds being described as ‘unreliable’ and ‘unpredictable’. In this paper, we 
suggest that instances might be considered mispriced with respect to their deliverable 
performance – even when provider supplied performance ratings are taken into account. We 
demonstrate how CPU model determines instance performance, show associations between 
instance classes and sets of CPU models, and determine class-to-model performance 
characteristics. We show that pricing based on CPU models may significantly reduce, but not 
eliminate, price/performance variation. We further show that CPU model distribution differs 
across different AZs and so it may be possible to obtain better price/performance in some AZs by 
determining proportions of models found per AZ. However, the resources obtained in an AZ are 
account dependent, displays random variation and is subject to abrupt change. 

Keywords: cloud computing; virtual machines; performance; pricing; probability; brokers. 

Reference to this paper should be made as follows: O’Loughlin, J. and  
Gillam, L. (2014) ‘Should infrastructure clouds be priced entirely on performance? An EC2 case 
study’, Int. J. Big Data Intelligence, Vol. 1, No. 4, pp.215–229. 

Biographical notes: John O’Loughlin is the Service Delivery Team Leader within the Faculty of 
Engineering and Physical Sciences at the University of Surrey. He is also a part-time doctoral 
student within the Department of Computing with research interests in cloud computing, cloud 
economics and virtualisation. He installed and maintained private infrastructure as a service 
(IaaS) clouds based on OpenStack, for use within teaching and research in the department. He 
has guest lectured on the topics of virtualisation and the OpenStack system for the MSc course in 
Cloud Computing within the department. 

Lee Gillam is currently a Senior Lecturer in the Department of Computing. His research interests 
include computational terminology, information extraction and grid computing. He has been 
responsible for software architectures for a number of systems developed for research projects 
supported by the EU’s IT research and development programmes – TRANSTERM, POINTER, 
INTERVAL, ACE, SALT, GIDA, and PI on the eContent project LIRICS – and the UK EPSRC 
and ESRC – SAFE-DIS, SOCIS and FINGRID. 

This paper is a revised and expanded version of a paper entitled ‘Performance prediction for 
public infrastructure clouds: an EC2 case study’ presented at the 5th IEEE International 
Conference on Cloud Computing Technology and Science (CloudCom 2013), Bristol, UK, 2–5 
December 2013. 

 

1 Introduction 

Cloud computing is a continuation of the theme of 
migrating from on-premise IT to the delivery of IT 
resources by service providers. Infrastructure as a service 
(IaaS) clouds offer computers, as might previously have 
been part of a core internally-offered infrastructure, in the 
form of virtual machines (VMs), attachable storage, and 
configurable networks. The flexibility of obtaining 

resources on-demand with a ‘pay as you use’ pricing model 
is driving some uptake of cloud computing, albeit with 
various reluctance in certain quarters. This paper addresses 
one area of reluctance – performance. In particular, we 
focus on performance in IaaS clouds, and when we use the 
term cloud in the remainder of this paper we are referring to 
IaaS unless otherwise stated. 
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For many, Amazon’s elastic compute cloud (EC2) is the 
de facto standard for IaaS clouds; and as such is the focus of 
this study. EC2 uses the Xen hypervisor to abstract physical 
hardware into the VMs they offer. However, the physical 
infrastructure of EC2 is heterogeneous and so VMs of the 
same specification could be running on different hardware. 
Indeed, Amazon state – ‘EC2 is built on commodity 
hardware, over time there may be several different  
types of physical hardware underlying EC2 instances’ 
(‘Amazon EC2 FAQs’, http://aws.amazon.com/ec2/faqs/# 
What_is_an_EC2_Compute_Unit_and_why_did_you_intro
duce_it). Amazon’s VM type descriptions do not identify 
specific hardware (except in a small number of specialised 
cases which we discuss later), such as CPU models, 
describing instead the quantities – for example, ‘2 vCPUs’. 
Knowing the level of achievable performance that such 
cloud resources will provide, a priori, is difficult and cannot 
be composed into a request. And yet this knowledge, 
essentially of resource performance, is essential for making 
price/performance comparisons both across instance types 
in the same cloud and between types in different clouds. 

Cloud providers have taken to crafting abbreviations to 
rate performance, though arguably only in meaningful ways 
to themselves. The ratings used by EC2, and others are an 
attempt to provide, or at least to suggest, that a 
homogeneous level of performance can be obtained from a 
heterogeneous environment (‘Amazon EC2 FAQs’, 
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compu
te_Unit_and_why_did_you_introduce_it). Such an 
undertaking would appear to be difficult when one 
considers how the process of abstracting a physical machine 
into multiple VMs works. From Popek and Goldberg 
(1974), we know that one of the properties a hypervisor 
must have is that “a statistically significant fraction of 
machine instructions execute without VMM intervention”. 
This is known as the performance property, and from it we 
can readily infer that VM performance is a function of the 
underlying hardware, and in particular that different 
instances of the same type will perform differently when 
running on different hardware. The pertinent question is of 
course, how different? 

A number of authors have identified performance 
variation on EC2. This has mainly been as a side effect of 
comparing EC2 to local systems or for testing HPC 
suitability rather than investigating performance on EC2 per 
se. These papers tend towards preferring internal systems, 
and to demonstrate support for this selection they run 
benchmarks on a relatively small number of instances 
across a limited number of availability zones in EC2. As 
such, results rarely account for the full extent of 
performance variation of an instance type, or ex7plain the 
causes of it, and also miss the fact that the variation is 
different in different AZs in EC2 due to heterogeneity. 

The aim of this paper is to understand how instance 
compute performance varies by the physical resources 
available to EC2 customers, estimate how resources are 
distributed across EC2, understand how they are allocated to 

customers and consider whether pricing should be related to 
performance. As such, we: 

1 quantify the range of performance variation across all 
non-specialised instance types 

2 identify CPU model as cause of performance variation 

3 identify the sets of CPU models associated with 
instance classes 

4 quantify the performance of each CPU model with 
respect to our benchmark 

5 show that instances types of the same class may be 
allocated different resources when running in the same 
AZ 

6 we demonstrate how EC2 AZ mappings affect the 
range of performance a customer can obtain from a 
region. 

The remainder of this paper is structured as follows: 
Sections 2 and 3 provide an overview of EC2 followed  
by a discussion of our methodology for measuring  
instance performance. In Sections 4 to 7, we present 
benchmarking results of 1,297 instances across six regions 
and 14 availability zones. Section 8 examines how the value 
of an ECU varies across instance classes. In Sections 9  
and 10, we look at the performance properties of CPUs 
(with respect to our benchmark) and how their distribution 
across EC2 varies. In Sections 11 to 13, we examine how 
resources are allocated to customers and the impact that this 
has on price/performance a user may obtain. We review and 
compare related work in Section 14, with conclusions and 
future work presented in Section 15. 

2 EC2 background information 

Amazon’s EC2 global infrastructure [‘Global 
infrastructure’, (2 July 2013), http://aws.amazon.com/about-
aws/globalinfrastructure/] is divided into eight regions 
(excluding the GovCloud region), which we can think of as 
‘sub’ clouds. When using the EC2 API to manage instances 
a region must be specified – with US East being the default 
if no region is set. Similarly, when using the web interface, 
a user must first connect to one of the regions before they 
can launch new instances or manage existing ones. A user’s 
credentials are the same across all regions, however, 
resources such as SSH keys and security groups (firewall 
settings for instances) are solely contained within a region. 
A user is required to setup these resources for each region 
they wish to use. 

Regions consist of AZs, which are isolated from each 
other and have their own networking and power 
infrastructure – and so should provide an element of 
redundancy: failure of one AZ should not affect instances 
running in another. The largest and first publically available 
region is US-East N. Virginia, which has 5 AZs; whilst the 
newest region is Asia-Pacific Sydney with 2 AZs. In total, 
there are 23 AZs across EC2, however not all of these are 
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available to customers. Both US East N. Virginia and US 
West N. California restrict the number of AZs they make 
available to new users. One of the authors has 2 AWS 
accounts, one of which can launch instances in 4 US East N. 
Virginia AZs whilst the other, in line with all new EC2 
accounts, can only use 3. 

In Table 1, we list all the regions, their locations, API 
endpoint names and the number of AZs in each one. 

Table 1 EC2 regions 

Geographical area Location API end-point AZs 

N. Virginia us-east-1 5 
N. California us-west-1 3 

US 

Oregon us-west-2 3 
Singapore ap-southeast-1 2 

Tokyo ap-northeast-1 3 
Asia Pacific 

Sydney ap-southeast-2 2 
Europe Dublin eu-west-1 3 
South America San Paulo sa-east-1 2 

EC2 offers VMs in various sizes known as instance  
types. An instance type description specifies the  
number of vCPUs, the amount of RAM and local storage. 
By an instance, we simply understand a running VM  
of a given type. Instance types are grouped together  
into instance classes; 4 of which we refer to as standard  
(or non-specialised) instance classes. Instance types in the 
same class have a similar ratio of RAM to number of vCPU 
cores. In total, there are 11 standard instance types and these 
are available in all AZs and to all users. There are six 
instances types which we consider to be specialised as they 
have some or all of the following hardware: SSD, 10 Gb 
networking and GPUs. We do not consider specialised 
instance types in this paper. 

In addition to quantities of resource, instance type 
descriptions include performance descriptors which are 
intended to give the user an indication of expected 
performance. However, these tend to be somewhat vague, 
for example the m1.small is described as having ‘moderate’ 
I/O. For the compute capacity of an instance Amazon use a 
rating called the EC2 compute unit (ECU). The ECU is 
defined as follows: “Equivalent CPU capacity of a 1.0–1.2 
GHz 2007 Opteron or 2007 Xeon processor”. The ECU 
rating is per core, so the total rating for an instance type is 
given by: number of cores multiplied by ECU core rating. 
For example the m1.xlarge instance type has 4 vCPUs at 2 
ECU per core so is rated at 8 ECUs. When we use the term 
‘rated at’ we are referring to the per core rating. We detail 
standard instance types in Table 2. 

Describing expected performance in terms of  
reference machines appears to be a growing trend, for 
example, Google describe their Google Compute  
Engine Unit (GCEU) (‘Google Cloud Platform’, 
https://cloud.google.com/pricing/compute-engine) as 
follows: ‘We chose 2.75 GCEUs to represent the minimum 
power of one logical core (a hardware hyper-thread) on our 

Sandy Bridge platform’. Similarly, HP define their HP 
Cloud Compute Unit (HPCCU) (‘HP Cloud Pricing’, 
https://www.hpcloud.com/pricing) as: ‘6.5 CCUs are 
roughly equivalent to the minimum power of one logical 
core (a hardware hyper-thread) of an Intel(R) 2012 Xeon(R) 
2.60 GHz CPU’. 

Table 2 Non-specialised EC2 instance types 

Class Instance type RAM (GB) vCPU ECU 
per core 

m1.small 1.7 1 1 
m1.medium 3.75 1 2 

m1.large 7.5 2 2 

First 
generation 
standard 

m1.xlarge 15 4 2 
c1.medium 1.7 2 2.5 High CPU 
c1.xlarge 7 8 2.5 
m2.xlarge 17.1 2 3.25 

m2.2xlarge 34.2 4 3.25 
High 
memory 

m2.4xlarge 68.4 8 3.25 
m3.xlarge 15 4 3.25 Second 

generation m3.2xlarge 30 8 3.25 

Amazon, in common with other providers, does not publish 
detailed information about how their ECU is measured, and 
how much variation there is in the measurement. Instead, 
they simply state: “EC2 uses a variety of measures to 
provide each instance with a consistent and predictable 
amount of CPU”. Publishing variation information would 
allow customers to gauge if the performance their instances 
are delivering is in line with what they may expect. 

Instances are made available in three pricing models: 
reserved instances, on-demand instances and spot instances. 
With reserved instances users pay an upfront fee and obtain 
a reduced hourly charge for the instance. On-demand 
instances are perhaps the most familiar as they are charged 
solely on a per hour basis with no upfront costs. Spot 
instances allow users to bid for unused capacity at prices 
lower than on-demand instances. In order to manage costs, 
we use spot instances in our experiments. Spot prices do 
vary, and we have observed occasions when spot prices 
were similar to on-demand prices and indeed some 
occasions when spot prices significantly exceeded on-
demand prices. 

Amazon state that (‘Amazon EC2 FAQs’, 
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compu
te_Unit_and_why_did_you_introduce_it) spot instances 
‘perform exactly the same as on-demand instances’. 
However, we cannot really know if the resources obtained 
here reflect what we would have obtained in the on-demand 
market without running an appropriate test alongside. 

EC2 offers a generic service level agreement (SLA) for 
all customers. The only performance metric for is for 
service availability – not for compute performance.  
SLAs not offering a guarantee of performance perhaps 
would be less problematic if instance performance was  
consistent – however, we show in Sections 4 to 7 this is not 
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the case. In Section 10, we consider how CPU performance 
data may be used to add performance related metrics to 
SLAs. 

3 Measuring compute capacity 

From Table 2, we see that EC2 offers instances with cores 
rated at 1, 2, 2.5 and 3.25 ECUs, respectively. However, 
how do these ratings relate to actual application 
performance? For example, should a user expect their 
application to run in half the time on a 2 ECU instance as 
compared to a 1 ECU instance? Whilst Amazon (and others) 
is defining their compute rating in terms of references 
machines we would argue that application performance 
(typically execution time) is the most intuitive and easy to 
understand measure of performance for users. For our 
experiments, the metric we chose for measuring compute 
performance is application execution time. 

Benchmarks are the standard way to measure and 
compare the compute performance of computer systems. 
There is a wide range of benchmarks available, some of 
which have been specifically written, whilst others are ‘real 
world’ benchmarks applications. Specifically written 
benchmarks typically attempt to mimic a particular  
class of applications. Synthetic benchmarks, such as 
Whetstone, attempt to mimic statistical CPU usage, whilst 
kernel benchmarks, such as NAS and Linpack, mimic the 
main computations performed. Due to limitations of 
purpose written benchmarks the trend is now towards 
benchmarks that are similar to (or actually are) applications 
that users will use in their ‘real work’. Such benchmarks are 
usually CPU bound tasks; this approach is typified by the 
SPEC CPU2006 (‘SPEC CPU2006’, http://www.spec.org/ 
cpu2006/), a commercially available suite of integer and 
floating point benchmarks. The suite contains, for example, 
CPU integer benchmarks that perform the following tasks: 
compressions, audio encoding, video transcoding and 
compilation. The floating point suite contains benchmarks 
that perform speech recognition, weather modelling and 
fluid dynamics. 

From the definition of the ECU, it is not clear if it is 
equally representative of integer and floating point 
performance, or if it is skewed in favour of one or the other. 
Although we do not consider such matters further here, we 
note that in some domains, such as scientific computing, 
this is likely to be an important consideration. 

In order to measure compute performance of EC2 
instance types we chose to use a benchmark based on bzip2, 
a compression tool found on Linux/UNIX systems. Bzip2 is 
a CPU bound task, although clearly there is some input and 
output (I/O) involved as the input file needs to be read and 
the compressed file is written back. During a bzip2 
compression, we ran top in batch mode to capture the CPU 
state at 5 s intervals. From this, we observed that the CPU 
spends 97% to 98% of its time in the user state, i.e., running 
bzip2, whilst being in an I/O wait state (when bzip2 blocks) 
for only 2% to 3%. From this, we can infer that whilst there 
is some dependency on disk speed the time taken to 

complete the compression is predominately determined by 
CPU speed, i.e., it is a CPU bound task. Bzip2 uses the 
Burrows Wheeler Transform (‘bzip2’, http://www.bzip.org/ 
1.0.5/bzip2-manual-1.0.5.html#intro) to compress files in 
blocks with the default block size being 900 KB. By 
compressing in blocks, even files larger than available RAM 
do not cause swapping when being compressed. This is 
confirmed by running vmstat at 5 s intervals to capture the 
number of bytes being swapped. 

The bzip2 benchmark is part of the 
OpenBenchmarking.org toolkit and the Standard 
Performance Evaluation Corporation (SPEC) CPU 
benchmark toolkit, although they use a slightly modified 
version which sends its output to the device /dev/null to 
minimise I/O. For the input file to bzip2, we used an Ubuntu 
10.04 AMD desktop ISO file (696MB), and timed the 
compression. In each instance, the benchmark was run 3 
times and we take the average. Before running bzip2 the 
input file, ubuntu.iso was copied to a file called test.iso and 
bzip2 was run on test.iso. As all I/O on a Linux system goes 
through the disk cache in RAM (and remains there until 
reclaimed) this helps to reduce disk reads. We refer to the 
above procedure as ‘the standard benchmark’. 

We can determine the CPU model an instance is running 
on by examining the file/proc/cpuinfo. This file is populated 
via the cupid instruction which is non-trapping on the Xen 
hypervisor. On clouds that use the KVM hypervisor, such as 
GCE, this instruction does trap and the hypervisor can be 
configured to export a variety of models to the guest (‘Guest 
CPU Models’, https://access.redhat.com/site/documentation/ 
en/Red_Hat_Enterprise_Linux/6/html/Virtualization_Gettin
g_Started_Guide/para-CPU_Models.html). As such 
/proc/cpuinfo cannot be used to determine physical CPU 
model. 

Our performance investigations are as follows: We 
begin by benchmarking first generation standard instance 
types. We divide this into: 

a m1.small instance type 

b m1.medium, m1.large and m1.xlarge. 

The reason for this division is that the m1.small is rated at 1 
ECU whilst the others are rated at 2 ECU. We next 
benchmark high CPU instance types, c1.medium and 
c1.xlarge, rated at 2.5 ECU. This is followed by high 
memory instance types m2.xlarge, m2.2xlarge and 
m2.4xlarge, and second generation standard instances types, 
m3.xlarge and m3.2xlarge, all rated at 3.25 ECU. We have 
therefore covered all of the non-specialised instance types. 
The m1.small instance was benchmarked across 5 out of 8 
EC2 regions and in all AZs within these regions. This wide 
ranging initial experiment allows us to measure how 1 ECU 
varies across a large portion of EC2. 

Ideally we would have liked to run the same number of 
instances, in the same AZs, for other instance types as for 
the m1.small. In order to stay within budget, for each of the 
remaining instance type classes we benchmarked 200 
instances across 2 regions (always including US East N. 
Virginia) and in all AZs that are open to us with a specific 
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user account within these regions – Section 10 discusses 
AZs in further detail. The number of instances run of a 
particular instance type within a class was primarily 
determined by cost constraints. 

4 First generation standard instances 

4.1 Performance of m1.small (1 ECU) 

We benchmarked 540 m1.small instances across five 
regions (out of a possible 8) which included 2 US-based 
ones (US East N. Virginia and US East N. California), and  
1 region each from Europe (EU Dublin), Asia-Pacific  
(Asia-Pacific Sydney) and South America (South America 
San Paulo). From these five regions, 13 AZs were available 
for use (with the account we were using) and we ran 
instances in all of them. 

All 540 instances were backed by one of four different 
CPU models: Intel Xeon E5430, Intel Xeon E5-2650, Intel 
Xeon E5645 and Intel Xeon E5507. (We use only CPU 
model numbers from here on). Figure 1 shows a histogram 
of our results, with interval width of 5 s, together with some 
summary statistics in Table 3. 

Figure 1 Histogram of benchmark results for m1.small instances 

 

Table 3 Summary statistics for m1.small 

Min(s) Max (s) Median (s) Mean (s) Sd (s) 

425.35 715.72 501.88 517.76 63.24 

The distribution appears to be multi-modal, a mix of at least 
three uni-modal distributions. In Table 4, we present the 
results of the benchmarks by CPU model, followed by an 
overlapping histogram of the CPU model distributions in 
Figure 2. 

Figure 2 shows that performance is largely determined 
by CPU model. There is little overlap between models, 

except between the E5430 and the E5-2650. More 
importantly, the worst performing instances (at the same 
price) were all backed by the E5507; the difference between 
the best performing E5507 and the worst of the other 
models (an E5645) is just under 25s. The E5-2650 and the 
E5645 are the models found most frequently, backing 397 
of our 540 instances. The range of these models combined is 
[470.24, 543.8] but they only overlap in the range [495, 
510] and this overlap covers fewer than 25 instances. 

Table 4 Summary statistics by CPU model 

Model Min (s) Max (s) Mean (s) Sd (s) 

E5430 425.35 482.1 445.1 14.33 
E5-2650 443.48 518.92 470.24 13.03 
E5645 487.95 543.8 510.07 10.51 
E5507 578.03 715.72 620.87 28.46 

Figure 2 Histogram of benchmark results by CPU model  
(see online version for colours) 

 

4.2 Performance of m1.medium, m1.large and 
m1.xlarge (2 ECU) 

The remaining first generation standard instance types are 
m1.medium, m1.large and m1.xlarge, all of which have 
vCPU rated at 2 ECU. For cost management reasons, we 
limited our experiment to 200 instances: 80 m1.medium,  
80 m1.large and 40 m1.xlarge, across 2 Regions, US East N. 
Virginia and US West Oregon. [Note: US West Oregon is 
included here due to having the lowest spot prices at the 
time]. These regions have 7 AZs but at the time of  
running us-west-2c were unavailable to our account. 
Unfortunately, due to a configuration error in the 
experiment, we were also unable to obtain the results from 
zone us-west-2a. We successfully collected benchmark 
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results from 157 instances: 78 m1.medium, 60 m1.large and 
19 m1.xlarge. 

All of our instances were backed by the same set of 
CPU models as the m1.small instance types, so we believe 
we have identified the set of the CPU models for all 
standard first generation instance types in six regions and  
14 AZs across those. Clearly, the set of hardware platforms 
underlying instances classes will change over time, as we 
discuss in Section 13. However, the association is stable in 
the short-term. 

As with the m1.small instance type, the distribution of 
results is multi-modal and is determined by CPU model, as 
shown by Figure 3 (histogram of results by CPU model). 
This means that, for instance, 2 m1.medium instances with 
different CPUs will show performance differences in line 
with Figure 2; whilst an m1.medium and an m1.xlarge 
backed by the same CPU will perform similarly and the 
performance can be predicted by the results presented in 
Table 5. 

Figure 3 Histogram of benchmark results by CPU model (see 
online version for colours) 

 

Table 5 Summary statistics for remaining first generation 
standard 

Min (s) Max (s) Median (s) Mean (s) Sd (s) 

204.71 332.02 226.79 236.23 25.98 

We found no evidence to suggest that larger more expensive 
instance types are more likely to obtain better performing 
CPUs. For example, in the zone us-east-2 40 m1.large 
instances were backed by 33 E5-2650 and 7 E5645 whilst 
19 m1.xlarge instances were backed by 10 E5-2650 and 9 
E5645. We can say that different instance types in the same 
class provide more resources, but at the same level. This is 
in line with the VM descriptions and linear scaling of on-
demand pricing, where, for example, an m1.large is twice 
the price of a m1.medium and has twice the RAM and 

number of vCPU cores. We discuss differences found 
proportions of CPU models backing different instances 
types within the same class further in Section 12. 

Table 5 presents the summary statistics of all our 
instances and Table 6 show the breakdown by CPU model. 

Table 6 Summary statistics by CPU model 

Model Min (s) Max (s) Mean (s) Sd (s) 

E5430 204.71 238.2 211.30 10.43 
E5-
2650 

217.81 233.51 223.40 3.84 

E5645 240.9 254.11 244.71 2.90 
E5507 295.91 332.01 312.92 14.91 

By comparing our 1 ECU to 2 ECU results, we see that our 
worst 2 ECU (332.02s) is only 93.33s better than our best 1 
ECU (425.35). In this case, we might suggest that our  
2 ECU core is only providing 1.28 ECUs. Similarly, we 
compare the worst performing 1 ECU (715.72 s) with our 
best performing 2 ECU (204.71s) and in this case the  
2 ECU core is providing 3.5 ECUs. However, when 
considering a particular CPU model, we do see that 
performance does scale linearly, and 2 ECU is 
approximately twice as fast as 1 ECU. We also note the 
small coefficient of variation for a CPU model; and from 
this we could predict instance performance accurately if we 
knew the CPU model we were going to obtain before 
launching the instance. However, does an ECU scale with 
respect to the remaining non-specialised instance types with 
cores rated at 2.5 ECU and 3.25 ECU? 

5 High CPU instance types 

We next investigate the high CPU instance types, the 
c1.medium and c1.xlarge. These have 2 and 8 cores 
respectively rated at 2.5 ECU. The High CPU instance type 
was first made available in June 2008. 

We benchmarked 200 high CPU instance types across 
two regions, US-East N. Virginia and Asia-Pacific Sydney, 
which offered 6 AZs, and we ran instances in all of them. 
We used Asia-Pacific Sydney instead of US West Oregon 
for our second region as we found spot prices to be lower 
there. 

We found that both these instance types are backed by 
the following CPU models: E5-2650 (19), E5345 (4), E5410 
(47) and E5506 (130). Note that the E5-2650 also backs first 
generation standard instances and is the only model we 
found that backed more than one class. As with the first 
generation standard instance types, the performance of a 
high CPU instance is determined by the CPU model. In 
Figure 4, we present a histogram of the results, followed by 
summary statistics for all instances which we then break 
down by CPU model. 
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Figure 4 Histogram of benchmark results by CPU model  
(see online version for colours) 

 

Table 7 Summary statistics for high CPU instance type 

Min (s) Max (s) Median (s) Mean (s) Sd (s) 

174.55 356.92 246.55 242.58 32.58 

Table 8 Summary statistics by CPU model 

Model Min (s) Max (s) Mean (s) Sd (s) 

E5410 174.56 245.86 196.21 15.03 
E5345 215.58 235.67 224.34 8.34 
E5-2650 216.93 250.03 230.83 12.19 
E5506 241.46 356.92 261.63 18.84 

65% of our high CPU instances were backed by the E5506, 
our worst performing CPU, whilst our best performing 
CPU, the E5410, backed just 23.5% of our instances. On 
average, there is a 33% increase in the time taken to run our 
standard benchmark on an E5506 compared to an E5410. 
Later, we consider how 2.5 ECUs compares to 1 ECU. 

6 High memory instances 

The next group of non-specialised instance types is high 
memory: m2.xlarge, m2.2xlarge and m2.4xlarge. These 
instance types have 2, 4 and 8 vCPU, respectively, with  
8.5 GB of RAM per vCPU. The vCPU cores are rated at 
3.25 ECU. We benchmarked 200 high memory instance 
types across two regions US-East N Virginia and  
Asia-Pacific Sydney, which offered 5 AZs and we ran 
instances in all of them. Note that zone us-east-1b was 
unavailable whilst these benchmarks were carried out and 
so we could only use 5 AZs. 

As with the previous instance types, the performance of 
high memory instances is determined by the CPU model. 

Instances were backed by just two models: E5-2665 (134) 
and the X5550 (66). In Figure 5, we present a histogram of 
the results, followed by summary statistics for all instances 
which we then break down by CPU model. 

Table 9 Summary statistics for high memory instance type 

Min (s) Max (s) Median (s) Mean (s) Sd (s) 

163.06 235.87 169.79 174.19 11.10 

Table 10 Summary statistics by CPU model 

Model Min (s) Max (s) Mean (s) Sd (s) 

E5-2665 163.06 235.87 169.07 9.69 
X5550 179.75 207.86 184.59 4.67 

Figure 5 Histogram of benchmark results by CPU model  
(see online version for colours) 

 

7 Second generation standard instances 

The second generation standard instances are m3.xlarge and 
m3.2xlarge with 4 and 8 cores, respectively. As with the 
first generation, they have 3.75 GB of RAM per vCPU, but 
with cores rated at 3.25 ECU. This instance class was first 
introduced in 2011 to 2012 in US-East N Virginia, and 
made available globally as of February 2013. 

We benchmarked 200 second generation standard 
instance types across two regions US-East N Virginia and 
Asia-Pacific Sydney, which offered 5 AZs and we ran 
instances in all of them. Note that zone us-east-1b was 
unavailable whilst these benchmarks were carried out and 
so we could only use 5 AZs. 

All the m3 instances we benchmarked were backed by 
just one processor model: E5-2670. 
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Table 11 Summary statistics for second generation standard 
instance type 

Min (s) Max (s) Median (s) Mean (s) Sd (s) 

129.99 206.27 134.89 135.85 7.65 

Figure 6 Histogram of benchmark results 

 

8 Comparisons of an ECU across instance classes 

Despite the EC2 definition of an ECU as architecture 
independent, the previous sections have shown that the 
value of an ECU within an instance type class is determined 
by the physical CPU. We now consider how an ECU varies 
across instance type classes. In Table 12, we record the per 
vCPU ECU rating for each instance class, together with the 
mean and median benchmark values as previously 
determined. We can then use this to determine if, for 
example, an instance rated at 2.5 ECU will perform ‘2.5 
times better’ than instances rated at 1 ECU, i.e., the 
execution time will be 2.5 times faster. 

Table 12 ECU across instance type classes 

Instance class ECU Median (s) Mean (s) 

First Generation 
m1.small 

1 501.88 514.01 

First Generation others 2 226.79 236.23 
High CPU 2.5 246.55 242.58 
High Memory 3.25 169.79 174.19 
Second Generation 
Standard Instances 

3.25 134.89 135.85 

For instance, types rated at 2 ECU this appears to scale 
linearly with respect to the statistics we calculate for the 
instance type rated at 1 ECU. This is perhaps to be expected 
as they all belong to the same class, first generation 

standard, and are all backed by the same set of CPU models. 
The high CPU instance types, rated at 2.5 ECU, performed 
worse on average then instances rated at 2 ECU. 

Both the m3 range and the m2 range are rated at  
3.25 ECU, and yet we can see that there is a 25% increase in 
the average time taken to run the standard benchmark on 
high memory instance types (m2 range) as compared to 
second generation standard instance type (m3 range). If we 
look at two similar sized instance types from these classes: 
m3.xlarge and m2.2xlarge, they both have 4 vCPUs rated at 
3.25 ECU and 15 GB and 34.2 GB of RAM, respectively. 
The on-demand per hour cost in US East N. Virginia is 
$0.55 and $0.92. So, although the m2.2xlarge has an extra 
19.2 GB of RAM this comes at a per hour cost of $0.37 and 
takes 25% longer to run the standard benchmark. 

9 Performance properties for CPUs 

On physical hardware, with no other tasks running, a CPU 
bound task produces repeatable results – results with 
negligible coefficient of variation and no outliers. This 
property is what makes them good candidates for 
benchmarks; and indeed deviation from the mean is an 
indication of a fault with a system. Therefore, the range of 
results for instances backed by the same CPU model is 
perhaps surprising. Except that infrastructure clouds are 
multi-tenanted, meaning that one physical server (or host) 
can host multiple VMs, and may indeed be doing so at the 
time of these tests. 

The exact number of VMs running on a host depends on 
the number of cores the host has, the size of the VMs, and 
the density at which the provider wishes to run their cloud. 
By density, we mean the number of vCPUs to one physical 
core, and over-subscription is the term used when there are 
more vCPUs than physical cores. 

A vCPU is a scheduling entity, and so if a provider runs, 
for example, 2 m1.xlarge and 2.medium instances on an  
8 core server, there would be 10 vCPUs for 8 physical 
cores. In this case, each vCPU could expect to spend 
approximately 80% of its time in a run state. We do not 
know the density at which Amazon run EC2, and indeed it 
is possible, if not probable, that faster CPUs may have a 
higher density than slower ones. That is, the E5430 may run 
more m1.small instances than an E5507. 

What is clear is that performance in a shared system 
differs from performance with exclusive access to 
resources. The potential for one VM to affect the 
performance of another is well known, and is often referred 
to as the ‘noisy neighbour effect’. For example, the Xen 
hypervisor (used on EC2) uses a credit scheduler to manage 
guest CPU usage. However, CPU cycles doing I/O 
instructions on behalf of a guest, which trap to the 
hypervisor, are not accounted for. As such VMs with an I/O 
intensive workload may obtain a disproportionate amount of 
CPU time. 

In a cloud we should therefore expect instances, even 
backed by the same CPU, to have a distribution of 
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performance results. What, if anything, can we infer from 
the shape of any such distribution? 

Considering just the CPU models backing FGS 
instances, we can see from our histograms that they are 
positively skewed, and calculations confirm this. A longer 
tail to the right perhaps indicates we have seen more 
examples of degraded performance than of performance 
bursts, and so the majority of results ‘bunch’ to the left. For 
example, on the E5645 for FGS instances, the minimum 
value was 487.95 s and the 75th percentile is 515.87 s; the 
first 75% of results are within 27.92 s. The maximum value 
is 543.8 s and so the upper quartile range is 27.93 s. 

The lack of performance bursting is likely  
explained by use of Xen CPU capping (‘Xen’, 
http://wiki.xen.org/wiki/Credit_Scheduler), and so even if 
cycles are available an instance cannot make use of them. 
Undoubtedly, this is a necessity to ensure a ‘consistent’ 
level of compute. The positive skew, or performance 
degradation, is quite possibly due to ‘noisy neighbour’ 
effects, as discussed above. 

If we know the CPU model backing an instance, then 
the empirical data we have collected can be used to estimate 
the probability that the instance will run our benchmark 
within a given time. This is particularly useful for customers 
who require quality of service (QoS) performance metrics in 
SLAs. As an example of how performance metrics may be 
expressed, consider provisioned EBS volumes on EC2, 
which are described as: ‘designed to deliver within 10% of 
the provisioned IOPS performance 99.9% of the time’ 
(‘Elastic Block Storage’, http://aws.amazon.com/ebs/). 
Generally, we may express QoS for performance metrics in 
terms of an expected level, perhaps in a given range, to be 
met a given percentage of times. 

As an example of how we may use CPU benchmarking 
as a performance metric, consider the second generation 
standard class. We know, since EC2 include it in the class 
description, that instances of these are, currently, always 
backed by the E5-2670 model. From our experimental data, 
we calculate the 90%, 95%, 99% percentiles as: 142.89 s, 
147.28 s and 160.27 s. And so we could construct an SLA 
with the following terms: the instance will run the bzip2 
benchmark in under 160.27 s 99% of the time. And so, from 
this, we begin to envisage how to formulate SLAs relating 
to workloads over extended durations. 

However, until we – as a user of cloud systems – launch 
an instance, we will not know the hardware that backs it. 
We might use our results to say that, for example, an 
m1.medium instance will run our standard benchmark in 
242.22 s on average, but if we are ‘unlucky’ and obtain an 
instance backed by an E5507 the average becomes 311.41 s. 

10 CPU model distribution across EC2 

As Amazon add new regions, add and expand zones in 
existing regions, and make hardware refreshes, the 
distribution of CPU models will increasingly differ from 
zone to zone. In Table 13, we list the proportion of CPU 
models backing the FGS instances in the AZs we tested. For 
example, in us-west-1b we found that 87% of our instances 
were backed by E5507. Without too much consideration, 
and with knowledge of CPU performance as outlined in 
Sections 4 to 7, a user would most likely avoid using  
us-west-1b and uswest-1c, if their region mapping were 
consistent with this one, due to the high proportion of 
E5507 models found there. 

Table 13 CPU by AZ 

Zone E5430 E5-2650 E5645 E5507 

us-east-1a 31% 0 25% 44% 
us-east-1b 5% 59% 29% 7% 
us-east-1c 0 47% 52% 1% 
us-east-1d 18% 31% 44% 7% 
us-west-1b 0 0 13% 87% 
us-west-1c 8% 0 18% 74% 
eu-west-1a 4% 75% 19% 2% 
eu-west-1b 28% 0 44% 28% 
eu-west-1c 4% 0 63% 33% 
ap-southeast-2a 0 64% 36% 0 
ap-southeast-2b 0 75% 25% 0 
sa-east-1a 0 81% 19% 0 
sa-east-1b 0 86% 14% 0 
us-west-2b 0 73% 27% 0 
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The original experiments were focused on performance, 
benchmarking 697 FGS instances across 14 AZs. This 
allows us to be reasonably sure we have identified all CPU 
models associated with the FGS class, and to determine a 
performance distribution for each model with respect to our 
benchmark. However, the number of instances run per AZ is 
relatively low; just under 50 on average. As such there 
remains a number of questions on CPU distribution across 
AZs that need to be addressed, and which we address in the 
sections identified: 

• How does AZ mapping affect the resources a user can 
obtain? (Section 9) 

• Does the proportion of CPU models differ between 
instances types in the same class? (Section 10) 

• Are proportions of CPU models found stable in the 
short-term? (Section 11) 

To begin to answer these questions, new experiments were 
conducted in September 2013. These focused on the 
distribution of CPU models in 3 AZs for 2 Amazon 
accounts over a 3 week period. We refer to the Amazon 
accounts as Original, New and New2. The Original account 
is the one used to obtain the performance results above. In 
the sections below, we use the results from our new 
experiment to address the questions above. 

11 AZ mappings 

We have previously defined AZs as locations within a 
Region that are isolated from each other, with separate 
power and network connections; and interconnected with 
low latency networking. Using the word ‘isolation’ in the 
AZ definition strongly implies a degree of physical 
separation between them. From this, we can infer that 
Regions are, most likely, physically comprised of one or 
more distinct data centres (DC), if not, then AZs are 
physically housed under the same roof, and whilst they may 
have separate power and networking they would be all 
potentially be affected by fire or flooding in the DC. And so 
it is natural to ask if a region, such as US-EAST N. 
Virginia, which offers 5 AZs, us-east-1a, …, us-east-1e, is 
physically comprised of 5 DCs, say DC1, …, DC5, and 
whether the AZs names uniquely identify them. That is, for 
all customers, useast-1a identifies DC1, us-east-1b identifies 
DC2 and so on. If this were the case, then given knowledge 
of AZs with better performing resources, this could 
potentially lead to capacity problems with customers 
preferring better performing AZs over others. Perhaps 
because of this, AZs names do not identify the same 
location for all customers. This can be inferred from the 
EC2 statement: “…your availability zone us-east-1a might 
not be the same location as us-east-1a for another account”. 

To illustrate the differences in how the same AZ name 
maps to different locations for different customers, we ran 

500 m1.medium instances in AZ us-west-1c using our 
original and new accounts, 250 instances per account, and 
recorded the CPU models each account obtained. In Table 
13, we record the results. There are considerable differences 
in the resources obtained by the different accounts, and it is 
likely that the respective us-west-1c name maps to different 
locations. For the account new, 87% of its instances in  
us-west-1a are backed by the E5-2650 CPU; whilst the 
original account has 75% of its instances backed by the 
E5507. From Table 5, we know that (to the nearest second) 
the E5-2650 runs the benchmark in average time of 223s 
whilst the E5507 takes 313 s on average. Therefore, new is 
apparently able to obtain better price/performance from the 
AZ it sees as us-west-1c, than original. 

If we assume that a location is a whole DC then for 
USEAST N. Virginia we would indeed have 5 DCs, and for 
each customer we would have a mapping from the names 
{us-east-1a, …, us-east-1e} to {DC1, …, DC5}. A new 
customer in this region is allocated 3 AZs out of a possible 
5, and so this would give ten different possible 
combinations of locations a customer may have, that is, they 
may have use of DC1, DC2 and DC3 or it may be DC2, 
DC4 and DC5. This then leaves open the possibility for EC2 
to remap a customer’s AZ to a different DC, which may be 
useful in managing capacity. However, some resources, 
such as EBS volumes are AZ specific. And so any such 
remapping would have to ensure that all resources are 
replicated to the new DC. 

As EC2 do not, currently, define what they mean by a 
location we can consider a number of possible architectures, 
in addition to the ‘a location is a DC’. One possibility is that 
each DC is sub-divided into a number of logical data centres 
(LDC), and the AZ mapping maps a user account to a LDC. 
In this scheme, a DC expansion may either add additional 
hosts in LDC, or add a new LDC. Two customers, both with 
access to us-east-1a for example, may be mapped to either 
the same, or to a different LDC, but both within the DC 
comprising us-east-1a. This architecture allows EC2 to 
quickly remap a customer’s AZ to a different LDC within 
the same DC, as it is not necessary to replicate the resources 
elsewhere. From the point of view of resources, recently 
added LDCs are likely to contain different resources than 
older ones. 

We now examine the effect of restricting different users 
to different subsets of resources in a region. In the US-West 
N. California Region EC2 restricts a user to 2 AZs out of a 
possible 3 (‘Global Infrastructure’, http://aws.amazon.com/ 
about-aws/globalinfrastructure/). For each of our three 
accounts, original, new and new2, we launched 80 
m1.medium instances in all AZs they have access to, except 
in us-west-1c where we already have data from Table 13 
(Note: data presented in Table 14 was obtained in the same 
time period). 
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Table 14 Names to AZ mappings in us-west-1c 

Account AZ E5430 E5-2650 E5645 E5507 

Original us-west-1c 16% 0 9% 75% 
New us-west-1c 0 87% 13% 0 

Table 15 Names to AZ mappings 

Account AZ E5430 E5-2650 E5645 E5507 

Original us-west-1b 0 83% 4% 11% 
Original us-west-1c 16% 0% 9% 75% 
New us-west-1a 0 75% 25% 0 
New us-west-1c 0 87% 13% 0 
New2 us-west-1a 0 93% 7% 0 
New2 us-west-1b 0 81% 19% 0 

 
From Table 14, us-west-1a for New account appears similar 
to us-west-1b for new2: (75%, 25%) and (81%, 19%) of E5-
2650 and E5645, respectively. In a statistical test, using a 2 
sample proportion test, with the null hypothesis that the 
proportions of E5-2650 are equal, produces a p-value of 
0.44. Based on these samples we would not reject the null 
hypothesis. Also, us-west-1c for New is similar to us-east-
1a for new2. However, the proportions found by original 
account are sufficiently different, from both new and new2, 
for us to reject a null hypothesis that the proportions are 
equal. 

The AZs the new account can use are broadly similar in 
terms of the proportions of resources on offer. This should 
make both load balancing and high availability easier to 
manage. For example, the new account may prefer to use 
uswest-1c as its ‘main’ AZ, given the slightly higher 
proportions of E5-2650 available to it there, and only 
‘failing over’ to uswest-1a when us-west-1c is unavailable. 
In a batch of ten instances in us-west-1c we would expect  
9 E5-2560, whilst in us-west-1a we would expect 7 or 8. 
However, if we wanted to be 95% sure that we have  
9 E5-2650 in us-west-1a, how many instances should we 
start? If we assume independence, then we have a Bernoulli 
trial, and we would need to start 15 instances to be 95% 
sure. Whether or not the probability of obtaining a particular 
model is independent of the previous models obtained 
depends on the scheduling algorithm being used. For 
example, an algorithm that attempts to co-locate users VMs 
on the same hosts would produce dependence. In practice, a 
user would need to empirically determine the distributions 
of the number of models returned per request, in order to be 
confident (to a given level) they have the required 
resources. Such undertakings may well be difficult or 
prohibitively expensive for some EC2 customers. 

For the original account, the resources available in their 
AZs are very different, for example us-west-1c contains no 

E5-2650, whilst us-west-1b has 87%. As such they may 
well prefer to use us-west-1b as their main AZ, failing over 
to us-west-1c only when us-west-1b is unavailable. But  
us-west-1c is predominately comprised of the E5507 CPUs; 
and so any compute intensive task failing over to us-east-1c 
will either require more resource or take longer to run. For 
example, if running 20 m1.medium instances in us-west-1b 
we may expect, based on the percentages found, to have  
17 E5-2650, 1 E5645 and 2 E5507; and failing over to  
us-west-1c they could expect 3 E5430, 2 E5645 and  
15 E5507. If each instance was assigned the task of running 
our benchmark, then in us-west-1b, based on data in Table 
5, this would take on average 4,600 s (to the nearest sec) 
with a worst case of 4,810 s. Whilst in us-west-1c we have 
an average of 6,443 s with a worst case of 6,867 s. Failing 
over results in an increase of 40% in the average time, and 
43% increase in the worst case. 

12 Differences in CPU distribution amongst 
instance types in same class 

We have identified associations between sets of CPUs and 
instances classes. Clearly, the CPUs models backing a given 
class will change over time, but for the 6 month period we 
have been running experiments this has remained constant. 
This suggests medium term stability, and perhaps a desire 
on the part of EC2 to limit heterogeneity. The issue we 
consider in this section is whether or not there are 
differences in the resources obtained by instances types 
within the same class, in the same AZ. An understanding of 
the CPU distribution per AZ, potentially allows a user to 
choose the AZ that offers best performance. 

To that end, using the new account, we ran  
150 instances for each of 4 FGS instance types in AZ  
us-east-1a. The results are recorded in Table 16. 
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Table 16 FGS instances in us-east-1a 

Type E5430 E5-2650 E5645 E5507 

m1.small 0 0 98% 2% 
m1.medium 0 85% 15% 0 
m1.large 0 67% 33% 0 
m1.xlarge 0 85% 15% 0 

Table 17 FGS instances in us-east-1a 

Type E5430 E5-2650 E5645 E5507 

m1.small 0 0 97% 3% 
m1.medium 0 91% 9% 0 
m1.large 0 71% 29% 0 

 
The most noticeable, and hard to understand, result of this 
experiment was the proportion of E5645 CPUs models 
backing m1.small instances as compared to the FGS2 
instance types. Clearly, when sampling, there is a natural 
variation in the proportions we will obtain. Further, it would 
be reasonable to assume that the size of a VM may well 
affect the resources available to it in a given moment. For 
example, consider a host running an m1.xlarge and an 
m1.medium, and assume that 1 vCPU requires 1 physical 
core. Then, the host has three spare cores, so could run 
various combinations of m1.small, m1.medium and 
m1.large instances. However, to run an additional m1.xlarge 
would require over subscribing of the cores. How the size of 
an instance, in relation to its underlying physical host, 
effects how it is distributed is not yet something we have 
explored. 

The second notable feature is the difference in resources 
that the m1.large instances obtain. A two sample proportion 
test rejects a null hypothesis that the m1.large CPU 
proportions are the same as the m1.medium, and so also the 
m1.xlarge. Under the current pricing scheme, there appears 
to be no financial incentives for EC2 to allocate resources 
differently to different instances types within the same class. 
We speculate that this may be an unintended side-affect of 
scheduling policies. 

The experiment above was conducted on September 16. 
On the 4th of October (2013), and again using the new 
account, we started 100 instances (which is the maximum 
number of concurrent spot instances a user may run)  
of type m1.small, then m1.medium and finally m1.large in 
us-east-1a (m1.xlarge omitted for cost purposes). The 
results are recorded in Table 17. 

The results of the second experiment are consistent with 
the findings of the first, in the sense that there is no 
evidence (at a 5% significance level) of any change in 
proportions. In a final experiment, on 8th October, we 
launched a 100 m1.small instances in us-east-1a, followed 
by 100 m1.mediums and we obtained 99 E5645 and 1 
E5507, and 87 E5-2650 and 13 E5645, respectively. 

In total, from 350 m1.small instances launched in  
us-east-1a over a three week period 98% were E5645 and 
2% E5507, with no E5-2650, whilst for the FGS2 instances 
of the 750 launched approximately 80% were E5-2650 and 
20% E5645. This is again supporting evidence for the view 
that the m1.small instances are being scheduled differently; 
either within the same set of resources or onto a different 
set. 

Amazon do not, as far as we are aware release details of the 
scheduling polices that they have in place. One would 
assume they are designed to meet their own specific needs, 
be that minimising hosts in use so as to reduce power 
consumption, or to simplifying scheduling. There is little 
work that we are aware of, on how scheduling policies may 
affect the resources, and hence the ranges of 
price/performance a customer can obtain. 

13 Consistency of proportions over time 

In Section 11, we have already seen examples of 
consistency in the proportions obtained. Over a short period 
of time, we may expect the proportions of resources 
obtained to be affected by a number of things: an outage 
taking down a number of servers of a particular type, 
planned maintenance, and fluctuations in demand. However, 
this may well be offset by the scale of EC2. Clearly, we 
should expect changes over the longer term as regions, and 
AZ within them, grow. Indeed, the reasons that make public 
clouds heterogeneous will ensure that the resources we are 
able to obtain from them changes over time. 

To further examine the consistency of the proportions of 
resources obtained we made a number of requests over a 
three week period for m1.medium instances in us-west-1c 
using the original account. We consider results from one 
request to the next to be inconsistent if we can reject the 
null hypothesis that the samples are drawn from the same 
population at 5% significance level. The results are recorded 
in Table 18. 
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Table 18 M1.medium instances in us-west-1c: 19/09-10/10 

Date Sample size E5430 E5-2650 E5645 E5507 

19/09 250 16% 0 9% 75% 
29/09 80 20% 0 7% 73% 
29/09 40 20% 0 10% 70% 
29/09 40 15% 0 12% 73% 
03/10 100 19% 0 8% 73% 
03/10 100 15% 21% 12% 52% 
03/10 99 10% 52% 8% 30% 
08/10 100 0 82% 11% 7% 
09/10 100 14% 0 14% 72% 
10/10 100 21% 0 9% 70% 

 
An abrupt change is evident in the resources being provided 
on 03/10. Although offering better performing CPUs  
(the E5-2650), such changes make predicting required 
levels of resource difficult. An auto-scaling application may 
well overprovision instances if they are basing the required 
number on past performance, which has an associated cost. 
On 09/10, and after, we obtain resources that are consistent 
with those obtained before 03/10. 

It is open to question whether the E5-2650s are intended 
to be part of the resources we could obtain, and are simply 
often unavailable when we make our requests, or if our AZ 
mapping changed for during this period. That is, the 
location to which us-west-1c maps to was changed during 
this period. 

14 Related work 

Whilst we are not the only authors to be appraising cloud 
systems, the work presented here does help us to comment 
on related work, in some cases explaining the results of 
others, and in others commenting on why their work may 
require more rigorous follow-up. We take the opportunity to 
do so for a few such publications here. 

In the influential paper ‘Above the Clouds: A Berkeley 
View of Cloud Computing’ (Armbrust et al., 2008), the 
authors list performance unpredictability as their number  
5 obstacle to cloud adoption. The unpredictability is a result 
of the variation they found when running the stream 
benchmark on 75 instances (instance type unspecified). The 
histogram they present is multi-modal and appears to be 
made up from three uni-modal distributions. The authors do 
not relate their results to potential differences in the 
underlying hardware. We conjecture that the variation found 
is due to CPU model differences, and from our own stream 
results, which we do not present in this paper; we find our 
distribution does indeed break down along these lines. 

In Ward (2010), the author compares the performance of 
a local Private Cloud, based on Ubuntu Enterprise Cloud 
(UEC), with EC2. Section 1 states that “…we tested an EC2 
virtual machine (VM) and a UEC VM of identical capacity 
against different criteria…”. The authors appear to be using 
the term capacity to mean size and performance, and so 

assume that an m1.large on EC2 and an m1.large on UEC 
should provide the same level of performance, irrespective 
of underlying hardware. Whilst they are of the same ‘size’ 
the performance depends on the hardware characteristics of 
the compute node where the instance is running. This is a 
good example of the misunderstanding that can arise due to 
the lack of performance related information in machine 
descriptions. 

In McGilvary et al. (2011), the authors studied 
performance and cost variability of EC2. They state that: 
“…the underlying processor of an instance can affect the 
performance of an instance of a user’s job despite the 
purpose of ECU to obscure the differences”. Although they 
identify hardware variation as a cause of performance 
variation their work does not extend to identifying all of the 
CPU models associated with each instance type, or 
quantifying instance type performance variation. 

In Phillips et al. (2011), the authors state that the 
performance information provided by IaaS clouds is not 
sufficient to make a prediction on how an application will 
perform. They claim that micro benchmarks, based on the 
computational dwarf kernels, may offer better performance 
prediction than standard micro benchmarks. They run  
dwarf benchmarks across various instances on EC2 and on 
BonFIRE (‘Infrastructure-Bonfire’, http://www.bonfire-
project.eu). Whilst benchmarking 10 m1.small instances 
they note that the scores fall into two statistically different 
performance classes and these classes were determined by 
CPU model. However, in the conclusions section they state 
‘some machines may have different clock speeds and cache 
size and even knowledge of this additional detail does not 
help in performance prediction’. However, we have shown 
that knowledge of CPU model can be used to predict our 
standard benchmark, and it is not unreasonable to assume 
we could perhaps, in future, use this to predict other CPU 
bound tasks that depend primarily on integer operations. 
This is something we intend to explore further in future. 

In Ou et al. (2012), the authors identified different CPU 
models underlying the same instance types and then use this 
to estimate probability of obtaining a particular model as a 
method for optimising price/performance. The focus is on 
the US-East region alone; our work is more thorough in 
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considering a much larger range of regions, availability 
zones and instance types together with larger sample sizes. 
When formulating their cost model they also assume 
(without explicitly stating) that the level of performance 
provided by a given CPU is constant, and so only consider 
differences between models. We have shown this is not the 
case, indeed, we find (in a particular case) more variation in 
one model then they report between models. By considering 
the performance distribution of each model we find they are 
(in most cases) positively skewed, and in some cases we 
find maximum values (corresponding to time taken to 
complete a task) 3–4 standard deviations above the mean. 

There are a number of papers investigating the 
suitability of EC2 for HPC (Akioka and Muroka, 2010; 
Evangelinos and Hill, 2008; Osterman et al., 2010), and 
they generally conclude that latency is too high on EC2 for 
MPI codes. Amazon does not yet offer dedicated low 
latency interconnects, however they do offer 10 GB 
Ethernet for cluster types, and such instances can be placed 
close together, as we have briefly discussed in Gillam et al. 
(in press). 

15 Conclusions and future work 

EC2 offers VMs in fixed sizes called instance types, the 
definition of which abstracts away underlying hardware 
details and to which is applied a computational rating called 
an EC2. This suggests homogeneous performance for 
heterogeneous hardware. However, as we have shown, the 
performance of instances of a given type is determined by 
the underlying CPU and differences in performance 
between two instances of the same type can be accounted 
for by the CPU model. However, whilst identifying CPU 
models associated with instances class can be useful to 
understand how price and performance may be related, it is 
not currently possible to specify the CPU model, or a 
desired level of performance (with respect to a given 
workload), in most requests. Consequently, it is not readily 
possible to predict the likely level of performance of an 
instance as this requires prediction of which CPU it will be 
backed by. 

To address this problem, for each of the four classes of 
non-specialised instances – first generation standard, high 
CPU, high memory and second generation standard – we 
identified an associated set of underlying CPU models. The 
performance distribution of a CPU for a given class was 
then determined, and given knowledge of a CPU backing an 
instance we could use this data to determine the probability 
an instance obtains a particular level of performance. By 
estimating the proportion of each CPU model across zones, 
we can estimate likelihoods of obtaining a particular model 
in a given AZ. However, for this to be effective requires 
that: 

1 the resources a user can obtain from a given AZ are 
consistent 

2 the AZ mapping does not frequently change. 

We would describe the results as relatively consistent; 
meaning that for a period of time the proportions of 
resources obtained are not so different as to be statistically 
different. And indeed, the association between an instance 
class and its set of CPU models appears stable, at least in 
the 6 month period covered by these experiments. Abrupt 
changes can occur though, leading to very different 
price/performance levels in an AZ. Further work on AZ 
modelling is required to understand the factors that 
influence the distribution of resources that a user can obtain. 
As already noted, scheduling is likely to be one such factor. 
Indeed, scheduling may well have some unintended side-
affects such as a difference in the resources instances types 
within the same class may obtain. 

Understanding the difference in CPU distribution can be 
beneficial as such differences can lead to difficulties for 
customers when either: 

1 load balancing across AZs 

2 having to fail over to another AZ. 

In the largest regions, USEast N. Virginia and US-West N. 
California, new users are restricted to 3 and 2 AZs, 
respectively. A failure of one AZ can result in a user failing 
over to another which offers substantially different 
performance. This will result in either the user having to run 
more instances, and so essentially being additionally 
penalised for the zone failure, or potentially failing any 
SLAs they may have offered to their own customers for 
services on top of these instances. We have also shown that, 
due to the way EC2 maps AZ names to accounts, and limits 
the AZ a user has access to, different accounts obtain 
different resources. Hence, price/performance is dependent 
upon the account being used. It is open to question as to 
whether or not EC2 customers are aware of this. 

We can suggest that some of the problems caused by 
performance variation could, in part, be solved by 
performance related pricing. Given that performance is 
related to the underlying CPU, simply pricing instances 
according the underlying hardware would account for the 
performance variation seen. However, there would still be 
some performance variation as a consequence of running 
VMs in a shared environment on technology that was not 
originally designed to be used in such a manner. Further, the 
variation is likely to be workload dependent and so different 
workloads on the same CPU may have different variations. 
Finer grained price/performance may be required by some 
customers, leading to a need for the pricing of workload 
specific SLAs. Until such a time as performance related 
pricing is used, it would be possible to exploit differential 
performance at the same price – for example, by a broker 
re-selling better performing instances to customers at higher 
prices to support more stringent SLAs. 
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