
Int. J. Big Data Intelligence, Vol. 1, No. 4, 2014 215

Copyright © 2014 Inderscience Enterprises Ltd.

Should infrastructure clouds be priced entirely on
performance? An EC2 case study

John O’Loughlin* and Lee Gillam
Department of Computer Science,
University of Surrey,
Guildford, Surrey, GU2 7XH, UK
Email: john.oloughlin@surrey.ac.uk
Email: l.gillam@surrey.ac.uk
*Corresponding author

Abstract: The increasing number of public clouds, the large and varied range of VMs they offer,
and the provider specific terminology used for describing performance characteristics, makes
price/performance comparisons difficult. Large performance variation of identically priced
instances can lead to clouds being described as ‘unreliable’ and ‘unpredictable’. In this paper, we
suggest that instances might be considered mispriced with respect to their deliverable
performance – even when provider supplied performance ratings are taken into account. We
demonstrate how CPU model determines instance performance, show associations between
instance classes and sets of CPU models, and determine class-to-model performance
characteristics. We show that pricing based on CPU models may significantly reduce, but not
eliminate, price/performance variation. We further show that CPU model distribution differs
across different AZs and so it may be possible to obtain better price/performance in some AZs by
determining proportions of models found per AZ. However, the resources obtained in an AZ are
account dependent, displays random variation and is subject to abrupt change.

Keywords: cloud computing; virtual machines; performance; pricing; probability; brokers.

Reference to this paper should be made as follows: O’Loughlin, J. and
Gillam, L. (2014) ‘Should infrastructure clouds be priced entirely on performance? An EC2 case
study’, Int. J. Big Data Intelligence, Vol. 1, No. 4, pp.215–229.

Biographical notes: John O’Loughlin is the Service Delivery Team Leader within the Faculty of
Engineering and Physical Sciences at the University of Surrey. He is also a part-time doctoral
student within the Department of Computing with research interests in cloud computing, cloud
economics and virtualisation. He installed and maintained private infrastructure as a service
(IaaS) clouds based on OpenStack, for use within teaching and research in the department. He
has guest lectured on the topics of virtualisation and the OpenStack system for the MSc course in
Cloud Computing within the department.

Lee Gillam is currently a Senior Lecturer in the Department of Computing. His research interests
include computational terminology, information extraction and grid computing. He has been
responsible for software architectures for a number of systems developed for research projects
supported by the EU’s IT research and development programmes – TRANSTERM, POINTER,
INTERVAL, ACE, SALT, GIDA, and PI on the eContent project LIRICS – and the UK EPSRC
and ESRC – SAFE-DIS, SOCIS and FINGRID.

This paper is a revised and expanded version of a paper entitled ‘Performance prediction for
public infrastructure clouds: an EC2 case study’ presented at the 5th IEEE International
Conference on Cloud Computing Technology and Science (CloudCom 2013), Bristol, UK, 2–5
December 2013.

1 Introduction

Cloud computing is a continuation of the theme of
migrating from on-premise IT to the delivery of IT
resources by service providers. Infrastructure as a service
(IaaS) clouds offer computers, as might previously have
been part of a core internally-offered infrastructure, in the
form of virtual machines (VMs), attachable storage, and
configurable networks. The flexibility of obtaining

resources on-demand with a ‘pay as you use’ pricing model
is driving some uptake of cloud computing, albeit with
various reluctance in certain quarters. This paper addresses
one area of reluctance – performance. In particular, we
focus on performance in IaaS clouds, and when we use the
term cloud in the remainder of this paper we are referring to
IaaS unless otherwise stated.

216 J. O’Loughlin and L. Gillam

For many, Amazon’s elastic compute cloud (EC2) is the
de facto standard for IaaS clouds; and as such is the focus of
this study. EC2 uses the Xen hypervisor to abstract physical
hardware into the VMs they offer. However, the physical
infrastructure of EC2 is heterogeneous and so VMs of the
same specification could be running on different hardware.
Indeed, Amazon state – ‘EC2 is built on commodity
hardware, over time there may be several different
types of physical hardware underlying EC2 instances’
(‘Amazon EC2 FAQs’, http://aws.amazon.com/ec2/faqs/#
What_is_an_EC2_Compute_Unit_and_why_did_you_intro
duce_it). Amazon’s VM type descriptions do not identify
specific hardware (except in a small number of specialised
cases which we discuss later), such as CPU models,
describing instead the quantities – for example, ‘2 vCPUs’.
Knowing the level of achievable performance that such
cloud resources will provide, a priori, is difficult and cannot
be composed into a request. And yet this knowledge,
essentially of resource performance, is essential for making
price/performance comparisons both across instance types
in the same cloud and between types in different clouds.

Cloud providers have taken to crafting abbreviations to
rate performance, though arguably only in meaningful ways
to themselves. The ratings used by EC2, and others are an
attempt to provide, or at least to suggest, that a
homogeneous level of performance can be obtained from a
heterogeneous environment (‘Amazon EC2 FAQs’,
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compu
te_Unit_and_why_did_you_introduce_it). Such an
undertaking would appear to be difficult when one
considers how the process of abstracting a physical machine
into multiple VMs works. From Popek and Goldberg
(1974), we know that one of the properties a hypervisor
must have is that “a statistically significant fraction of
machine instructions execute without VMM intervention”.
This is known as the performance property, and from it we
can readily infer that VM performance is a function of the
underlying hardware, and in particular that different
instances of the same type will perform differently when
running on different hardware. The pertinent question is of
course, how different?

A number of authors have identified performance
variation on EC2. This has mainly been as a side effect of
comparing EC2 to local systems or for testing HPC
suitability rather than investigating performance on EC2 per
se. These papers tend towards preferring internal systems,
and to demonstrate support for this selection they run
benchmarks on a relatively small number of instances
across a limited number of availability zones in EC2. As
such, results rarely account for the full extent of
performance variation of an instance type, or ex7plain the
causes of it, and also miss the fact that the variation is
different in different AZs in EC2 due to heterogeneity.

The aim of this paper is to understand how instance
compute performance varies by the physical resources
available to EC2 customers, estimate how resources are
distributed across EC2, understand how they are allocated to

customers and consider whether pricing should be related to
performance. As such, we:

1 quantify the range of performance variation across all
non-specialised instance types

2 identify CPU model as cause of performance variation

3 identify the sets of CPU models associated with
instance classes

4 quantify the performance of each CPU model with
respect to our benchmark

5 show that instances types of the same class may be
allocated different resources when running in the same
AZ

6 we demonstrate how EC2 AZ mappings affect the
range of performance a customer can obtain from a
region.

The remainder of this paper is structured as follows:
Sections 2 and 3 provide an overview of EC2 followed
by a discussion of our methodology for measuring
instance performance. In Sections 4 to 7, we present
benchmarking results of 1,297 instances across six regions
and 14 availability zones. Section 8 examines how the value
of an ECU varies across instance classes. In Sections 9
and 10, we look at the performance properties of CPUs
(with respect to our benchmark) and how their distribution
across EC2 varies. In Sections 11 to 13, we examine how
resources are allocated to customers and the impact that this
has on price/performance a user may obtain. We review and
compare related work in Section 14, with conclusions and
future work presented in Section 15.

2 EC2 background information

Amazon’s EC2 global infrastructure [‘Global
infrastructure’, (2 July 2013), http://aws.amazon.com/about-
aws/globalinfrastructure/] is divided into eight regions
(excluding the GovCloud region), which we can think of as
‘sub’ clouds. When using the EC2 API to manage instances
a region must be specified – with US East being the default
if no region is set. Similarly, when using the web interface,
a user must first connect to one of the regions before they
can launch new instances or manage existing ones. A user’s
credentials are the same across all regions, however,
resources such as SSH keys and security groups (firewall
settings for instances) are solely contained within a region.
A user is required to setup these resources for each region
they wish to use.

Regions consist of AZs, which are isolated from each
other and have their own networking and power
infrastructure – and so should provide an element of
redundancy: failure of one AZ should not affect instances
running in another. The largest and first publically available
region is US-East N. Virginia, which has 5 AZs; whilst the
newest region is Asia-Pacific Sydney with 2 AZs. In total,
there are 23 AZs across EC2, however not all of these are

 Should infrastructure clouds be priced entirely on performance? 217

available to customers. Both US East N. Virginia and US
West N. California restrict the number of AZs they make
available to new users. One of the authors has 2 AWS
accounts, one of which can launch instances in 4 US East N.
Virginia AZs whilst the other, in line with all new EC2
accounts, can only use 3.

In Table 1, we list all the regions, their locations, API
endpoint names and the number of AZs in each one.

Table 1 EC2 regions

Geographical area Location API end-point AZs

N. Virginia us-east-1 5
N. California us-west-1 3

US

Oregon us-west-2 3
Singapore ap-southeast-1 2

Tokyo ap-northeast-1 3
Asia Pacific

Sydney ap-southeast-2 2
Europe Dublin eu-west-1 3
South America San Paulo sa-east-1 2

EC2 offers VMs in various sizes known as instance
types. An instance type description specifies the
number of vCPUs, the amount of RAM and local storage.
By an instance, we simply understand a running VM
of a given type. Instance types are grouped together
into instance classes; 4 of which we refer to as standard
(or non-specialised) instance classes. Instance types in the
same class have a similar ratio of RAM to number of vCPU
cores. In total, there are 11 standard instance types and these
are available in all AZs and to all users. There are six
instances types which we consider to be specialised as they
have some or all of the following hardware: SSD, 10 Gb
networking and GPUs. We do not consider specialised
instance types in this paper.

In addition to quantities of resource, instance type
descriptions include performance descriptors which are
intended to give the user an indication of expected
performance. However, these tend to be somewhat vague,
for example the m1.small is described as having ‘moderate’
I/O. For the compute capacity of an instance Amazon use a
rating called the EC2 compute unit (ECU). The ECU is
defined as follows: “Equivalent CPU capacity of a 1.0–1.2
GHz 2007 Opteron or 2007 Xeon processor”. The ECU
rating is per core, so the total rating for an instance type is
given by: number of cores multiplied by ECU core rating.
For example the m1.xlarge instance type has 4 vCPUs at 2
ECU per core so is rated at 8 ECUs. When we use the term
‘rated at’ we are referring to the per core rating. We detail
standard instance types in Table 2.

Describing expected performance in terms of
reference machines appears to be a growing trend, for
example, Google describe their Google Compute
Engine Unit (GCEU) (‘Google Cloud Platform’,
https://cloud.google.com/pricing/compute-engine) as
follows: ‘We chose 2.75 GCEUs to represent the minimum
power of one logical core (a hardware hyper-thread) on our

Sandy Bridge platform’. Similarly, HP define their HP
Cloud Compute Unit (HPCCU) (‘HP Cloud Pricing’,
https://www.hpcloud.com/pricing) as: ‘6.5 CCUs are
roughly equivalent to the minimum power of one logical
core (a hardware hyper-thread) of an Intel(R) 2012 Xeon(R)
2.60 GHz CPU’.

Table 2 Non-specialised EC2 instance types

Class Instance type RAM (GB) vCPU ECU
per core

m1.small 1.7 1 1
m1.medium 3.75 1 2

m1.large 7.5 2 2

First
generation
standard

m1.xlarge 15 4 2
c1.medium 1.7 2 2.5 High CPU
c1.xlarge 7 8 2.5
m2.xlarge 17.1 2 3.25

m2.2xlarge 34.2 4 3.25
High
memory

m2.4xlarge 68.4 8 3.25
m3.xlarge 15 4 3.25 Second

generation m3.2xlarge 30 8 3.25

Amazon, in common with other providers, does not publish
detailed information about how their ECU is measured, and
how much variation there is in the measurement. Instead,
they simply state: “EC2 uses a variety of measures to
provide each instance with a consistent and predictable
amount of CPU”. Publishing variation information would
allow customers to gauge if the performance their instances
are delivering is in line with what they may expect.

Instances are made available in three pricing models:
reserved instances, on-demand instances and spot instances.
With reserved instances users pay an upfront fee and obtain
a reduced hourly charge for the instance. On-demand
instances are perhaps the most familiar as they are charged
solely on a per hour basis with no upfront costs. Spot
instances allow users to bid for unused capacity at prices
lower than on-demand instances. In order to manage costs,
we use spot instances in our experiments. Spot prices do
vary, and we have observed occasions when spot prices
were similar to on-demand prices and indeed some
occasions when spot prices significantly exceeded on-
demand prices.

Amazon state that (‘Amazon EC2 FAQs’,
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compu
te_Unit_and_why_did_you_introduce_it) spot instances
‘perform exactly the same as on-demand instances’.
However, we cannot really know if the resources obtained
here reflect what we would have obtained in the on-demand
market without running an appropriate test alongside.

EC2 offers a generic service level agreement (SLA) for
all customers. The only performance metric for is for
service availability – not for compute performance.
SLAs not offering a guarantee of performance perhaps
would be less problematic if instance performance was
consistent – however, we show in Sections 4 to 7 this is not

218 J. O’Loughlin and L. Gillam

the case. In Section 10, we consider how CPU performance
data may be used to add performance related metrics to
SLAs.

3 Measuring compute capacity

From Table 2, we see that EC2 offers instances with cores
rated at 1, 2, 2.5 and 3.25 ECUs, respectively. However,
how do these ratings relate to actual application
performance? For example, should a user expect their
application to run in half the time on a 2 ECU instance as
compared to a 1 ECU instance? Whilst Amazon (and others)
is defining their compute rating in terms of references
machines we would argue that application performance
(typically execution time) is the most intuitive and easy to
understand measure of performance for users. For our
experiments, the metric we chose for measuring compute
performance is application execution time.

Benchmarks are the standard way to measure and
compare the compute performance of computer systems.
There is a wide range of benchmarks available, some of
which have been specifically written, whilst others are ‘real
world’ benchmarks applications. Specifically written
benchmarks typically attempt to mimic a particular
class of applications. Synthetic benchmarks, such as
Whetstone, attempt to mimic statistical CPU usage, whilst
kernel benchmarks, such as NAS and Linpack, mimic the
main computations performed. Due to limitations of
purpose written benchmarks the trend is now towards
benchmarks that are similar to (or actually are) applications
that users will use in their ‘real work’. Such benchmarks are
usually CPU bound tasks; this approach is typified by the
SPEC CPU2006 (‘SPEC CPU2006’, http://www.spec.org/
cpu2006/), a commercially available suite of integer and
floating point benchmarks. The suite contains, for example,
CPU integer benchmarks that perform the following tasks:
compressions, audio encoding, video transcoding and
compilation. The floating point suite contains benchmarks
that perform speech recognition, weather modelling and
fluid dynamics.

From the definition of the ECU, it is not clear if it is
equally representative of integer and floating point
performance, or if it is skewed in favour of one or the other.
Although we do not consider such matters further here, we
note that in some domains, such as scientific computing,
this is likely to be an important consideration.

In order to measure compute performance of EC2
instance types we chose to use a benchmark based on bzip2,
a compression tool found on Linux/UNIX systems. Bzip2 is
a CPU bound task, although clearly there is some input and
output (I/O) involved as the input file needs to be read and
the compressed file is written back. During a bzip2
compression, we ran top in batch mode to capture the CPU
state at 5 s intervals. From this, we observed that the CPU
spends 97% to 98% of its time in the user state, i.e., running
bzip2, whilst being in an I/O wait state (when bzip2 blocks)
for only 2% to 3%. From this, we can infer that whilst there
is some dependency on disk speed the time taken to

complete the compression is predominately determined by
CPU speed, i.e., it is a CPU bound task. Bzip2 uses the
Burrows Wheeler Transform (‘bzip2’, http://www.bzip.org/
1.0.5/bzip2-manual-1.0.5.html#intro) to compress files in
blocks with the default block size being 900 KB. By
compressing in blocks, even files larger than available RAM
do not cause swapping when being compressed. This is
confirmed by running vmstat at 5 s intervals to capture the
number of bytes being swapped.

The bzip2 benchmark is part of the
OpenBenchmarking.org toolkit and the Standard
Performance Evaluation Corporation (SPEC) CPU
benchmark toolkit, although they use a slightly modified
version which sends its output to the device /dev/null to
minimise I/O. For the input file to bzip2, we used an Ubuntu
10.04 AMD desktop ISO file (696MB), and timed the
compression. In each instance, the benchmark was run 3
times and we take the average. Before running bzip2 the
input file, ubuntu.iso was copied to a file called test.iso and
bzip2 was run on test.iso. As all I/O on a Linux system goes
through the disk cache in RAM (and remains there until
reclaimed) this helps to reduce disk reads. We refer to the
above procedure as ‘the standard benchmark’.

We can determine the CPU model an instance is running
on by examining the file/proc/cpuinfo. This file is populated
via the cupid instruction which is non-trapping on the Xen
hypervisor. On clouds that use the KVM hypervisor, such as
GCE, this instruction does trap and the hypervisor can be
configured to export a variety of models to the guest (‘Guest
CPU Models’, https://access.redhat.com/site/documentation/
en/Red_Hat_Enterprise_Linux/6/html/Virtualization_Gettin
g_Started_Guide/para-CPU_Models.html). As such
/proc/cpuinfo cannot be used to determine physical CPU
model.

Our performance investigations are as follows: We
begin by benchmarking first generation standard instance
types. We divide this into:

a m1.small instance type

b m1.medium, m1.large and m1.xlarge.

The reason for this division is that the m1.small is rated at 1
ECU whilst the others are rated at 2 ECU. We next
benchmark high CPU instance types, c1.medium and
c1.xlarge, rated at 2.5 ECU. This is followed by high
memory instance types m2.xlarge, m2.2xlarge and
m2.4xlarge, and second generation standard instances types,
m3.xlarge and m3.2xlarge, all rated at 3.25 ECU. We have
therefore covered all of the non-specialised instance types.
The m1.small instance was benchmarked across 5 out of 8
EC2 regions and in all AZs within these regions. This wide
ranging initial experiment allows us to measure how 1 ECU
varies across a large portion of EC2.

Ideally we would have liked to run the same number of
instances, in the same AZs, for other instance types as for
the m1.small. In order to stay within budget, for each of the
remaining instance type classes we benchmarked 200
instances across 2 regions (always including US East N.
Virginia) and in all AZs that are open to us with a specific

 Should infrastructure clouds be priced entirely on performance? 219

user account within these regions – Section 10 discusses
AZs in further detail. The number of instances run of a
particular instance type within a class was primarily
determined by cost constraints.

4 First generation standard instances

4.1 Performance of m1.small (1 ECU)

We benchmarked 540 m1.small instances across five
regions (out of a possible 8) which included 2 US-based
ones (US East N. Virginia and US East N. California), and
1 region each from Europe (EU Dublin), Asia-Pacific
(Asia-Pacific Sydney) and South America (South America
San Paulo). From these five regions, 13 AZs were available
for use (with the account we were using) and we ran
instances in all of them.

All 540 instances were backed by one of four different
CPU models: Intel Xeon E5430, Intel Xeon E5-2650, Intel
Xeon E5645 and Intel Xeon E5507. (We use only CPU
model numbers from here on). Figure 1 shows a histogram
of our results, with interval width of 5 s, together with some
summary statistics in Table 3.

Figure 1 Histogram of benchmark results for m1.small instances

Table 3 Summary statistics for m1.small

Min(s) Max (s) Median (s) Mean (s) Sd (s)

425.35 715.72 501.88 517.76 63.24

The distribution appears to be multi-modal, a mix of at least
three uni-modal distributions. In Table 4, we present the
results of the benchmarks by CPU model, followed by an
overlapping histogram of the CPU model distributions in
Figure 2.

Figure 2 shows that performance is largely determined
by CPU model. There is little overlap between models,

except between the E5430 and the E5-2650. More
importantly, the worst performing instances (at the same
price) were all backed by the E5507; the difference between
the best performing E5507 and the worst of the other
models (an E5645) is just under 25s. The E5-2650 and the
E5645 are the models found most frequently, backing 397
of our 540 instances. The range of these models combined is
[470.24, 543.8] but they only overlap in the range [495,
510] and this overlap covers fewer than 25 instances.

Table 4 Summary statistics by CPU model

Model Min (s) Max (s) Mean (s) Sd (s)

E5430 425.35 482.1 445.1 14.33
E5-2650 443.48 518.92 470.24 13.03
E5645 487.95 543.8 510.07 10.51
E5507 578.03 715.72 620.87 28.46

Figure 2 Histogram of benchmark results by CPU model
(see online version for colours)

4.2 Performance of m1.medium, m1.large and
m1.xlarge (2 ECU)

The remaining first generation standard instance types are
m1.medium, m1.large and m1.xlarge, all of which have
vCPU rated at 2 ECU. For cost management reasons, we
limited our experiment to 200 instances: 80 m1.medium,
80 m1.large and 40 m1.xlarge, across 2 Regions, US East N.
Virginia and US West Oregon. [Note: US West Oregon is
included here due to having the lowest spot prices at the
time]. These regions have 7 AZs but at the time of
running us-west-2c were unavailable to our account.
Unfortunately, due to a configuration error in the
experiment, we were also unable to obtain the results from
zone us-west-2a. We successfully collected benchmark

220 J. O’Loughlin and L. Gillam

results from 157 instances: 78 m1.medium, 60 m1.large and
19 m1.xlarge.

All of our instances were backed by the same set of
CPU models as the m1.small instance types, so we believe
we have identified the set of the CPU models for all
standard first generation instance types in six regions and
14 AZs across those. Clearly, the set of hardware platforms
underlying instances classes will change over time, as we
discuss in Section 13. However, the association is stable in
the short-term.

As with the m1.small instance type, the distribution of
results is multi-modal and is determined by CPU model, as
shown by Figure 3 (histogram of results by CPU model).
This means that, for instance, 2 m1.medium instances with
different CPUs will show performance differences in line
with Figure 2; whilst an m1.medium and an m1.xlarge
backed by the same CPU will perform similarly and the
performance can be predicted by the results presented in
Table 5.

Figure 3 Histogram of benchmark results by CPU model (see
online version for colours)

Table 5 Summary statistics for remaining first generation
standard

Min (s) Max (s) Median (s) Mean (s) Sd (s)

204.71 332.02 226.79 236.23 25.98

We found no evidence to suggest that larger more expensive
instance types are more likely to obtain better performing
CPUs. For example, in the zone us-east-2 40 m1.large
instances were backed by 33 E5-2650 and 7 E5645 whilst
19 m1.xlarge instances were backed by 10 E5-2650 and 9
E5645. We can say that different instance types in the same
class provide more resources, but at the same level. This is
in line with the VM descriptions and linear scaling of on-
demand pricing, where, for example, an m1.large is twice
the price of a m1.medium and has twice the RAM and

number of vCPU cores. We discuss differences found
proportions of CPU models backing different instances
types within the same class further in Section 12.

Table 5 presents the summary statistics of all our
instances and Table 6 show the breakdown by CPU model.

Table 6 Summary statistics by CPU model

Model Min (s) Max (s) Mean (s) Sd (s)

E5430 204.71 238.2 211.30 10.43
E5-
2650

217.81 233.51 223.40 3.84

E5645 240.9 254.11 244.71 2.90
E5507 295.91 332.01 312.92 14.91

By comparing our 1 ECU to 2 ECU results, we see that our
worst 2 ECU (332.02s) is only 93.33s better than our best 1
ECU (425.35). In this case, we might suggest that our
2 ECU core is only providing 1.28 ECUs. Similarly, we
compare the worst performing 1 ECU (715.72 s) with our
best performing 2 ECU (204.71s) and in this case the
2 ECU core is providing 3.5 ECUs. However, when
considering a particular CPU model, we do see that
performance does scale linearly, and 2 ECU is
approximately twice as fast as 1 ECU. We also note the
small coefficient of variation for a CPU model; and from
this we could predict instance performance accurately if we
knew the CPU model we were going to obtain before
launching the instance. However, does an ECU scale with
respect to the remaining non-specialised instance types with
cores rated at 2.5 ECU and 3.25 ECU?

5 High CPU instance types

We next investigate the high CPU instance types, the
c1.medium and c1.xlarge. These have 2 and 8 cores
respectively rated at 2.5 ECU. The High CPU instance type
was first made available in June 2008.

We benchmarked 200 high CPU instance types across
two regions, US-East N. Virginia and Asia-Pacific Sydney,
which offered 6 AZs, and we ran instances in all of them.
We used Asia-Pacific Sydney instead of US West Oregon
for our second region as we found spot prices to be lower
there.

We found that both these instance types are backed by
the following CPU models: E5-2650 (19), E5345 (4), E5410
(47) and E5506 (130). Note that the E5-2650 also backs first
generation standard instances and is the only model we
found that backed more than one class. As with the first
generation standard instance types, the performance of a
high CPU instance is determined by the CPU model. In
Figure 4, we present a histogram of the results, followed by
summary statistics for all instances which we then break
down by CPU model.

 Should infrastructure clouds be priced entirely on performance? 221

Figure 4 Histogram of benchmark results by CPU model
(see online version for colours)

Table 7 Summary statistics for high CPU instance type

Min (s) Max (s) Median (s) Mean (s) Sd (s)

174.55 356.92 246.55 242.58 32.58

Table 8 Summary statistics by CPU model

Model Min (s) Max (s) Mean (s) Sd (s)

E5410 174.56 245.86 196.21 15.03
E5345 215.58 235.67 224.34 8.34
E5-2650 216.93 250.03 230.83 12.19
E5506 241.46 356.92 261.63 18.84

65% of our high CPU instances were backed by the E5506,
our worst performing CPU, whilst our best performing
CPU, the E5410, backed just 23.5% of our instances. On
average, there is a 33% increase in the time taken to run our
standard benchmark on an E5506 compared to an E5410.
Later, we consider how 2.5 ECUs compares to 1 ECU.

6 High memory instances

The next group of non-specialised instance types is high
memory: m2.xlarge, m2.2xlarge and m2.4xlarge. These
instance types have 2, 4 and 8 vCPU, respectively, with
8.5 GB of RAM per vCPU. The vCPU cores are rated at
3.25 ECU. We benchmarked 200 high memory instance
types across two regions US-East N Virginia and
Asia-Pacific Sydney, which offered 5 AZs and we ran
instances in all of them. Note that zone us-east-1b was
unavailable whilst these benchmarks were carried out and
so we could only use 5 AZs.

As with the previous instance types, the performance of
high memory instances is determined by the CPU model.

Instances were backed by just two models: E5-2665 (134)
and the X5550 (66). In Figure 5, we present a histogram of
the results, followed by summary statistics for all instances
which we then break down by CPU model.

Table 9 Summary statistics for high memory instance type

Min (s) Max (s) Median (s) Mean (s) Sd (s)

163.06 235.87 169.79 174.19 11.10

Table 10 Summary statistics by CPU model

Model Min (s) Max (s) Mean (s) Sd (s)

E5-2665 163.06 235.87 169.07 9.69
X5550 179.75 207.86 184.59 4.67

Figure 5 Histogram of benchmark results by CPU model
(see online version for colours)

7 Second generation standard instances

The second generation standard instances are m3.xlarge and
m3.2xlarge with 4 and 8 cores, respectively. As with the
first generation, they have 3.75 GB of RAM per vCPU, but
with cores rated at 3.25 ECU. This instance class was first
introduced in 2011 to 2012 in US-East N Virginia, and
made available globally as of February 2013.

We benchmarked 200 second generation standard
instance types across two regions US-East N Virginia and
Asia-Pacific Sydney, which offered 5 AZs and we ran
instances in all of them. Note that zone us-east-1b was
unavailable whilst these benchmarks were carried out and
so we could only use 5 AZs.

All the m3 instances we benchmarked were backed by
just one processor model: E5-2670.

222 J. O’Loughlin and L. Gillam

Table 11 Summary statistics for second generation standard
instance type

Min (s) Max (s) Median (s) Mean (s) Sd (s)

129.99 206.27 134.89 135.85 7.65

Figure 6 Histogram of benchmark results

8 Comparisons of an ECU across instance classes

Despite the EC2 definition of an ECU as architecture
independent, the previous sections have shown that the
value of an ECU within an instance type class is determined
by the physical CPU. We now consider how an ECU varies
across instance type classes. In Table 12, we record the per
vCPU ECU rating for each instance class, together with the
mean and median benchmark values as previously
determined. We can then use this to determine if, for
example, an instance rated at 2.5 ECU will perform ‘2.5
times better’ than instances rated at 1 ECU, i.e., the
execution time will be 2.5 times faster.

Table 12 ECU across instance type classes

Instance class ECU Median (s) Mean (s)

First Generation
m1.small

1 501.88 514.01

First Generation others 2 226.79 236.23
High CPU 2.5 246.55 242.58
High Memory 3.25 169.79 174.19
Second Generation
Standard Instances

3.25 134.89 135.85

For instance, types rated at 2 ECU this appears to scale
linearly with respect to the statistics we calculate for the
instance type rated at 1 ECU. This is perhaps to be expected
as they all belong to the same class, first generation

standard, and are all backed by the same set of CPU models.
The high CPU instance types, rated at 2.5 ECU, performed
worse on average then instances rated at 2 ECU.

Both the m3 range and the m2 range are rated at
3.25 ECU, and yet we can see that there is a 25% increase in
the average time taken to run the standard benchmark on
high memory instance types (m2 range) as compared to
second generation standard instance type (m3 range). If we
look at two similar sized instance types from these classes:
m3.xlarge and m2.2xlarge, they both have 4 vCPUs rated at
3.25 ECU and 15 GB and 34.2 GB of RAM, respectively.
The on-demand per hour cost in US East N. Virginia is
$0.55 and $0.92. So, although the m2.2xlarge has an extra
19.2 GB of RAM this comes at a per hour cost of $0.37 and
takes 25% longer to run the standard benchmark.

9 Performance properties for CPUs

On physical hardware, with no other tasks running, a CPU
bound task produces repeatable results – results with
negligible coefficient of variation and no outliers. This
property is what makes them good candidates for
benchmarks; and indeed deviation from the mean is an
indication of a fault with a system. Therefore, the range of
results for instances backed by the same CPU model is
perhaps surprising. Except that infrastructure clouds are
multi-tenanted, meaning that one physical server (or host)
can host multiple VMs, and may indeed be doing so at the
time of these tests.

The exact number of VMs running on a host depends on
the number of cores the host has, the size of the VMs, and
the density at which the provider wishes to run their cloud.
By density, we mean the number of vCPUs to one physical
core, and over-subscription is the term used when there are
more vCPUs than physical cores.

A vCPU is a scheduling entity, and so if a provider runs,
for example, 2 m1.xlarge and 2.medium instances on an
8 core server, there would be 10 vCPUs for 8 physical
cores. In this case, each vCPU could expect to spend
approximately 80% of its time in a run state. We do not
know the density at which Amazon run EC2, and indeed it
is possible, if not probable, that faster CPUs may have a
higher density than slower ones. That is, the E5430 may run
more m1.small instances than an E5507.

What is clear is that performance in a shared system
differs from performance with exclusive access to
resources. The potential for one VM to affect the
performance of another is well known, and is often referred
to as the ‘noisy neighbour effect’. For example, the Xen
hypervisor (used on EC2) uses a credit scheduler to manage
guest CPU usage. However, CPU cycles doing I/O
instructions on behalf of a guest, which trap to the
hypervisor, are not accounted for. As such VMs with an I/O
intensive workload may obtain a disproportionate amount of
CPU time.

In a cloud we should therefore expect instances, even
backed by the same CPU, to have a distribution of

 Should infrastructure clouds be priced entirely on performance? 223

performance results. What, if anything, can we infer from
the shape of any such distribution?

Considering just the CPU models backing FGS
instances, we can see from our histograms that they are
positively skewed, and calculations confirm this. A longer
tail to the right perhaps indicates we have seen more
examples of degraded performance than of performance
bursts, and so the majority of results ‘bunch’ to the left. For
example, on the E5645 for FGS instances, the minimum
value was 487.95 s and the 75th percentile is 515.87 s; the
first 75% of results are within 27.92 s. The maximum value
is 543.8 s and so the upper quartile range is 27.93 s.

The lack of performance bursting is likely
explained by use of Xen CPU capping (‘Xen’,
http://wiki.xen.org/wiki/Credit_Scheduler), and so even if
cycles are available an instance cannot make use of them.
Undoubtedly, this is a necessity to ensure a ‘consistent’
level of compute. The positive skew, or performance
degradation, is quite possibly due to ‘noisy neighbour’
effects, as discussed above.

If we know the CPU model backing an instance, then
the empirical data we have collected can be used to estimate
the probability that the instance will run our benchmark
within a given time. This is particularly useful for customers
who require quality of service (QoS) performance metrics in
SLAs. As an example of how performance metrics may be
expressed, consider provisioned EBS volumes on EC2,
which are described as: ‘designed to deliver within 10% of
the provisioned IOPS performance 99.9% of the time’
(‘Elastic Block Storage’, http://aws.amazon.com/ebs/).
Generally, we may express QoS for performance metrics in
terms of an expected level, perhaps in a given range, to be
met a given percentage of times.

As an example of how we may use CPU benchmarking
as a performance metric, consider the second generation
standard class. We know, since EC2 include it in the class
description, that instances of these are, currently, always
backed by the E5-2670 model. From our experimental data,
we calculate the 90%, 95%, 99% percentiles as: 142.89 s,
147.28 s and 160.27 s. And so we could construct an SLA
with the following terms: the instance will run the bzip2
benchmark in under 160.27 s 99% of the time. And so, from
this, we begin to envisage how to formulate SLAs relating
to workloads over extended durations.

However, until we – as a user of cloud systems – launch
an instance, we will not know the hardware that backs it.
We might use our results to say that, for example, an
m1.medium instance will run our standard benchmark in
242.22 s on average, but if we are ‘unlucky’ and obtain an
instance backed by an E5507 the average becomes 311.41 s.

10 CPU model distribution across EC2

As Amazon add new regions, add and expand zones in
existing regions, and make hardware refreshes, the
distribution of CPU models will increasingly differ from
zone to zone. In Table 13, we list the proportion of CPU
models backing the FGS instances in the AZs we tested. For
example, in us-west-1b we found that 87% of our instances
were backed by E5507. Without too much consideration,
and with knowledge of CPU performance as outlined in
Sections 4 to 7, a user would most likely avoid using
us-west-1b and uswest-1c, if their region mapping were
consistent with this one, due to the high proportion of
E5507 models found there.

Table 13 CPU by AZ

Zone E5430 E5-2650 E5645 E5507

us-east-1a 31% 0 25% 44%
us-east-1b 5% 59% 29% 7%
us-east-1c 0 47% 52% 1%
us-east-1d 18% 31% 44% 7%
us-west-1b 0 0 13% 87%
us-west-1c 8% 0 18% 74%
eu-west-1a 4% 75% 19% 2%
eu-west-1b 28% 0 44% 28%
eu-west-1c 4% 0 63% 33%
ap-southeast-2a 0 64% 36% 0
ap-southeast-2b 0 75% 25% 0
sa-east-1a 0 81% 19% 0
sa-east-1b 0 86% 14% 0
us-west-2b 0 73% 27% 0

224 J. O’Loughlin and L. Gillam

The original experiments were focused on performance,
benchmarking 697 FGS instances across 14 AZs. This
allows us to be reasonably sure we have identified all CPU
models associated with the FGS class, and to determine a
performance distribution for each model with respect to our
benchmark. However, the number of instances run per AZ is
relatively low; just under 50 on average. As such there
remains a number of questions on CPU distribution across
AZs that need to be addressed, and which we address in the
sections identified:

• How does AZ mapping affect the resources a user can
obtain? (Section 9)

• Does the proportion of CPU models differ between
instances types in the same class? (Section 10)

• Are proportions of CPU models found stable in the
short-term? (Section 11)

To begin to answer these questions, new experiments were
conducted in September 2013. These focused on the
distribution of CPU models in 3 AZs for 2 Amazon
accounts over a 3 week period. We refer to the Amazon
accounts as Original, New and New2. The Original account
is the one used to obtain the performance results above. In
the sections below, we use the results from our new
experiment to address the questions above.

11 AZ mappings

We have previously defined AZs as locations within a
Region that are isolated from each other, with separate
power and network connections; and interconnected with
low latency networking. Using the word ‘isolation’ in the
AZ definition strongly implies a degree of physical
separation between them. From this, we can infer that
Regions are, most likely, physically comprised of one or
more distinct data centres (DC), if not, then AZs are
physically housed under the same roof, and whilst they may
have separate power and networking they would be all
potentially be affected by fire or flooding in the DC. And so
it is natural to ask if a region, such as US-EAST N.
Virginia, which offers 5 AZs, us-east-1a, …, us-east-1e, is
physically comprised of 5 DCs, say DC1, …, DC5, and
whether the AZs names uniquely identify them. That is, for
all customers, useast-1a identifies DC1, us-east-1b identifies
DC2 and so on. If this were the case, then given knowledge
of AZs with better performing resources, this could
potentially lead to capacity problems with customers
preferring better performing AZs over others. Perhaps
because of this, AZs names do not identify the same
location for all customers. This can be inferred from the
EC2 statement: “…your availability zone us-east-1a might
not be the same location as us-east-1a for another account”.

To illustrate the differences in how the same AZ name
maps to different locations for different customers, we ran

500 m1.medium instances in AZ us-west-1c using our
original and new accounts, 250 instances per account, and
recorded the CPU models each account obtained. In Table
13, we record the results. There are considerable differences
in the resources obtained by the different accounts, and it is
likely that the respective us-west-1c name maps to different
locations. For the account new, 87% of its instances in
us-west-1a are backed by the E5-2650 CPU; whilst the
original account has 75% of its instances backed by the
E5507. From Table 5, we know that (to the nearest second)
the E5-2650 runs the benchmark in average time of 223s
whilst the E5507 takes 313 s on average. Therefore, new is
apparently able to obtain better price/performance from the
AZ it sees as us-west-1c, than original.

If we assume that a location is a whole DC then for
USEAST N. Virginia we would indeed have 5 DCs, and for
each customer we would have a mapping from the names
{us-east-1a, …, us-east-1e} to {DC1, …, DC5}. A new
customer in this region is allocated 3 AZs out of a possible
5, and so this would give ten different possible
combinations of locations a customer may have, that is, they
may have use of DC1, DC2 and DC3 or it may be DC2,
DC4 and DC5. This then leaves open the possibility for EC2
to remap a customer’s AZ to a different DC, which may be
useful in managing capacity. However, some resources,
such as EBS volumes are AZ specific. And so any such
remapping would have to ensure that all resources are
replicated to the new DC.

As EC2 do not, currently, define what they mean by a
location we can consider a number of possible architectures,
in addition to the ‘a location is a DC’. One possibility is that
each DC is sub-divided into a number of logical data centres
(LDC), and the AZ mapping maps a user account to a LDC.
In this scheme, a DC expansion may either add additional
hosts in LDC, or add a new LDC. Two customers, both with
access to us-east-1a for example, may be mapped to either
the same, or to a different LDC, but both within the DC
comprising us-east-1a. This architecture allows EC2 to
quickly remap a customer’s AZ to a different LDC within
the same DC, as it is not necessary to replicate the resources
elsewhere. From the point of view of resources, recently
added LDCs are likely to contain different resources than
older ones.

We now examine the effect of restricting different users
to different subsets of resources in a region. In the US-West
N. California Region EC2 restricts a user to 2 AZs out of a
possible 3 (‘Global Infrastructure’, http://aws.amazon.com/
about-aws/globalinfrastructure/). For each of our three
accounts, original, new and new2, we launched 80
m1.medium instances in all AZs they have access to, except
in us-west-1c where we already have data from Table 13
(Note: data presented in Table 14 was obtained in the same
time period).

 Should infrastructure clouds be priced entirely on performance? 225

Table 14 Names to AZ mappings in us-west-1c

Account AZ E5430 E5-2650 E5645 E5507

Original us-west-1c 16% 0 9% 75%
New us-west-1c 0 87% 13% 0

Table 15 Names to AZ mappings

Account AZ E5430 E5-2650 E5645 E5507

Original us-west-1b 0 83% 4% 11%
Original us-west-1c 16% 0% 9% 75%
New us-west-1a 0 75% 25% 0
New us-west-1c 0 87% 13% 0
New2 us-west-1a 0 93% 7% 0
New2 us-west-1b 0 81% 19% 0

From Table 14, us-west-1a for New account appears similar
to us-west-1b for new2: (75%, 25%) and (81%, 19%) of E5-
2650 and E5645, respectively. In a statistical test, using a 2
sample proportion test, with the null hypothesis that the
proportions of E5-2650 are equal, produces a p-value of
0.44. Based on these samples we would not reject the null
hypothesis. Also, us-west-1c for New is similar to us-east-
1a for new2. However, the proportions found by original
account are sufficiently different, from both new and new2,
for us to reject a null hypothesis that the proportions are
equal.

The AZs the new account can use are broadly similar in
terms of the proportions of resources on offer. This should
make both load balancing and high availability easier to
manage. For example, the new account may prefer to use
uswest-1c as its ‘main’ AZ, given the slightly higher
proportions of E5-2650 available to it there, and only
‘failing over’ to uswest-1a when us-west-1c is unavailable.
In a batch of ten instances in us-west-1c we would expect
9 E5-2560, whilst in us-west-1a we would expect 7 or 8.
However, if we wanted to be 95% sure that we have
9 E5-2650 in us-west-1a, how many instances should we
start? If we assume independence, then we have a Bernoulli
trial, and we would need to start 15 instances to be 95%
sure. Whether or not the probability of obtaining a particular
model is independent of the previous models obtained
depends on the scheduling algorithm being used. For
example, an algorithm that attempts to co-locate users VMs
on the same hosts would produce dependence. In practice, a
user would need to empirically determine the distributions
of the number of models returned per request, in order to be
confident (to a given level) they have the required
resources. Such undertakings may well be difficult or
prohibitively expensive for some EC2 customers.

For the original account, the resources available in their
AZs are very different, for example us-west-1c contains no

E5-2650, whilst us-west-1b has 87%. As such they may
well prefer to use us-west-1b as their main AZ, failing over
to us-west-1c only when us-west-1b is unavailable. But
us-west-1c is predominately comprised of the E5507 CPUs;
and so any compute intensive task failing over to us-east-1c
will either require more resource or take longer to run. For
example, if running 20 m1.medium instances in us-west-1b
we may expect, based on the percentages found, to have
17 E5-2650, 1 E5645 and 2 E5507; and failing over to
us-west-1c they could expect 3 E5430, 2 E5645 and
15 E5507. If each instance was assigned the task of running
our benchmark, then in us-west-1b, based on data in Table
5, this would take on average 4,600 s (to the nearest sec)
with a worst case of 4,810 s. Whilst in us-west-1c we have
an average of 6,443 s with a worst case of 6,867 s. Failing
over results in an increase of 40% in the average time, and
43% increase in the worst case.

12 Differences in CPU distribution amongst
instance types in same class

We have identified associations between sets of CPUs and
instances classes. Clearly, the CPUs models backing a given
class will change over time, but for the 6 month period we
have been running experiments this has remained constant.
This suggests medium term stability, and perhaps a desire
on the part of EC2 to limit heterogeneity. The issue we
consider in this section is whether or not there are
differences in the resources obtained by instances types
within the same class, in the same AZ. An understanding of
the CPU distribution per AZ, potentially allows a user to
choose the AZ that offers best performance.

To that end, using the new account, we ran
150 instances for each of 4 FGS instance types in AZ
us-east-1a. The results are recorded in Table 16.

226 J. O’Loughlin and L. Gillam

Table 16 FGS instances in us-east-1a

Type E5430 E5-2650 E5645 E5507

m1.small 0 0 98% 2%
m1.medium 0 85% 15% 0
m1.large 0 67% 33% 0
m1.xlarge 0 85% 15% 0

Table 17 FGS instances in us-east-1a

Type E5430 E5-2650 E5645 E5507

m1.small 0 0 97% 3%
m1.medium 0 91% 9% 0
m1.large 0 71% 29% 0

The most noticeable, and hard to understand, result of this
experiment was the proportion of E5645 CPUs models
backing m1.small instances as compared to the FGS2
instance types. Clearly, when sampling, there is a natural
variation in the proportions we will obtain. Further, it would
be reasonable to assume that the size of a VM may well
affect the resources available to it in a given moment. For
example, consider a host running an m1.xlarge and an
m1.medium, and assume that 1 vCPU requires 1 physical
core. Then, the host has three spare cores, so could run
various combinations of m1.small, m1.medium and
m1.large instances. However, to run an additional m1.xlarge
would require over subscribing of the cores. How the size of
an instance, in relation to its underlying physical host,
effects how it is distributed is not yet something we have
explored.

The second notable feature is the difference in resources
that the m1.large instances obtain. A two sample proportion
test rejects a null hypothesis that the m1.large CPU
proportions are the same as the m1.medium, and so also the
m1.xlarge. Under the current pricing scheme, there appears
to be no financial incentives for EC2 to allocate resources
differently to different instances types within the same class.
We speculate that this may be an unintended side-affect of
scheduling policies.

The experiment above was conducted on September 16.
On the 4th of October (2013), and again using the new
account, we started 100 instances (which is the maximum
number of concurrent spot instances a user may run)
of type m1.small, then m1.medium and finally m1.large in
us-east-1a (m1.xlarge omitted for cost purposes). The
results are recorded in Table 17.

The results of the second experiment are consistent with
the findings of the first, in the sense that there is no
evidence (at a 5% significance level) of any change in
proportions. In a final experiment, on 8th October, we
launched a 100 m1.small instances in us-east-1a, followed
by 100 m1.mediums and we obtained 99 E5645 and 1
E5507, and 87 E5-2650 and 13 E5645, respectively.

In total, from 350 m1.small instances launched in
us-east-1a over a three week period 98% were E5645 and
2% E5507, with no E5-2650, whilst for the FGS2 instances
of the 750 launched approximately 80% were E5-2650 and
20% E5645. This is again supporting evidence for the view
that the m1.small instances are being scheduled differently;
either within the same set of resources or onto a different
set.

Amazon do not, as far as we are aware release details of the
scheduling polices that they have in place. One would
assume they are designed to meet their own specific needs,
be that minimising hosts in use so as to reduce power
consumption, or to simplifying scheduling. There is little
work that we are aware of, on how scheduling policies may
affect the resources, and hence the ranges of
price/performance a customer can obtain.

13 Consistency of proportions over time

In Section 11, we have already seen examples of
consistency in the proportions obtained. Over a short period
of time, we may expect the proportions of resources
obtained to be affected by a number of things: an outage
taking down a number of servers of a particular type,
planned maintenance, and fluctuations in demand. However,
this may well be offset by the scale of EC2. Clearly, we
should expect changes over the longer term as regions, and
AZ within them, grow. Indeed, the reasons that make public
clouds heterogeneous will ensure that the resources we are
able to obtain from them changes over time.

To further examine the consistency of the proportions of
resources obtained we made a number of requests over a
three week period for m1.medium instances in us-west-1c
using the original account. We consider results from one
request to the next to be inconsistent if we can reject the
null hypothesis that the samples are drawn from the same
population at 5% significance level. The results are recorded
in Table 18.

 Should infrastructure clouds be priced entirely on performance? 227

Table 18 M1.medium instances in us-west-1c: 19/09-10/10

Date Sample size E5430 E5-2650 E5645 E5507

19/09 250 16% 0 9% 75%
29/09 80 20% 0 7% 73%
29/09 40 20% 0 10% 70%
29/09 40 15% 0 12% 73%
03/10 100 19% 0 8% 73%
03/10 100 15% 21% 12% 52%
03/10 99 10% 52% 8% 30%
08/10 100 0 82% 11% 7%
09/10 100 14% 0 14% 72%
10/10 100 21% 0 9% 70%

An abrupt change is evident in the resources being provided
on 03/10. Although offering better performing CPUs
(the E5-2650), such changes make predicting required
levels of resource difficult. An auto-scaling application may
well overprovision instances if they are basing the required
number on past performance, which has an associated cost.
On 09/10, and after, we obtain resources that are consistent
with those obtained before 03/10.

It is open to question whether the E5-2650s are intended
to be part of the resources we could obtain, and are simply
often unavailable when we make our requests, or if our AZ
mapping changed for during this period. That is, the
location to which us-west-1c maps to was changed during
this period.

14 Related work

Whilst we are not the only authors to be appraising cloud
systems, the work presented here does help us to comment
on related work, in some cases explaining the results of
others, and in others commenting on why their work may
require more rigorous follow-up. We take the opportunity to
do so for a few such publications here.

In the influential paper ‘Above the Clouds: A Berkeley
View of Cloud Computing’ (Armbrust et al., 2008), the
authors list performance unpredictability as their number
5 obstacle to cloud adoption. The unpredictability is a result
of the variation they found when running the stream
benchmark on 75 instances (instance type unspecified). The
histogram they present is multi-modal and appears to be
made up from three uni-modal distributions. The authors do
not relate their results to potential differences in the
underlying hardware. We conjecture that the variation found
is due to CPU model differences, and from our own stream
results, which we do not present in this paper; we find our
distribution does indeed break down along these lines.

In Ward (2010), the author compares the performance of
a local Private Cloud, based on Ubuntu Enterprise Cloud
(UEC), with EC2. Section 1 states that “…we tested an EC2
virtual machine (VM) and a UEC VM of identical capacity
against different criteria…”. The authors appear to be using
the term capacity to mean size and performance, and so

assume that an m1.large on EC2 and an m1.large on UEC
should provide the same level of performance, irrespective
of underlying hardware. Whilst they are of the same ‘size’
the performance depends on the hardware characteristics of
the compute node where the instance is running. This is a
good example of the misunderstanding that can arise due to
the lack of performance related information in machine
descriptions.

In McGilvary et al. (2011), the authors studied
performance and cost variability of EC2. They state that:
“…the underlying processor of an instance can affect the
performance of an instance of a user’s job despite the
purpose of ECU to obscure the differences”. Although they
identify hardware variation as a cause of performance
variation their work does not extend to identifying all of the
CPU models associated with each instance type, or
quantifying instance type performance variation.

In Phillips et al. (2011), the authors state that the
performance information provided by IaaS clouds is not
sufficient to make a prediction on how an application will
perform. They claim that micro benchmarks, based on the
computational dwarf kernels, may offer better performance
prediction than standard micro benchmarks. They run
dwarf benchmarks across various instances on EC2 and on
BonFIRE (‘Infrastructure-Bonfire’, http://www.bonfire-
project.eu). Whilst benchmarking 10 m1.small instances
they note that the scores fall into two statistically different
performance classes and these classes were determined by
CPU model. However, in the conclusions section they state
‘some machines may have different clock speeds and cache
size and even knowledge of this additional detail does not
help in performance prediction’. However, we have shown
that knowledge of CPU model can be used to predict our
standard benchmark, and it is not unreasonable to assume
we could perhaps, in future, use this to predict other CPU
bound tasks that depend primarily on integer operations.
This is something we intend to explore further in future.

In Ou et al. (2012), the authors identified different CPU
models underlying the same instance types and then use this
to estimate probability of obtaining a particular model as a
method for optimising price/performance. The focus is on
the US-East region alone; our work is more thorough in

228 J. O’Loughlin and L. Gillam

considering a much larger range of regions, availability
zones and instance types together with larger sample sizes.
When formulating their cost model they also assume
(without explicitly stating) that the level of performance
provided by a given CPU is constant, and so only consider
differences between models. We have shown this is not the
case, indeed, we find (in a particular case) more variation in
one model then they report between models. By considering
the performance distribution of each model we find they are
(in most cases) positively skewed, and in some cases we
find maximum values (corresponding to time taken to
complete a task) 3–4 standard deviations above the mean.

There are a number of papers investigating the
suitability of EC2 for HPC (Akioka and Muroka, 2010;
Evangelinos and Hill, 2008; Osterman et al., 2010), and
they generally conclude that latency is too high on EC2 for
MPI codes. Amazon does not yet offer dedicated low
latency interconnects, however they do offer 10 GB
Ethernet for cluster types, and such instances can be placed
close together, as we have briefly discussed in Gillam et al.
(in press).

15 Conclusions and future work

EC2 offers VMs in fixed sizes called instance types, the
definition of which abstracts away underlying hardware
details and to which is applied a computational rating called
an EC2. This suggests homogeneous performance for
heterogeneous hardware. However, as we have shown, the
performance of instances of a given type is determined by
the underlying CPU and differences in performance
between two instances of the same type can be accounted
for by the CPU model. However, whilst identifying CPU
models associated with instances class can be useful to
understand how price and performance may be related, it is
not currently possible to specify the CPU model, or a
desired level of performance (with respect to a given
workload), in most requests. Consequently, it is not readily
possible to predict the likely level of performance of an
instance as this requires prediction of which CPU it will be
backed by.

To address this problem, for each of the four classes of
non-specialised instances – first generation standard, high
CPU, high memory and second generation standard – we
identified an associated set of underlying CPU models. The
performance distribution of a CPU for a given class was
then determined, and given knowledge of a CPU backing an
instance we could use this data to determine the probability
an instance obtains a particular level of performance. By
estimating the proportion of each CPU model across zones,
we can estimate likelihoods of obtaining a particular model
in a given AZ. However, for this to be effective requires
that:

1 the resources a user can obtain from a given AZ are
consistent

2 the AZ mapping does not frequently change.

We would describe the results as relatively consistent;
meaning that for a period of time the proportions of
resources obtained are not so different as to be statistically
different. And indeed, the association between an instance
class and its set of CPU models appears stable, at least in
the 6 month period covered by these experiments. Abrupt
changes can occur though, leading to very different
price/performance levels in an AZ. Further work on AZ
modelling is required to understand the factors that
influence the distribution of resources that a user can obtain.
As already noted, scheduling is likely to be one such factor.
Indeed, scheduling may well have some unintended side-
affects such as a difference in the resources instances types
within the same class may obtain.

Understanding the difference in CPU distribution can be
beneficial as such differences can lead to difficulties for
customers when either:

1 load balancing across AZs

2 having to fail over to another AZ.

In the largest regions, USEast N. Virginia and US-West N.
California, new users are restricted to 3 and 2 AZs,
respectively. A failure of one AZ can result in a user failing
over to another which offers substantially different
performance. This will result in either the user having to run
more instances, and so essentially being additionally
penalised for the zone failure, or potentially failing any
SLAs they may have offered to their own customers for
services on top of these instances. We have also shown that,
due to the way EC2 maps AZ names to accounts, and limits
the AZ a user has access to, different accounts obtain
different resources. Hence, price/performance is dependent
upon the account being used. It is open to question as to
whether or not EC2 customers are aware of this.

We can suggest that some of the problems caused by
performance variation could, in part, be solved by
performance related pricing. Given that performance is
related to the underlying CPU, simply pricing instances
according the underlying hardware would account for the
performance variation seen. However, there would still be
some performance variation as a consequence of running
VMs in a shared environment on technology that was not
originally designed to be used in such a manner. Further, the
variation is likely to be workload dependent and so different
workloads on the same CPU may have different variations.
Finer grained price/performance may be required by some
customers, leading to a need for the pricing of workload
specific SLAs. Until such a time as performance related
pricing is used, it would be possible to exploit differential
performance at the same price – for example, by a broker
re-selling better performing instances to customers at higher
prices to support more stringent SLAs.

 Should infrastructure clouds be priced entirely on performance? 229

References
‘Amazon EC2 FAQs’ [online]

http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute
_Unit_and_why_did_you_introduce_it (accessed 2 July
2013).

‘bzip2’ [online] http://www.bzip.org/1.0.5/bzip2-manual-
1.0.5.html#intro (accessed 2 July 2013).

‘Dwarf-Mine’ [online] http://view.eecs.berkeley.edu/wiki/Dwarfs
(accessed 2 July 2013).

‘Elastic Block Storage’ [online] http://aws.amazon.com/ebs/
(accessed 22 October 2013).

‘Global Infrastructure’ [online] http://aws.amazon.com/about-
aws/globalinfrastructure/
(accessed 2 July 2013).

‘Global Infrastructure’ [online] http://aws.amazon.com/about-
aws/globalinfrastructure/ (accessed 22 October 2013).

‘Google Cloud Platform’ [online]
https://cloud.google.com/pricing/compute-engine
(accessed 2 July 2013).

‘Guest CPU Models’ [online]
https://access.redhat.com/site/documentation/en/Red_Hat_Ent
erprise_Linux/6/html/
Virtualization_Getting_Started_Guide/para-
CPU_Models.html (accessed 25 October 2013).

‘HP Cloud Pricing’ [online] https://www.hpcloud.com/pricing
(accessed 2 July 2013).

‘Infrastructure-Bonfire’ [online] http://www.bonfire-project.eu
(accessed 2 July 2013).

‘SPEC CPU2006’ [online] http://www.spec.org/cpu2006/
(accessed 2 July 2013).

‘Xen’ [online] http://wiki.xen.org/wiki/Credit_Scheduler
(accessed 15 October 2013).

Akioka, S. and Muroka, Y. (2010) ‘HPC benchmarks on Amazon
EC2’, in 2010 IEEE 24th International Conference on
Advanced Information Networking and Applications
Workshop, April, pp.1029–1034.

Armbrust, M. et al. (2008) Above the Clouds: A Berkely View of
Cloud Computing, Technical Report EECS-2008-28, EECS
Department, University of California, Berkeley.

Evangelinos, C. and Hill, C.N. (2008) ‘Cloud computing for
parallel scientific HPC applications: feasibility of running
coupled atmosphere-ocean climate models on Amazon’s
EC2’, Presented at Cloud Computing and its Applications
2008 (CCA-08), Chicago, IL, October.

Gillam, L., Li, B., O’Loughlin, J. and Tomar, A.P.S. (in press)
‘Fair benchmarking for cloud computing systems’, Springer
Open Journal of Cloud Computing.

McGilvary, G., Barker, A., Atkinson, M.P. and Lloyd, A. (2011)
‘Performance and cost variability of Amazon EC2’, Presented
at AHM 2011, York, September.

Osterman, S. et al. (2010) ‘A performance analysis of EC2 cloud
computing services for scientific computing’, Cloud
Computing, Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering, Vol. 34, pp.115–131.

Ou, Z., Zhuang, H., Nurminem, J.K., Yla-Jaaski, A. and Hui, P.
(2012) ‘Exploiting hardware heterogeneity within the same
instance type of Amazon EC2’, Presented at 4th USENIX
Workshop on Hot Topics in Cloud Computing, Boston, MA,
June.

Phillips, S., Engen, V. and Papay, J. (2011) ‘Snow white clouds
and the seven dwarfs’, in Proceedings of the IEEE
International Conference and Workshops on Cloud
Computing Technology and Science, November, pp.738–745.

Popek, G.J. and Goldberg, R.P. (1974) ‘Formal requirements for
virtualizable third generation architectures’, Communications
of the ACM, July, Vol. 17, No. 7, pp.412–421, ACM Press,
New York, NY, USA.

Ward, J.S. (2010) ‘A performance comparison of clouds Amazon
EC2 and Ubuntu Enterpise Cloud’, Presented at SISCA
DemoFest, Edinburgh, November.

