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1 Introduction

As defined in graph theory, graph can be described by
a set of vertices and edges associated with attribute
values on them. It is a commonly used and powerful
data representation for describing data with relationships in
various science domains, such as social network (Rapoport
and Horvath, 1961), traffic network (Chen et al., 2009),

web graph (Barlow, 2003), power grid (Watts and Strogatz,
1998) and biology (Jeong et al., 2001). Many research work
have been done for graph data in the past but most of them
were discussed with respect to a static graph, where the
graph structure is given and fixed in the problem definition.
Not until recently, researchers started to pay attention on
the challenges of time evolving graph (TEG) where the
graph structure can be changed dynamically with time by a
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set of update events, such as edge addition/deletion, vertex
addition/deletion and attributes modification. Let us take
the social network data from Facebook as an example. The
data can be represented as a graph by mapping the users as
vertices and their friendships as edges; it is a graph evolving
over time. According to a study (Noyes, 2018), in every
60 seconds 510,000 comments are posted, 293,000 statuses
are updated and 136,000 photos are uploaded. Hence many
valuable information can only be obtained by analysing the
graph data across time periods, such as tracking the trends
of activities and changes in user behaviours.

A traditional approach to deal with TEG is to convert
the data into a set of graph snapshots at each time interval
and then apply the techniques for static graph on these
individual graph snapshots. However as the volume of
graph data and velocity of graph update events continue to
grow at an unprecedented rate, to store and process these
graph snapshots independently can result in significant
amount of wastage in storage space and computation
power. Therefore, many new challenges urgently needs
attention from research community to develop a new set
of algorithms, techniques and tools specifically for TEG.
In this work, we give a thorough survey on some of these
recent attempts with the aim to help researchers understand
various dimensions of problems in TEG and resolve these
problems more efficiently.

Processing TEG from user’s perspective is about
tracking the changes in the graph. These changes are
tracked using fundamental algorithms and further these
algorithms are implemented on computing frameworks to
perform analytics on TEG. Hence the three different aspects
of processing TEG are:

1 graph analytic

2 graph algorithms

3 graph frameworks.

Due to the different characteristics of these three aspects,
there are different research communities focusing on them
too. For example, the data mining community focuses
on graph analytic, graph theory community focuses on
graph algorithms and the distributed computing community
focuses on frameworks. The approaches in each of these
aspects are dependent on each other and form a processing
stack from the lowest level of computations to the highest
level of applications. We will further explain these three
aspects by using an advertisement in social media as
example.

1 Graph analytic: analysis of a graph is the key to
business intelligence and provides current trends by
analysing user’s behaviour.To post an advertisement in
social media, we need to find the most influential
users in a graph. Such user’s can be found by
computing centrality of a network.

2 Graph algorithm: algorithm is a procedure to solve a
problem. For example the centrality of a graph can be
computed by calculating all pair shortest path. The

user which is part of maximum number of shortest
path would be the most influential.

3 Graph frameworks: framework is a platform that
stores and updates the graph. For example, in order to
compute all pair shortest path, we need to implement
it on a graph framework through an API which
handles the communication and graph data.

In this survey, we collect the recent research work on TEG
from the above mentioned aspects. In graph analytics and
graph algorithms, we will discuss several use cases and in
graph frameworks, we will discuss various design issues
for building frameworks. In graph analytic, we will discuss
finding centralities, detecting communities, detecting rare
categories and link prediction. In graph algorithms, we will
discuss about shortest path, pattern matching, minimum
spanning tree (MST) and path connectivity (PC). In graph
frameworks, we will discuss the frameworks for TEG.
Following our survey, we also propose our own computing
framework architecture for TEG, called DASH and we
briefly describe the designs and challenges to implement
this computing framework. Moreover we have even shown
initial results by comparing DASH with graph processing
system (GPS). In the end, we have listed down four
major challenges of TEG, i.e., tracking change, computing
change, locating change and storing change. We also
summarised all the approaches and researches discussed in
this paper on the basis of these challenges.

The rest of the paper is organised as follows. First, we
summarise the work of graph analytic, graph algorithms
and graph processing frameworks in Sections 2, 3, and
4 respectively. Then we present our proposed system
architecture for TEG in Section 5 followed by the survey
discussions it is presented in Section 6. Finally, the paper
is concluded in Section 7.

2 Graph analytic

Graph analytic is all about tracking the change in graphs.
It studies the change and provides the knowledge of
the current trends and characteristics of data. It plays
major role in business intelligence to build applications,
such as recommendation systems. In this paper, we focus
on the data mining techniques for analysing graphs and
discuss how these techniques are extended for the graphs
that evolve over time. In particularly, we summarise the
techniques for three graph analytic problems, including
centrality, community detection and link prediction with
respect to change. They are all fundamental problems for
mining graph data, like social networks.

2.1 Centrality

Centrality is a problem to identify the most important or
central elements of a network graph. Depending on the
problem definitions, there are various kinds of centrality
like degree centrality, closeness centrality, page-rank
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centrality, betweenness centrality, etc. While centrality
is a well-known problem, only closeness centrality and
betweenness centrality have been studied on TEG so far.
Hence we discuss these approaches below.

• Betweenness centrality: betweenness centrality
measures the importance of a node in a graph. It
calculates shortest path between every pair of node
and then determine betweenness centrality by
calculating the number of shortest paths passing
through every node. One of the most popular
algorithm for calculating betweenness centrality is
Brandes (2001) algorithm and it runs in O(nm) time,
where n and m are the number of edges and vertices.
Betweenness centrality computes shortest path for
every pair of node which itself is an expensive
operation and hence there is a need of an improvised
algorithm. Kourtellis et al. (2015) proposed a
framework for computing vertex and edge
betweenness centrality incrementally in large evolving
graphs. It maintains the latest update of both vertex
and edge betweenness centrality by assuring that there
is no impact on the computational cost.

• Closeness centrality: closeness is a metric assigned to
each node depending on the distance from other
nodes. A node which is closer to many other nodes is
called an influential node. In social media, it will be
faster to broadcast a message from these influential
nodes. Kas et al. (2013) demonstrate the design of an
incremental closeness algorithm that supports efficient
computations of all-pair shortest paths in a graph
where edges are added and removed continuously.
They even provide an insight to the need of
incremental algorithms for efficient computation. The
main idea is to respond to the changes over time in
the analysed network by performing early pruning
and propagating the updates only to the affected parts
of the network. However there is a tradeoff between
storing pre-computed and redundant information. It
uses closeness centrality as an incremental metric.
This metric is responsible for the speed with which
closeness centrality can be calculated for all nodes in
a network.

2.2 Community detection

Community is a structural property of real networks. It is
a fully connected subgraph. Communities in social media
could be a set of influencers, group leaders, mediators,
followers, etc. The solution designed for this problem
should be able to discover changes and quickly react by
modifying the underlying community structure. We are
going to discuss two problems related to communities,
i.e., evolutionary clustering (EC) and incremental clustering
(IC). EC algorithms try to determine new clustering results
with minimum changes. IC is just an incremental algorithm
to do clustering and focus only on the current results.

When we talk about community behaviour, it comprises
of detecting communities and studying the change in
communities’ structure. Amelio and Pizzuti (2015) detects
the change using population and sensor-based methods.
They propose a framework which does three main tasks:

1 finding community structure in the underlying network

2 automatically discovering changes when they occur

3 quickly reacting to changes by applying specific
strategies that properly handle diversity in the genetic
population in order to achieve a new optimum.

The two strategies that are evaluated to react to the changes
in order to obtain an optimum are hypermutation (HM)
and random population initialisation (RI). In HM, the value
of each gene of a chromosome is modified by randomly
assigning to one of the neighbours and in RI, the overall
population is reinitialised by using the new network.

After the extraction of communities from the social
graph, the next step is to detect the change and analyse
the evolution of the community. This evolution can be
tracked by defining a ‘change’ and detecting it periodically.
FICET (Liu et al., 2015) is a framework to detect and
track community evolution incrementally, by using both
current and historical data. The core communities are
extracted in a core subgraph and expanded to the whole
graph gradually. It does not need to give weights to the
snapshots or temporal costs or the number of communities
to find. Moreover it can even keep high quality of clustering
simultaneously. They introduced four validation measures
such as the normalised mutual information (NMI), the
modularity value (MQ), the number of communities and
the running time to compare FICET with other existing
approaches.

Most of the traditional clustering algorithms focus on
topological structure of the graph, which means that every
partition will have similar topological structure. Inc-cluster
(Zhou et al., 2010) ignores the topological structure and
performs partitioning in such a way that each partition
is similar in terms of a vertex’s attributes. Inc-cluster
is an improvement to SA-cluster. SA-cluster performs
matrix multiplication to compute random walk distances
between graph vertices. Every time edges are updated,
random walk distances are updated by repeatedly doing
matrix multiplication. Inc-cluster proposes an algorithm
which incrementally updates random walk distances. They
performed experiments and compared the clustering quality
and speedup with other clustering algorithms and achieved
significant speedup.

2.3 Link prediction

Link prediction is used to predict future links in advance
or to predict missing links in an incomplete or corrupted
data. In social media, link prediction could be used to
recommend new friends that are connected to your existing
friends. It aims to estimate the likelihood of existence of
edges by using the current structure of the graph. Existing
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link prediction methods fail to generalise the graph stream
settings because the graph snapshots where link prediction
is performed, are no longer readily available in memory or
even on disks for effective graph computation and analysis.
In social networks, the interaction between participants
including friend requests, document/photo sharing and
message exchanges are fast, transient, and are of very large
scale. It is desirable to support online link prediction in
social graph streams for user/commodity recommendation,
market analysis and business intelligence. Zhao et al.
(2016) formalised the streaming link prediction problem in
graph streams and identified a series of fundamental and
neighbourhood-based link prediction measures. It includes
Jaccard coefficient, common neighbour and Adamic-Adar
as target measures for streaming link prediction. They even
designed effective graph sketches for accurate estimation
in graph streams. The broader idea described here is
the identification of structure in different target measures
and encode such salient, structure-aware correlations into
different space-efficient graph sketches (constant space
complexity per vertex) for streaming link prediction.
Cost effective graph sketches are also designed based
on Min-Hash and vertex biased sampling. Specifically,
they design Min-Hash-based graph sketches to estimate
the Jaccard coefficient measure and vertex-biased reservoir
sampling-based graph sketches to estimate the common
neighbour and Adamic-Adar measures.

2.4 Rare category detection

Rare category detection is used to solve many problems
like synthetic ID detection, insider threat detection, fraud
detection, etc. In suck kind of problems, only a small
percentage is of interest and it is known as minority
class. The traditional approach to identify such classes
is random sampling. However in case of TEG, those
minority classes change their behaviour intentionally due
to fear of getting caught. Zhou et al. (2015) addresses this
problem by proposing two incremental algorithms to detect
initial examples of minority classes. Their main idea is
to update the detection model by local changes instead of
reconstructing at every update. They also propose another
algorithm with softer upper bounds.

3 Graph algorithms

Algorithms are simply a set of rules for computation.
Before computing, we should know where to compute and
how to compute. Where refers to the portion of the graph
that needs re-computation due to graph update events. How
refers to the techniques of algorithms that are required to
reduce the amount of computation. Graph algorithms plays
a major role in processing of TEG by locating the change
and computing the change.

3.1 Pattern matching

Graph pattern matching is finding a subgraph in a large
graph that is similar to a given graph. It is widely used
in social network analysis. Pattern matching focuses on
the techniques to compute, i.e., how to compute. Pattern
matching can be based on various models, i.e., graph
simulation, bounded simulation and subgraph isomorphism.
The two research works that we are going to mention
are the unboundedness of incremental pattern matching on
all the above models (Fan et al., 2011) and incremental
pattern matching based on graph simulation in a distributed
environment (Kao and Chou, 2016).

Fan et al. (2011) proposed incremental algorithms for
various models of pattern matching. It investigated bounded
simulation, subgraph isomorphism, and graph simulation.
This is the first work to study the boundedness of pattern
matching in terms of O|CHANGED|, where CHANGED
is addition/deletion of nodes/edges. It shows that all the
algorithms are unbounded. However, it is bounded for
special cases like unit deletion and insertion.

The authors in Kao and Chou (2016) further proposed
a distributed incremental algorithm for graph simulation
pattern matching model. The basic design of distributed
algorithm is similar to the sequential algorithm. The
re-computation operations are only triggered from the
vertices where graph update events occur. If a vertex
is added or removed from the matching set, the status
of the neighbours needs to be re-evaluated as well.
Different from the sequential algorithm that uses a stack to
traverse the vertices requiring re-evaluation, the distributed
algorithm needs to propagate messages to the vertices
that need re-evaluation. Only the distributed algorithm for
graph simulation model was proposed because it is the
most relaxed matching model which allows vertices to
determine their matching status based on local information.
Other stricter matching models may require global
information too, and thus cannot be scaled effectively
in distributed computing environment. Overall, all these
incremental pattern matching algorithms showed significant
improvements on computing time over traditional batch
computations, especially when the percentage of changes to
the graph is small.

3.2 Page rank

Page rank depends on the computations of previous results
or messages from the previous iteration. It only considers
location of the computation therefore it focuses on ‘where
to compute’. The main task of the algorithm is where
to detect the change in the graph when the graph is not
notified about the changes. We are going to discuss two
algorithms in this section and the main idea is to avoid
complete crawling of web graph and find a way in which
page rank computed at any point of time is nearly optimal.
The major task is finding the changed portion of a graph as
it saves a lot of computational cost. Desikan et al. (2005)
proposed an algorithm which can find the changed portion
of the graph by partitioning the graph in such a way that
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the changed and unchanged graphs remain in the separate
partition. The state of the vertex is only affected by the
incoming edge, so it can determine the changed part. In
the end only the changed part needs to be recomputed.
Bahmani et al. (2012) used probing approach to find the
changed portion of the graph. The algorithm decides which
part of the graph should be probed to compute page rank.
It is based on the idea of crawling a smaller portion of
graph and approximating the page rank computation. They
proposed two algorithms: randomised and deterministic.
The randomised algorithm works on the basis of intuition
that nodes with higher page rank needs more probing. The
deterministic algorithm uses priority probing.

3.3 PC and MST

PC and MST are well known graph computation problems.
It also focuses on ‘where to compute’. Web search engine
can be a good example for such class of algorithms where
search engine crawls the web periodically and updates
the graph of web links without getting notified about the
changes. The challenge of this algorithm is that it can only
probe a small portion of graph at one time. The approach
used in both MST and PC is based on selection-sorting
method. The vertex and edges need to be sorted in some
order (ascending/descending) depending upon the problem.
After sorting, the required edges or nodes are selected as a
resultant graph.

Unlike common algorithms that gets notifications from
the graph whenever it changes, the algorithms proposed
by Anagnostopoulos et al. (2012) does not notify. The
objective of this algorithm is to obtain the resultant path
in case of PC, and spanning tree in case of MST. There
is a need of a probing algorithm which selects node or
edges, re-computes them and validates the result. If the
result produced is not appropriate, then continue probing.
The change in the graph is limited to edge-swapping.

The purpose of PC is to find a Eular circuit in
a graph where every node is visited exactly once and
there is a distinct path between each pair of node. They
proposed two algorithms, i.e., one path (maintains one
path throughout the execution) and two path (maintains
two paths simultaneously). A MST is one which costs the
least among all spanning trees. In MST, general sorting is
performed to keep the approximation of ordering of all the
edges. At each time step, Kruskal’s greedy strategy is used
to maintain MST. The results of MST are even applied to
Matroids to find maximal independent set. The authors in
this paper focused on the ‘how’ aspect. They developed
algorithms that are directly related to computation.

3.4 Summary

Table 1 summarises all the algorithms discussed previously
on the basis of four parameters:

1 boundedness

2 changes allowed

3 method used

4 result types.

Fan et al. (2017) emphasised the importance of
boundedness for the feasibility of TEG algorithms. An
algorithm is locally bounded if the computation is based
on a set of neighbouring nodes in the changed graph
instead of the original graph. An algorithm is relatively
bounded if the computation is based on the changed
graph over a set of time intervals in order to avoid
re-computation. Unit changes are allowed in a TEG and
they are insertions, deletions and edge swapping. As
discussed earlier, the methods used by these algorithms
are incremental, partitioning, probing and selection sorting.
The results of these algorithms are optimal or approximate
in nature.

Table 1 Graph algorithms summary

Problem Algorithm Boundedness Changes allowed Method Result type
Pattern Fan et al. (2011) Unbounded Insertions, Incremental Optimal
matching (GS, BS, ISO) deletions
Pattern Kao and Chou (2016) Unbounded (GS) Insertions, Incremental, Optimal
matching deletions distributed
Pagerank Desikan et al. (2005) Locally-bounded Insertions, Partitioning, Optimal

deletions incremental
Pagerank Bahmani et al. (2012) Locally-bounded Insertions, Priority probing, Approx.

deletions intuition probing
Path Anagnostopoulos et al. (2012) Relatively-bounded Edge-swapping Selection Approx.
connectivity sorting, probing
MST Anagnostopoulos et al. (2012) Relatively-bounded Edge-swapping Selection Approx.

sorting, probing
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Table 2 Graph computing framework summary

Framework Platform Programming model Communication model Data mgmt. strategy
Kyrola et al. (2012) Single node Vertex-centric Asynchronous Parallel sliding

window
Chen et al. (2012) Heterogeneous Vertex-centric Pull Partitioning

(bandwidth)
Malewicz et al. (2010) Distributed Vertex-centric Synchronous Partitioning

(vertex cut)
Roy et al. (2013) Single node Edge-centric Synchronous Partitioning

(edge cut)
Yuan et al. (2014) Single node Path-centric Synchronous Partitioning

(paths)
Simmhan et al. (2013) Distributed Subgraph-centric Synchronous Partitioning

(GoFS)
Zhang et al. (2014) Distributed Vertex-centric Asynchronous Partitioning

pull
Gonzalez et al. (2012) Distributed Vertex-centric Asynchronous Partitioning

synchronous (edge cut)
Filippidou and Kotidis (2015) TEG Vertex-centric Asynchronous Partitioning

(edge cut)
Abdolrashidi and Ramaswamy (2016) TEG Vertex-centric Asynchronous Partitioning

(incremental)
Tsourakakis et al. (2014) Distributed Vertex-centric Asynchronous Partitioning

(edge cut)
Ediger et al. (2012) Shared memory Vertex-centric Asynchronous Snapshots

(asynchronous)
Cheng et al. (2012) Distributed Vertex-centric Asynchronous Snapshots

pull (asynchronous)
Han et al. (2014) Distributed Vertex-centric Asynchronous Snapshots

(periodic)
Shi et al. (2018a) GPU Vertex-centric Asynchronous Partitioning

(colouring-based)

4 Graph frameworks

Computing framework is a platform in which we can
efficiently perform various operations in graphs. Building a
framework is a very difficult task for TEG because it needs
to store and update the changes in the graph. To facilitate
computations on TEG, there are various frameworks which
are proposed, and some are implemented too. Table 2
summarises all the frameworks discussed in this section on
the basis of the design issues.

4.1 General graph computing techniques

Graph computation is a vast field for discussion. In this
section, we have categorised the frameworks based on their
design principles, i.e.,

1 platform

2 programming model

3 communication model

4 data management strategy.

4.1.1 Platform

Large graph cannot be stored on disk, so we have four
different platforms: single node system, distributed system,
heterogeneous system, and graphics processing unit (GPU).

• Single node: single node systems take advantage of
shared memory that allows efficient inter-process
communication, as multiple tasks have access to the
same memory. It reduces the communication cost by
this process. However the disadvantage is there is
limited memory in single node systems. Graphchi
(Kyrola et al., 2012) was the first framework to use
disk-based system for computing large graphs.
Graphchi (Kyrola et al., 2012) tells us how to manage
a large graph on a disk and deal with graph mutation.

• Distributed system: when the graph is too large and
cannot be stored on a single machine, we use
distributed systems. A distributed system consists of
multiple processing units where each unit has private
memory. The major challenges in distributed
environment are communication cost and barrier
synchronisation. Malewicz et al. (2010) started
exploiting the distributed architectures of commodity
clusters to enable efficient processing of large
volumes of data.
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• Heterogeneous systems: hardware and network
topology does not have to be uniform in a cluster.
Some machines may have a newer generation of
hardware or some machines may be better connected
than others. A heterogeneous environment refers to an
environment where not every processing unit is
equally powerful. Surfer (Chen et al., 2012)
recognises heterogeneity challenges for cloud
computing and tries to partition the graph based on
available bandwidth between machines.

• GPU: because GPU provides massive degree of
parallelism and high processor bandwidth, they can be
used to process large graphs with billions of edges
and nodes. Shi et al. (2018b) did a survey on key
issues of graph processing on GPUs. Frog by Shi
et al. (2018a) proposes a hybrid colouring model to
partition the graph. They overlap the transferring time
of data with execution of kernel function in order to
improve the system performance.

4.1.2 Programming model

Most of the programming models are vertex-centric. The
other programming models are proposed to optimise the
performance and to minimise the communication overhead.
Pregel (Malewicz et al., 2010) is a vertex-centric model
where kernel runs on each vertex in parallel. X-stream
(Roy et al., 2013) is an edge centric graph processing
model on a single machine and addresses the disk access
problem by serialising it. Path centric approach (Yuan
et al., 2014) aims to improve convergence speed by
traversing and partitioning the graph on the basis of paths.
GoFFish (Simmhan et al., 2013) tries to minimise the
communication between vertices by introducing subgraph
level programming model. Vertices in a subgraph can
share information. The information can be shared directly
between the subgraph.

4.1.3 Communication model

• Synchronous/asynchronous: synchronous execution
(Simmhan et al., 2013) of a graph algorithm can be
depicted as a sequence of iterations, delimited by a
global barrier. Each iteration performs updates based
on values from the last iteration (in parallel). Updated
values are only exchanged between iterations.
Asynchronous execution (Zhang et al., 2014) lets
updates be performed on the most recent data.
Synchronisation is performed as soon as possible,
rather than through a global barrier, resulting in an
irregular communication interval. Frameworks that
make a distinction between local and remote vertices
can benefit from local asynchronous computation
while synchronisation of remote values is still
performed in synchronous iterations.

• Push/pull: in a push style flow, the information flows
in a forward direction. As soon as an update occurs,

message is sent to all neighbours. In a pull style flow,
information flows in the reverse direction, and the
active vertex updates their shortest path length by
proactively reading the lengths of their neighbours’
paths. Message-based communication naturally map
to a push-based communication flow, while Shared
Memory maps to a pull-based flow.

4.1.4 Data management strategy

Graph partitioning is a very old problem which has
been studied for decades. The usual applications of graph
partitioning include divide and conquer algorithms, parallel
computing, de-clustering algorithms and many more. When
the size of graph is large, then graph partitioning can be
used for web searches, locating hot spots, trace targets,
etc. All the existing graph partitioning algorithms are
appropriate for large graphs; however they cannot be
helpful in case of TEG.

• Edge cut/vertex cut: the partitioning can be performed
either on edge cut or vertex cut. An edge-cut evenly
assigns vertices to partitions with a minimal number
of crossing edges. Computations need to be expressed
on edge-level to allow for efficient parallel
computation. A vertex-cut evenly assigns edges to
partitions with a minimal number of crossing vertices.
For many real-world graphs, where degree
distribution follows a power law, a vertex-cut leads to
a more balanced partitioning. Edge cut (Gonzalez
et al., 2012) is more efficient and maintains data
consistency where as in vertex cut the state of a
vertex keeps on changing.

4.2 TEG computation technique

Wickramaarachchi et al. (2014) discussed various
challenges and issues involved in processing TEG. The
purpose of such framework is to help the users in
implementing graph algorithms efficiently. Gao et al. (2015)
discussed five major issues that should be considered for
designing frameworks:

1 graph distribution

2 on-disk graph organisation

3 programming model

4 message model

5 synchronisation policies.

There are many frameworks for parallel processing of large
scale graphs and they are widely discussed in Doekemeijer
and Varbanescu (2014) but very few have been proposed
for TEG so far. Hence, we are discussing these challenges
related to TEG in the following sections.

Since the graph is changing, the two major challenges
are:
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1 graph repartitioning

2 asynchronous snapshots.

Every time the graph changes, it needs to be repartitioned
therefore we need efficient graph repartitioning algorithms.
Another challenge is to track the changes in the graph,
hence taking snapshots is very important. The cost of taking
snapshots is considerable high.

4.2.1 Graph repartitioning

The purpose of partitioning is to split the data across
partitions in such a way that most of the computations can
be performed locally. An efficient partition has minimum
number of edges across partitions. In case of TEG, the
nodes and edges are streamed in an arbitrary order.

Filippidou and Kotidis (2015) proposed a full TEG
partition scenario where changes can be processed
simultaneously by the system. There is also an online
node placement heuristic technique that takes decision of
placing incoming nodes on the fly. All the statistics required
can be evaluated from the summary created by compact
summary structure from compressed spanning trees (CST).
CST helps in performing partitioning on demand, whenever
required. The way of partitioning and placement of graph
data on computing nodes has a significant impact on the
performance of the cluster.

Abdolrashidi and Ramaswamy (2016) proposed a cost
sensitive approach for partitioning the dynamic graphs.
It incorporates multiple performance factors such as
communication cost, number of intra-node edges and
load distribution among computing nodes. The incremental
algorithms are also proposed which uses the cost heuristics
to handle graph modification events.

Fennel (Tsourakakis et al., 2014) tries to formulate
a graph partitioning objective function which consists of
two elements: cost of edge cut and cost of sizes of
individual clusters. There could be three types of streaming
orders: random, BFS and DFS. This paper proposes
a k-partitioning algorithm which is responsible for the
decision regarding placement of new vertices, however the
location of the vertex cannot be changed again. One-pass
streaming algorithm is also proposed by using a greedy
strategy. It assigns each arriving vertex to a partition such
that the objective function of the k graph partitioning
problem is maximised.

4.2.2 Asynchronous snapshots

We need a special data structure that enables to manage
such huge graphs and analyse the changes in the graph.
It should support fast insertions, fast deletions and fast
updates on graph. Stinger (Ediger et al., 2012) prevents
locking mechanism but it does not support distributed
systems. It maintains snapshots in a shared memory system.
It generates snapshots after fast update in the memory.

Figure 1 Architecture (see online version for colours)

A kineograph (Cheng et al., 2012) is a distributed system
that can process continuously changing graphs. It separates
graph processing and graph updates. All the updates
are transformed into sequence of transactions. Kineograph
handles parallelism, consistency by guaranteeing atomicity,
fault tolerance by handling ingest node and graph node
failure, and periodically returns updated results. It supports
static graph algorithms by operating over a snapshot,
distributed across nodes. It consists of an efficient graph
engine which supports incremental computations.

Chronos (Han et al., 2014) is specifically optimised
to run in-memory iterative computations. It maintains
snapshots periodically and construct it on the fly. This paper
focuses on two things: locality and scheduling. Locality
can be divided into two types: time-locality which can be
created as time progresses linearly and structure-locality
which can only be an approximate, as it is challenging to
project a graph structure into a linear space. Chronos favors
time-locality when there are multiple snapshots in memory.
Chronos schedules graph computations to leverage the
time locality. Temporal graph engines calculate the results
across snapshots rather than around each vertex. Chronos is
responsible for all the decisions regarding batch operations
associated with each vertex across multiple snapshots.

5 DASH: proposed framework

To address the problem of processing time-evolving graph,
we propose a system DASH with new system architecture
which is distributed, asynchronous and dynamic. The goal
of DASH are as follows:

1 manage graph data dynamically instead of
pre-partitioning, in order to avoid long graph
pre-partition time

2 schedule the task at runtime with workload aware
property to achieve better load balance
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3 use asynchronous and dynamic computing model with
incremental algorithm to speed up convergence of
computation

4 load only the necessary data to compute node in order
to reduce memory usage.

In this section, we have explained the architecture of DASH
followed by experimental evaluation.

5.1 Architecture

After our survey on various frameworks in the earlier
sections, we propose a framework that is required for TEG.
This framework consists of a dynamic execution model
in which jobs are defined as an incremental algorithm. In
this section we have explained the framework in detail.
Before explaining each component in detail, we will
define: execution model, jobs, tasks and graph state. The
architecture is shown in Figure 1.

1 An execution model refers to the execution of
components of a framework, i.e., jobs and tasks.

2 A job is an incremental algorithm which runs on the
query engine and consists of several tasks. The job
will be executed dynamically by breaking it into
tasks. This framework uses vertex driven approach
where components interact with each other via
message passing.

3 A task is represented as a message; it is a single
computation of the job. A task can be defined as task
{jobID, vertexID, timestamp, execinf}; where
jobID is an unique identifier for a job, vertexID is an
unique identifier for every vertex in the graph,
timestamp is the time at which the job starts and
execinf contains all the parameters required for the
execution of job. Tasks are independent and can be
scheduled and run on any node at run time. Thus it
removes the synchronisation barrier.

4 An event can be addition or removal of an edge or a
vertex, i.e., event {timestamp, graphID, action}.

5 Graph state represents the information with respect to
job execution, i.e., how does the graph look like at the
time of computation. In our framework, graph state is
maintained by graph tracker and it provides the state
information to the loader as well as the scheduler.

To avoid an overhead of maintaining and storing snapshots,
we propose a dynamic way for tracking the graph. We
reconstruct the graph dynamically during the computation.
This might seem to be a delayed operation but we believe
it can overlap this time with the computation time. DASH
is basically an event driven framework which follows
publish/subscribe model. Whenever a user tries to query the
graph, those queries should be converted into algorithms
which can be executed incrementally. The whole framework
is designed in such a way that it supports incremental

algorithms. We explained above that the graph state is
stored temporarily at the time of computation, which is
even a way to implement incremental approach. All the
components with their functionality are explained below.

5.1.1 Ingest nodes

When input data arrives in the system, it consists of several
events, i.e., add edge E or remove edge E. The purpose
of having ingested nodes is to connect the source of data
to our framework. The action occurs either on vertices or
edges, such as:

1 an edge consists of a source and destination vertex,
edge (srcID, desID)

2 a vertex consists of the name of the vertex, vertex
(name).

The two main functions of ingest nodes are:

1 accepting the incoming data and converting it into
graph events, i.e., graph-update operations

2 sending graph-update events to the graph tracker in a
distributed manner.

5.1.2 Graph tracker

The graph tracker has three roles:

1 it is responsible for storing the events sent by ingest
nodes

2 it also provides graph information to the scheduler

3 it sends the subgraph which is a set of vertices to the
loader.

An important challenge for graph tracker is to store and
keep record of events. There could be many possible ways
to do so, for example we can store it in the memory
structure. In this case, we need to solve the synchronisation
issue as addressed by Stinger (Ediger et al., 2012) or we
can store it as an update event file. We need to make sure
that it loads efficiently from the disk as stated by xstream
(Roy et al., 2013). The last option could be to store it in
the graph database which generally does not scale well.

5.1.3 Query engine

Before explaining the role of query engine, the term Task
should be made clear. There are two types of tasks in
our framework, it can be either a new task or a currently
running task. Query engine is an interface between user
and framework. It receives queries from user and converts
them into set of jobs. One job consists of many tasks. To
convert user queries into jobs, there is a requirement of a
different query language. Our query engine follows publish
subscribe model as described in Cheng et al. (2012). This
is a pull-based mechanism in which user can subscribe to
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receive the results. The basic two functions of query engine
are:

1 it converts the jobs submitted by user to a set of
computation tasks and sends them to the job scheduler

2 after computation has successfully finished, it collects
all the results and publish them to the subscribed
users.

5.1.4 Scheduler

Scheduler in our system plays an important role, and
we employ a scheduling algorithm that optimises the
performance of our system. First, our scheduling algorithm
is data locality aware. It maintains and updates a mapping
table between data and worker. In the process of decision
making about which of the worker to assign the task, it
will first check if the data has been loaded into any of the
worker. The worker who already has the graph data gets
higher priority of being assigned to the task because of the
reduction of network traffic from the scheduler to the graph
tracker, and the graph tracker to the worker.

Second, our scheduling algorithm ensures that there is
load balancing among workers by dynamic task scheduling.
The performance of load balancing is obvious in parallel
program and distributed system. The performance of the
system may have huge degradation when load is unbalanced
since every compute node, process or thread have to
wait until all the tasks finishes their computation. As a
result, unbalanced load leads to long waiting time and low
performance.

Algorithm 1 Scheduling algorithm
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subscribe model as described in Cheng et al. (2012). This
is a pull-based mechanism in which user can subscribe to
receive the results. The basic two functions of query engine
are:

1 it converts the jobs submitted by user to a set of
computation tasks and sends them to the job
scheduller

2 after computation has successfully finished, it collects
all the results and publish them to the subscribed
users.

5.1.4 Scheduller

Scheduller in our system plays an important role, and
we employ a schedulling algorithm that optimizes the
performance of our system. First, our schedulling algorithm
is data locality aware. It maintains and updates a mapping
table between data and worker. In the process of decision
making about which of the worker to assign the task, it
will first check if the data has been loaded into any of the
worker. The worker who already has the graph data gets
higher priority of being assigned to the task because of the
reduction of network traffic from the scheduller to the graph
tracker, and the graph tracker to the worker.

Second, our schedulling algorithm ensures that there is
load balancing among workers by dynamic task schedulling.
The performance of load balancing is obvious in parallel
program and distributed system. The performance of the
system may have huge degradation when load is unbalanced
since every compute node, process or thread have to
wait until all the tasks finishes their computation. As a
result, unbalanced load leads to long waiting time and low
performance.

While it is hard to maintain load balancing when
computing on TEG in systems with pre-partition, DASH
can perform load balancing no matter which graph partition
the task needs due to our dynamic schedulling algorithm.
If there’s no data locality for the task or there are multiple
workers that have data, scheduller will assign the task to
the worker with least load by observing the queue length
of each worker. By assigning tasks in run time, DASH can
have good load balance.
Algorithm 1 is the algorithm of our scheduller. Given the
vertex ID of a task, the scheduller returns the ID of the
worker where the task will be executed on. The scheduller
first tries to select the worker with the least load from the
workers with data. If there is no worker that has data, the
scheduller selects any worker with the least load. This is
implemented by constructing a workerDataLocalityList
in line 2-7, and selecting the least loaded worker from line
8-13. This schedulling algorithm is simple yet effective, it
not only avoids complicated computation that might slower
down the schedulling process but also achieves the goal of
good data locality and load balance.

Algorithm 1 Schedulling algorithm
Input: Vertex v of task, list with all the workers workerList
Output: Worker ID w for vertex v
1: workerDataLocalityList = []
2: for each w ∈ workerList do
3: /* Check which worker has data of vertex v */
4: if hasV ertexData(w, v) is true then
5: workerDataLocalityList.append(w)
6: end if
7: end for
8: if workerDataLocalityList.length() is 0 then
9: /* Assign to worker who has least load */
10: return getLeastLoad(workerList)
11: else
12: /* Assign to worker who has data locality and least load

*/
13: return getLeastLoad(workerDataLocalityList)

14: end if

5.1.5 Loader

The task of Loader is to load the requested graph into the
memory of compute node on the basis of the subgraph
i.e. set of vertices that are provided by Graph Tracker.
It introduces more vertices to connect the disconnected
components. It receives subgraph from Graph Tracker
which is actually a data structure containing the set of
vertices. It also receives graph information required for
schedulling i.e. set G’ which consists of the grouping
components of scheduller.

5.1.6 Worker

This is the execution unit of our framework. The
responsibilities of Workers are as follows: i) the workers
consist of a local execution queue, where the data waits
until they are ready for execution and CPUs to be available;
2) to maximize the CPU execution, the ordering of tasks
depends on the ready data; iii) It either generates new task
or send them to scheduller or sends results to Query Engine;
iv) the task migration among nodes which is known as work
stealing.

5.1.7 Synchronizer

As the name suggests, synchronizer is responsible to ensure
the integrity of data in a framework. In DASH we need
synchronizer because we allow jobs to overlap. It does
the following tasks: i) it handles vertex duplication among
subgraph during loading and maintaining consistency of
data; ii) It stores the graph states and flushes out all the
results.

5.2 Experimental Evaluation

We evaluate DASH on the cluster with 6 nodes, each
node containing one AMD Opteron 6282 SE CPU (16
cores and 2.6GHz). We use three representative graph
algorithms as benchmark on three graphs. In order to

While it is hard to maintain load balancing when computing
on TEG in systems with pre-partition, DASH can perform
load balancing no matter which graph partition the task
needs due to our dynamic scheduling algorithm. If there is
no data locality for the task or there are multiple workers
that have data, scheduler will assign the task to the worker
with least load by observing the queue length of each
worker. By assigning tasks in run time, DASH can have
good load balance.

Algorithm 1 is the algorithm of our scheduler. Given
the vertex ID of a task, the scheduler returns the ID of the
worker where the task will be executed on. The scheduler
first tries to select the worker with the least load from the
workers with data. If there is no worker that has data, the
scheduler selects any worker with the least load. This is
implemented by constructing a workerDataLocalityList
in line 2–7, and selecting the least loaded worker from line
8–13. This scheduling algorithm is simple yet effective, it
not only avoids complicated computation that might slower
down the scheduling process but also achieves the goal of
good data locality and load balance.

5.1.5 Loader

The task of loader is to load the requested graph into the
memory of compute node on the basis of the subgraph,
i.e., set of vertices that are provided by graph tracker.
It introduces more vertices to connect the disconnected
components. It receives subgraph from graph tracker which
is actually a data structure containing the set of vertices.
It also receives graph information required for scheduling,
i.e., set G’ which consists of the grouping components of
scheduler.

5.1.6 Worker

This is the execution unit of our framework. The
responsibilities of workers are as follows:

1 the workers consist of a local execution queue, where
the data waits until they are ready for execution and
CPUs to be available

2 to maximise the CPU execution, the ordering of tasks
depends on the ready data

3 ut either generates new task or send them to scheduler
or sends results to query engine

4 the task migration among nodes which is known as
work stealing.

5.1.7 Synchroniser

As the name suggests, synchroniser is responsible to ensure
the integrity of data in a framework. In DASH we need
synchroniser because we allow jobs to overlap. It does the
following tasks:

1 it handles vertex duplication among subgraph during
loading and maintaining consistency of data

2 it stores the graph states and flushes out all the results.

5.2 Experimental evaluation

We evaluate DASH on the cluster with six nodes, each
node containing one AMD Opteron 6282 SE CPU (16 cores
and 2.6 GHz). We use three representative graph algorithms
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as benchmark on three graphs. In order to evaluate
performance on power-law graph, we generate RMAT
graph with parameter a = 0.45, b = 0.22, c = 0.22. The
number of vertices are 640,000 and edges are 6400,000. We
also compared our system with state-of-the-art distributed
system, GPS by Salihoglu and Widom (2013). For each
experiment, we ran three times and report the average in our
plots. We choose single source shortest path to evaluate our
system. Single-source shortest path (SSSP) is an algorithm
that calculates the shortest distance from a given source
vertex to all other vertices. For SSSP, we use the update
events of edge weight. First, we randomly select a ratio
of edges in the graph. Second, for each edge weight w,
we assign a new weight random from 1 to w. Third,
we construct the update events file containing the task of
destination vertex of selected edges and updated weight.

5.2.1 Scalability

First we compare the scalability of DASH with GPS, which
is critical to the performance of distributed GPS. As plotted
in Figure 2, it shows that for running algorithms without
incremental computing, our system does not perform as
well as GPS due to the overhead of dynamic graph
loading. However, for running algorithms with incremental
computing, our system can take advantage of incremental
computing and minimise overhead of dynamic graph
loading, hence has better performance than GPS.

Figure 2 Scalability of DASH and GPS with and without
incremental computing (see online version
for colours)
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5.2.2 Overall performance

Next we compare execution time of DASH and GPS with
different problem size running SSSP. Graph size 1 in
Figures 3 and 4 is the same size as RMAT graph , other
graphs which are 2×, 4× and 8× of this graph are also
generated by RMAT algorithm.

As we can see in Figure 3, DASH with incremental
computing can have short execution time and increase
stably as graph size increases. The good performance is
due to our dynamic and asynchronous system model that
has balanced load among workers and helps computation
converge faster. The reason why our system without
incremental computing has poor performance on large graph

is due to the overhead of large amount of graph data loaded
at runtime, that allows the communication time dominating
the execution time.

Figure 3 Average execution time with different problem size
(see online version for colours)

5.2.3 Memory usage

In-memory GPS that uses less memory is capable of
processing larger graph. Here we evaluate memory usage
for each system with and without incremental computing.
In Figure 4, DASH with incremental computing only uses
35% of memory compared to GPS. This is because graph
data changed in update events is relatively smaller in the
whole graph, causing a memory waste if the system loads
the whole partition of graph into local memory. With
incremental computing and dynamic graph loading, DASH
only loads necessary data into worker nodes and has lower
memory usage.

Figure 4 Average memory usage with different problem size
(see online version for colours)

5.2.4 Heterogeneous environment

To evaluate system running in heterogeneous environment,
we fixed total number of CPU cores of all the workers
in the system and make number of CPU cores on
single worker different from each other. Figure 5 shows
DASH can utilise all the heterogeneous resources well
and outperforms GPS for more than 8x speedup. This
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is because the dynamic and asynchronous design of our
system, which can assign more tasks to worker nodes with
more computing power. On the other hands, static and
synchronised system such as GPS cannot schedule the tasks
flexibly and must wait until all the worker nodes finish their
tasks to move on to the next superstep.

Figure 5 Comparison of system running on homogeneous and
heterogeneous environment (see online version
for colours)

Figure 6 TEG challenges (see online version for colours)

6 Survey discussion

In order to cover the challenges of TEG, we surveyed
many papers. The problems in processing TEG could be
interpreted differently for different research communities
and can be categorised as below and have been summarised
in Figure 6.

1 track change: to know if the graph has changed or not
and to analyse the change over a period of time; for
example how often the centrality of a graph changes

2 compute change: since the graph has changed, the
algorithms should be computed again with minimum
re-computation

3 locating change: to find the location of the change
from where the computation can start

4 storing change: since the graph is changing very fast,
these changes should be stored as soon as they occur.

7 Conclusions

In this paper, we conducted a survey on various dimensions
of TEG like graph analytic, graph frameworks and graph
algorithms. This survey provides an insight at various
challenges and techniques involved in analysis of TEG. We
concluded that we need faster algorithms to find out the
changes occurring in TEG. We even found out that we
need an incremental approach to improvise computation.
We have even studied some of the existing computational
frameworks and we found out that there is a need for
a faster analytic and processing model. This requirement
motivated us to propose an efficient framework for TEG,
DASH. This paper states the challenges that are faced by
the existing frameworks and how these challenges can be
overcome by DASH. Moreover our experimental results
show how DASH can perform better than GPS using an
incremental approach. We propose various solutions on how
to tackle individual challenges. We have an asynchronous
execution model which maintains global status table and
prevents synchronisation barrier too. We also have a
dynamic scheduler which consists of three components
responsible for different tasks. All the components of our
framework communicate by message passing and most
of the decisions are taken by the scheduler. We are
optimistic that this survey will help many researchers to
understand various dimensions of problems in TEG and
continue developing the necessary techniques to resolve
these problems more efficiently. Our proposed computing
framework is an example of that, and we will test it
further with more algorithms and optimise it to improve the
performance.
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