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Abstract: Energy disaggregation is defined as the process of estimating the individual electrical 
appliance energy consumption of a set of appliances in a house from the aggregated 
measurements taken at a single point or limited points. The energy disaggregation problem can 
be modelled both as pattern recognition problem and as an optimization problem. Among the 
two, the pattern recognition problem has been considerably explored while the optimization 
problem has not been explored to the potential. In literature, researchers have attempted to solve 
the problem using various optimization algorithms including swarm and evolutionary algorithms. 
However, the focus on optimization-based methodologies, in general, swarm and evolutionary 
algorithm based methodologies in particular is minimal. By considering the different problem 
formulations in the literature, we propose a framework to solve the energy disaggregation 
problem with swarm and evolutionary algorithms. With the help of simulation results using the 
existing problem formulations, we discuss the challenges posed by the energy disaggregation to 
swarm and evolutionary algorithm based methodologies and analyse the prospects of these 
algorithms for the problem of energy disaggregation with some future directions. 
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1 Introduction 
In the last few decades, an exponential increase in energy 
demand coupled with dwindling energy resources and 
environmental impacts such as climate change highlight the 
importance of energy conservation. It has been investigated 
that in residential buildings, which accounts for 30% of 
electrical usage (Zoha, Gluhak et al. 2012), direct feedback 
including real-time appliance-level consumption can result 
in an annual energy conservation of 12% (Klemenjak and 
Goldsborough 2016) compared to overall indirect feedback 
such as monthly bills. In addition, the fine-grained energy 
consumption monitoring can enable the house owner – a) 
learn power consumption of each appliance and replace 
energy-inefficient faulty and/or older devices with energy-
efficient new ones (Klemenjak and Goldsborough 2016); 
and b) participate in demand response programs by re-
scheduling appliances. To provide detailed feedback 
regarding the appliance-level consumption, the techniques 
employed are referred to as Appliance Load Monitoring. 

Even though it is decades older, a significant growth in 
ALM research recently can be attributed to the simultaneous 
advancements in smart meters, artificial intelligence and 
machine learning methodologies. The classification of ALM 
(Zeifman and Roth 2011, Zoha, Gluhak et al. 2012, 
Klemenjak and Goldsborough 2016, Pereira and Nunes 
2018) methodologies can be seen in Figure 1.Intrusive 
Appliance Load Monitoring (IALM) also knows as 
distributed sensing requires one or more than one sensor per 
appliance and is more accurate in measuring appliance-
specific energy consumption compared to Non-intrusive 
Appliance Load Monitoring (NIALM). However, NIALM 
being a single point sensing method just requires only a 
single meter per house or a building and reduces sensing 
infrastructure costs by relying on machine learning 
techniques to obtain appliance-level information. Therefore, 
researchers including companies (Tang, Wu et al. 2014) 
have focused in developing NIALM based approaches for 
realistic environments (Zeifman and Roth 2011). NIALM 
also referred to as energy disaggregation tries to estimate 
the energy consumption of each individual appliance 
present in a network from electric power measurements 
taken at a single point in the network. 
 

 
Figure 1. Different methodologies for Appliance Load 

Monitoring 
Energy disaggregation is a highly ill-posed problem 

similar to the blind source separation problem and gets 
complicated due to various reasons such as increase in the 
number and type of devices, similarity the devices and 
measurement errors etc. Energy disaggregation 

methodologies can be classified as (Zeifman and Roth 2011, 
Zoha, Gluhak et al. 2012, Klemenjak and Goldsborough 
2016, Pereira and Nunes 2018) – a) supervised approaches; 
and b) unsupervised approaches. Supervised approaches can 
be further classified depending on the problem formulation 
and techniques employed to perform the energy 
disaggregation. From the classification, it is evident that 
energy disaggregation can be formulated as an optimization 
problem. Among the different methodologies, optimization-
based methods has not been sufficiently explored. 

Recently, swarm and evolutionary algorithms have 
been successfully applied to solve many challenging real-
world optimization problems ranging from power 
engineering (Palakonda, Awad et al. 2018, Awad, Ali et al. 
2019) to agriculture (Uyeh, Mallipeddi et al. 2018). In this 
paper, we want to demonstrate the applicability of the 
swarm and evolutionary algorithms for solving the 
optimization-based energy disaggregation problem. In other 
words, the contributions can be highlighted as: 

• Summarize the literature related to evolutionary 
algorithms for energy disaggregation  

•  Highlight the challenges faced by evolutionary 
algorithms in solving the energy disaggregation 
optimization problem  

• Present prospects of evolutionary algorithms in 
solving the energy disaggregation problem 

• Discuss the different metrics that can be employed 
to compare the performance of the evolutionary 
algorithms on energy disaggregation problem 

The paper is organized as follows. Section 2 presents a 
brief literature on energy disaggregation including the 
different classifications of the algorithms, their advantages 
and disadvantages. In Section 3, we present a brief summary 
of evolutionary algorithms and their application to energy 
disaggregation while Section 4 presents a framework for 
solving the energy disaggregation problem using 
evolutionary algorithms. Section 5 discusses the 
applicability of evolutionary algorithms with experimental 
results. Section 6 concludes the paper while Section 7 
presents some future works for solving energy 
disaggregation problem using evolutionary algorithms.   

 
2 Energy Disaggregation 
From the definition, the goal of energy disaggregation is to 
partition the aggregated power, P(t) into individual 
appliance power consumption, pi(t) and can be 
mathematically represented as 
                  

            P(t) = p1(t) + p2(t) + ... + pn(t)         (1) 
 

where pi is the power consumption of i-th individual 
appliance and n is the total number of appliances in the 
network. The energy disaggregation becomes challenging 

1) as the number of devices and types of devices (see 
(Zoha, Gluhak et al. 2012)) increases. 

2) as the similarity between multiple devices 
increases  

3) due to the uncertainty about the number of steady 
power states for a given device  



   

4) due to the variation of power within each steady 
power state 

5) due to the concurrent switching ON/OFF of 
multiple devices  

6) due to the variable speed devices that show 
continuous power levels 

7) due to measurement errors (10-20% (Klemenjak 
and Goldsborough 2016)) by the current 
commercial smart meters. 

The different methodologies proposed in the literature 
to solve the energy disaggregation problem can be classified 
as shown in Figure 1. Each of these methodologies have 
their advantages and disadvantages and cannot accurately 
disaggregate all types of appliances (Zeifman and Roth 
2011, Zoha, Gluhak et al. 2012, Klemenjak and 
Goldsborough 2016, Pereira and Nunes 2018). Most 
approaches are based on unique energy consumption 
patterns of appliances referred to as “appliance signatures”, 
i.e., specific features such as the real/reactive power, 
current, and voltage of running appliances, to discern and 
recognize appliance operations from the aggregated load 
measurements. The appliance identification is highly 
dependent on load signatures, which are further 
characterized by the appliance category (TYPES 1~4). A 
complete survey on the device types, different feature 
extraction methods, different features, their advantages and 
disadvantages are summarized in (Hart 1992, Ting, Lucente 
et al. 2005, Zoha, Gluhak et al. 2012, Klemenjak and 
Goldsborough 2016) and the current manuscript does not 
discuss them.  The major focus of the paper is on the 
methodologies and mainly optimization-based 
methodologies that are covered in the following sections. 

 
a) Supervised Approaches: require labeled data sets to 

train the different modules present and the amount 
training data needed depends on the modules present in 
the algorithm. Depending on the modules present and 
process adopted, the supervised approaches can be 
categorized as 
1) Event-based approaches and Event-less approaches 
2) Pattern recognition-based approaches and 

Optimization-based approaches 
Event-based and Event-less Approaches (Pereira and 

Nunes 2018): In event-based approaches (Kolter, Batra et al. 
2010, Parson, Ghosh et al. 2012), the initial step is to detect 
and label every appliance transition or power events in the 
aggregated signal (Pereira and Nunes 2018) using pre-
trained supervised or semi-supervised learning. Therefore, 
event-based approaches require labelled training data that 
includes a number of power events that occur due to the 
different appliance transitions. However, event-less 
approaches (Rahimpour, Qi et al. 2017) do not rely on event 
detection and classification. Instead, event-less approaches 
try to match the aggregated power at each time instance 
with the consumption of a combination of different 
appliances with the help of statistical (e.g., Bayesian 
methods) and probabilistic (e.g., Hidden Markov models) 
machine-learning methods. Hence, the training data required 

for event-less methods is less compared to the event-based 
approaches.  

Pattern recognition-based Approaches: Starting with 
initial work of Hart (Hart 1992), most of the energy 
disaggregation approaches in the literature belong to the 
class of pattern recognition-based approaches and employ 
various methodologies such as Artificial Neural Networks 
(Srinivasan, Ng et al. 2006, Ruzzelli, Nicolas et al. 2010), 
Hidden Markov Models (Zia, Bruckner et al. 2011), a 
combination of Support Vector Machines and Gaussian 
Mixture Models (Srinivasan, Ng et al. 2006, Lin, Lee et al. 
2010, Lai, Lai et al. 2013), Naive Bayes classifier 
(Farinaccio and Zmeureanu 1999, Marchiori, Hakkarinen et 
al. 2011), Multi-label classification (Tabatabaei, Dick et al. 
2017), Committee Decision mechanisms  (Liang, Ng et al. 
2010, Liang, Ng et al. 2010). However, it is important to 
note that the performance these approaches depend highly 
on the feature sets, the type and number of target appliances. 

Optimization-based Approaches: Energy disaggregation 
as an optimization problem, tries to minimize the error 
between the extracted feature vector of an unknown load to 
that of known load or a combination of loads from a pool of 
the appliance. Researchers (Suzuki, Inagaki et al. 2008, 
Egarter and Elmenreich 2013, Egarter, Sobe et al. 2013, 
Tang, Wu et al. 2014, Egarter and Elmenreich 2015) have 
tried different optimization approaches including integer 
programming and genetic algorithms in order to tackle the 
energy disaggregation optimization problem. The 
approaches seem promising with less number of devices and 
simple ON/OFF devices. It needs to be mentioned here that 
most optimization-based approaches, unlike pattern 
recognition-based approaches, employ simple features such 
as power ratings or current drawn. In other words, they do 
not employ much of the training data for feature extraction. 
Therefore, the performance of these approaches is degrades 
with the increase in the number of devices and the similarity 
between the devices. 

In addition to the general challenges faced by energy 
disaggregation, following are some of the challenges faced 
by supervised energy disaggregation approaches:  
1) Model construction demands huge amounts of training 

data that increases with the number of appliances.  
2) Depending on the features employed, the training data 

collection should be performed at high sampling rates 
for better feature extraction. 

3) The combination of devices and their usage pattern 
(especially multi-state devices) change from user to 
user. Therefore, the training process needs to be done 
differently for each house or fine-tuned with the 
corresponding training data. 

4) Rare operation of some devices can create imbalance in 
the training data. 

5) After data collection and training, a subtle change in the 
supply frequency (i.e., power factor correction) by an 
energy supplying company can cause a mismatch of 
appliance profile (Zoha, Gluhak et al. 2012) and the 
degraded performance. 

6) No widely accepted load signatures to aptly model the 
operation of all appliance categories.  

7) Most of the supervised methods are based on off-line 
training, therefore, adding a new device requires time 



  

consuming process of updating the database and 
relearning the model parameters. 

b) Unsupervised Approaches: Unsupervised approaches 
try to achieve the energy disaggregation without the need of 
training data and minimal setup cost. These approaches 
emphasis on building unsupervised learning features, 
including clustering algorithms (Gonçalves, Ocneanu et al. 
2011), Factorial Hidden Markov Models (Kim, Marwah et 
al. 2011, Johnson and Willsky 2013), Matching Pursuit 
(Gonçalves, Ocneanu et al. 2011), Temporal Motif Mining 
(Shao, Marwah et al. 1700) and Additive Factorial 
Approximate MAP (AFMAP) (Kolter and Jaakkola 2012). 
The unsupervised approaches present the following 
challenges: 
1) During the clustering process, different appliances were 

sometimes clustered together and some appliances were 
broken down between several clusters due to 
similarities in terms of consumption levels. Therefore, 
these methods cannot disaggregate between appliances 
that are similar.  

2) Multi-state devices generate several clusters or a single 
device is reduced to a summation of two-state 
appliances (Hart 1992). 

3 Evolutionary Algorithms for Energy 
Disaggregation 

The initial attempt to solve the optimization-based energy 
disaggregation problem using evolutionary algorithms was 
made in (Egarter and Elmenreich 2013, Egarter, Sobe et al. 
2013, Egarter and Elmenreich 2015). In these papers, the 
problem is formulated as a knapsack problem with the 
following objective function 
 
               (2)  

 
where, e(t) is the error between the measured, P(t) and 

estimated aggregated power; N is the number of appliances; 
 represents the status of n-th appliance at time t 

(0 and 1 indicate OFF and ON, respectively) and pn is the 
power consumed by the n-th device. The initial work in 
(Egarter, Sobe et al. 2013) is limited to ON/OFF devices 
assuming the devices are operating with constant time 
duration and constant magnitude, which is not realistic. An 
extended work considering appliances that can draw varying 
power magnitudes and varying usage duration was reported 
in (Egarter and Elmenreich 2013). In addition, they 
proposed preprocessing step and evolutionary operators 
such as: Time-duration mutation, Power-magnitude 
mutation, Repeating-signal mutation, and Periodic-signal 
mutation. In (Egarter and Elmenreich 2015), a more detailed 
analysis comparing with six different metaheuristics 
(General Evolutionary Algorithm, Differential Evolution, 
Particle Swarm Optimization, Simulated Annealing, Cuckoo 
Search and Firefly Optimization) with two different datasets 
– 1) appliance set with similar power states and 2) appliance 
set with unique power states was performed. The 
experimental results of the preliminary study considering 
only ON/OFF devices yields the following conclusions 

(Egarter and Elmenreich 2013, Egarter, Sobe et al. 2013, 
Egarter and Elmenreich 2015):  

1) The influence of the metaheuristic is not 
significant, or all the metaheuristics algorithms 
provide the similar solutions 

2) Detection accuracy can reach 100% depending on 
the number of devices and type of the devices. In 
other words, with less number of devices and with 
less similarities in the power states of the devices 
the performance can be higher. 

3) The higher the number of devices and number of 
states per device (the size of the database), the 
lower the detection accuracy. In other words, the 
similarity between the power states of different 
devices, the possible representation of a high 
power state by a combination of two or more low 
power states and noise effects effect the 
performance of the algorithm.  

Recently, in (Tang, Wu et al. 2014), an optimization 
model based on the sparsity of appliance activities referred 
to as Sparse Switching Event Recovering (SSER) 
optimization was proposed. In SSER, the objective is to 
minimize the total variation of ON/OFF switching events 
subjected to power limit constraints taking into account the 
power deviations in each power state. In this model, multi-
state appliances are split into multiple virtual devices where 
each device has only two states (ON/OFF). In SSER, the 
objective function to identify the states of N appliances in a 
time interval t = 1 to T can be formulated as  

Minimize:   TV(ΔS)=             (3)                                             
 

 Subject to: X - ST (P + Ɵ) ≤ 0 

ST (P - Ɵ) - X ≤ 0 

where X is the measured aggregated signal 

S is the state matrix given by  

P = [P1, P2, … , PN]T is a vector with the rated powers of N 
devices  
Ɵ = [Ɵ1, Ɵ2, … , ƟN]Tis a vector with the power deviation 
of N devices 
TV (.) denotes the total variation of the sparse event matrix 
(ΔS) given by  ΔS = S.D 
where D is a differential matrix with size of T-by-(T - 1) as 

follows: D =  

The event matrix  {-1, 0, 1}, where 1 or -1 
indicates a switching ON or OFF of n-th appliance at time t, 



   

while 0 indicates no switching. From the experimental 
analysis, it has been concluded that the performance of 
SSER is better than Least Square Estimation (LSE) and 
Hidden Markov Models (HMM). In addition, it was 
concluded that the algorithmic performance is robust to the 
estimation errors in the power deviation (Ɵ). However, the 
performance of the algorithm is very sensitive to the power 
deviation (Ɵ) depending on the number of devices and type 
of devices.  

In the limited research related to optimization-based 
energy disaggregation, the two different objective functions 
considered are shown in equations 2 and 3. In addition, the 
current optimization-based approaches employ simple 
features such as power ratings (Egarter and Elmenreich 
2013, Egarter, Sobe et al. 2013, Tang, Wu et al. 2014, 
Egarter and Elmenreich 2015) or the current ratings 
(Suzuki, Inagaki et al. 2008). The first objective function 
shown in equation (2) tries to find the combination that 
better minimize the absolute error at each time instance but 
does not consider the device operation requirements such as 
continuity etc. In other words, due to the nature of the 
objective the possibility of combination of devices operating 
at time (t – 1) and t can be entirely different which is not 
realistic in household appliance operation. The second 
objective function in equation (3) considers the continuity of 
device operation by minimizing the total number of 
variations (TV). In addition, the minimization of total 
variations (TV) depends on the power deviation (Ɵ). If Ɵ is 
larger then the possibility of satisfying the constraints in 
equation (3) with minimum number of total variations (TV) 
is possible and can result in huge difference between the 
measured and estimated aggregated signals (E). Therefore, 
the amount of power deviation (Ɵ) strongly effects the 
absolute error minimization (E) at each time instance. 
 
4 Proposed Framework for Evolutionary 

Algorithm based Energy Disaggregation 
As mentioned in the previous section, in (Egarter and 
Elmenreich 2013, Egarter, Sobe et al. 2013, Tang, Wu et al. 
2014, Egarter and Elmenreich 2015), the multi-state devices 
are split into multiple simple ON/OFF devices. However, in 
the proposed framework we represent a device with m 
operating states having {0, 1, …, m} modes where 0 is the 
OFF state.  

Therefore, in the proposed framework, the objective 
function in equation (2) can be modified to minimize the 
error over a time interval t = 1 to T as follows 

 
    Minimize         (4)   
                                      
where the aim is find the optimal state matrix 

 
 represents the state of j-th device at i-th time instance 

and ∈[0 mj] where mj is the maximum number of 
operating states of the j-th device.  

In the current framework, the SSER is formulated as 
follows: 

  Minimize:        TV(ΔS)=           (5)                                            
        

       Subject to: ( ) +  ≤ 0 

                       ( ) -  ≥ 0 

where Pn = [Pn,1 , Pn,2 ,… ,  Pn,mn] is a vector with the 
rated powers of N devices and mn is the maximum number 
of states for devices. Ɵn = [Ɵn,1 , Ɵn,2 ,… ,  Ɵn,mn] is a vector 
with the power deviation of N devices. However, it has to 
be noted that the ΔS matrix considers only the ON/OFF as 
in the above section and not the change between other 
modes. 

Δt
1  2  3          :::       T

1
2
3
..
..
..
N

Evolutionary 
Algorithm to 
minimize fΔt

Evaluate FT  
for best 
solution

 
Figure 2. Proposed Framework for Evolutionary Algorithm based 

Energy Disaggregation 
Both the objective functions described in equations 4 

and 5 are linearly separable. Therefore, the optimization 
over the time interval t = 1 to T can be separated in to 
simple time blocks for effective energy disaggregation. The 
schematic diagram of the proposed framework employing 
the objective functions described in equations 4 and 5 is 
shown below.  As shown in Figure 2, the states of N devices 
corresponding to the aggregated signal for the time t = 1 to 
T is represented in the form of a matrix of size N-by-T. 
Then, we take the aggregated signal of a small time interval 
(Δt) to be optimized by the evolutionary algorithm. To find 
the optimal states of the devices in the duration of Δt, the 
objective function (equations 4 or 5) is evaluated using the 
aggregated signal of that time interval referred to as fΔt. 
After obtaining the optimal solution for the time interval 
(Δt) the solution replaces the corresponding vector in the N-
by-T matrix only if it is better on the objective function 
evaluated over the entire time interval t = 1 to T, referred to 
as FT. As mentioned in the Introduction, the aim of energy 
disaggregation is to perform the disaggregation of the total 
power consumption as it comes and provide a real-time 
tracking of appliance-level power consumption. The 
proposed framework is in accordance with the goal as it 
disaggregates the aggregated signal overall small time (Δt) 
horizons. 

 
5 Experimental Setup and Results 
In this Section, we try to analyze the advantages and 
disadvantages of the two objective functions described in 
equations 4 and 5, referred to as Case 1 and Case 2, 
respectively. For the experimental analysis, we employ the 
dataset provided in (Tang, Wu et al. 2014). The dataset 



  

contains aggregated signal and individual devices operation 
data for 7 days. The experiments reported in the current 
study correspond to Day 3. To analyze the two objectives 
described in equations 4 and 5, we used two instances – a) 6 
devices (Instance 1) and b) 11 devices (Instance 2). The 
details about the devices, the number of states, the power 
levels and the deviations are provided in Table 1.  

In the current work, we employ a simple evolutionary 
algorithm for optimization. To produce the offspring 
population, the parents are selected based on Roulette 
Wheel selection. From the combination of parent and 
offspring population, the better half of the individuals are 
selected for the next generation. To perform crossover, we 
employed to operators referred to as time-based crossover 
and device-based crossover. In time-based crossover, the 
states of devices during a time index t are exactly copied 
from one individual to the other. In device-based crossover, 
the states of a device in an individual are entirely copied 
into the other individual. These two operators provide a 
better convergence. The population size and maximum 
number of generations employed are set as 100 and 250, 
respectively for Instance 1, while population size of 250 and 
maximum generations of 500 were employed for Instance 2. 
In both the instances, the crossover (pc) and mutation 
probabilities (pm) are set as 0.8 and 0.3, respectively. The 
flowchart of the evolutionary algorithm employed in the 
current work is presented in Figure 3. 

Table 1. Details of Datasets – Instance 1 (6 devices in Gray) and 
Instance 2 (11 devices) 

 
In general, the common components present in most 

energy disaggregation algorithms are – event detection, 
event classification and energy estimation. Based on the 
different algorithmic components, there are measures to 
quantitatively evaluate each algorithmic component and the 
overall performance. Therefore, the metrics can be 
classified as – Event Detection metrics, Event Classification 
metrics, Energy estimation metrics and Overall metrics. A 
detailed summary of the different performance metrics is 
presented in (Pereira and Nunes 2018). In this work, we 
employ the overall metrics such as Energy Disaggregation 
Accuracy (EDA) and State Prediction Accuracy (SPA) 
(Tang, Wu et al. 2014). In addition, we also report the total 
number of deviations (TV) and total absolute error between 
the measured and estimated aggregated signal (E). 

 

EDA =1-              (6) 

 

SPA=1-                       (7) 

 
where X is the measured aggregated signal, is the 

estimated state matrix obtained through optimization, is the 
actual state matrix, N is the number of devices and T is total 
time interval over which the disaggregation is performed. 
EDA measures the efficiency of the algorithm in assigning 
correct power values to corresponding appliances while 
SPA measures the efficiency of the algorithm in estimating 
the states of appliances (Tang, Wu et al. 2014). It should be 
noted that an algorithm with a higher SPA, can have a low 
EDA if a low duration, high power device is wrongly 
identified. 

 
Figure 3. Flowchart of the evolutionary algorithm employed in the 

current work 
Each of the simulations are performed 30 times and the 

mean and standard deviation values of performance 
indicators, EDA, SPA, E and TV are summarized for every 
one hour and are shown in Tables 2 and 3. For each hour 
statistical significance t-test with a significance level of 0.05 
is performed on each indictor. To evaluate the effect of the 
power deviation (Ɵ) on the performance of the algorithm, 
we multiplied it with a factor ρ. In other words, ρ in Tables 
2 and 3, indicate that the simulations consider a power 
deviation of ρ.Ɵ. The ρ values considered are 0.1 and 0.3.  

According to results of Tables 2 and 3, in Case 1 the 
objective function is to minimize the absolute error (E) 
between the measured and estimated aggregated signals as 
in equation (4). Therefore, the algorithm is able to reduce 
the absolute error (E) and average absolute error (E) for 
Case 1 is better than Case 2 in both the Instances as shown 
in Tables 2 and 3. In addition, as the number of devices 
increases, the performance of the algorithm in Case 1 
degrades drastically in terms of both EDA and SPA. This is 
mainly due to nature of the objective function. In Case 1, as 
the number of devices increases the number of different 
possible combinations to minimize the absolute error (E) at 
given time instance increase exponentially. 
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Table 2. Performance comparison of different Cases in terms of performance indicators for different hours on Instance 1 

Hr Case1 Case2 
ρ = 0.1 ρ = 0.3 

EDA SPA E TV EDA SPA E TV EDA SPA E TV 

1 96.56 
(1.02) 

99.14 
(0.23) 

817.00 
(25.59) 

52.33 
(3.72) 

92.07 
(1.44) 

98.32 
(0.29) 

809.27 
(26.22) 

19.93 
(4.08) 

73.96 
(27.26) 

95.08 
(4.54) 

1070.60 
(393.57) 

32.13 
(6.64) 

2 94.79 
(0.90) 

98.78 
(0.23) 

1265.00 
(37.59) 

45.47 
(10.76) 

93.37 
(1.24) 

98.57 
(0.27) 

1294.87 
(32.36) 

9.87 
(5.03) 

62.45 
(37.12) 

94.16 
(5.34) 

1720.87 
(490.88) 

13.70 
(7.81) 

3 96.96 
(0.09) 

99.93 
(0.02) 

702.20 
(11.84) 

32.80 
(2.43) 

96.46 
(0.45) 

99.84 
(0.08) 

703.53 
(11.51) 

4.17 
(2.07) 

62.54 
(35.04) 

94.52 
(5.49) 

1205.37 
(512.60) 

10.60 
(6.26) 

4 93.65 
(1.48) 

98.90 
(0.23) 

778.73 
(18.68) 

47.20 
(4.92) 

93.22 
(1.36) 

98.83 
(0.23) 

778.40 
(16.84) 

6.00 
(1.39) 

54.99 
(32.10) 

92.79 
(5.10) 

1351.33 
(476.03) 

10.73 
(5.13) 

5 96.04 
(0.76) 

99.25 
(0.13) 

817.03 
(23.33) 

46.47 
(2.86) 

95.67 
(0.86) 

99.16 
(0.15) 

819.33 
(23.77) 

8.47 
(1.25) 

78.72 
(31.54) 

96.32 
(5.25) 

1077.30 
(499.44) 

11.33 
(4.96) 

6 96.11 
(0.04) 

99.40 
(0.09) 

906.43 
(14.45) 

20.80 
(2.14) 

96.11 
(0.03) 

99.38 
(0.07) 

905.30 
(10.87) 

2.00 
(0.00) 

84.67 
(13.58) 

97.80 
(1.73) 

1051.96 
(179.24) 

6.67 
(4.11) 

7 62.05 
(5.81) 

92.92 
(1.00) 

758.50 
(61.10) 

46.87 
(17.70) 

51.78 
(3.44) 

91.13 
(0.56) 

763.43 
(32.00) 

23.53 
(4.64) 

29.12 
(6.56) 

87.22 
(0.95) 

956.23 
(95.87) 

22.13 
(6.74) 

8 4.57 
(2.07) 

78.43 
(0.90) 

1167.14 
(16.12) 

134.57 
(69.34) 

1.82 
(0.23) 

79.11 
(0.11) 

1185.77 
(30.49) 

34.07 
(4.88) 

2.90 
(2.01) 

77.76 
(1.96) 

1270.50 
(117.82) 

39.60 
(12.05) 

9 49.67 
(3.68) 

84.01 
(2.51) 

1539.47 
(15.39) 

192.27 
(70.87) 

45.39 
(2.47) 

85.47 
(0.49) 

1561.97 
(20.07) 

40.23 
(7.57) 

17.63 
(6.66) 

80.85 
(0.88) 

1925.83 
(77.51) 

38.47 
(9.31) 

10 66.85 
(10.05) 

76.49 
(3.98) 

1464.27 
(46.84) 

491.77 
(66.41) 

54.51 
(11.06) 

72.94 
(5.37) 

1588.90 
(72.08) 

177.97 
(17.90) 

49.07 
(13.39) 

70.68 
(6.87) 

2398.13 
(170.62) 

124.13 
(19.19) 

11 87.44 
(3.89) 

88.58 
(0.68) 

1988.00 
(28.53) 

229.43 
(21.42) 

71.61 
(5.86) 

83.20 
(1.47) 

2022.63 
(36.05) 

108.43 
(11.46) 

23.91 
(5.09) 

68.81 
(0.85) 

2974.27 
(68.06) 

84.03 
(6.05) 

12 40.11 
(6.66) 

81.85 
(1.13) 

1582.87 
(36.37) 

301.77 
(37.51) 

26.88 
(7.36) 

79.84 
(1.13) 

1724.97 
(62.84) 

117.40 
(9.67) 

28.84 
(7.14) 

80.89 
(1.43) 

2035.20 
(97.09) 

94.00 
(8.88) 

13 70.92 
(4.83) 

85.63 
(1.82) 

1624.17 
(37.49) 

290.53 
(32.49) 

69.25 
(5.37) 

85.46 
(1.72) 

1720.50 
(66.83) 

121.13 
(15.59) 

45.61 
(19.32) 

81.90 
(3.99) 

2497.07 
(285.02) 

110.87 
(11.40) 

14 63.23 
(6.45) 

93.36 
(0.80) 

1326.00 
(22.63) 

182.40 
(17.84) 

58.04 
(8.11) 

92.50 
(1.02) 

1351.00 
(37.05) 

95.63 
(10.85) 

55.57 
(9.72) 

92.59 
(1.16) 

1560.00 
(64.09) 

83.03 
(9.32) 

15 61.91 
(6.31) 

91.00 
(1.54) 

1355.83 
(12.12) 

178.47 
(23.59) 

27.12 
(6.05) 

85.17 
(1.33) 

1422.67 
(23.05) 

38.27 
(8.35) 

20.34 
(4.38) 

84.05 
(0.84) 

1507.93 
(36.14) 

28.13 
(10.55) 

16 76.52 
(4.50) 

94.23 
(0.77) 

936.77 
(5.92) 

110.53 
(14.40) 

59.79 
(3.21) 

91.75 
(0.48) 

958.87 
(18.73) 

36.00 
(9.47) 

39.54 
(10.42) 

89.25 
(1.42) 

1171.50 
(64.04) 

31.53 
(9.41) 

17 87.43 
(6.84) 

94.13 
(2.34) 

1857.63 
(24.85) 

106.03 
(63.31) 

87.93 
(6.06) 

95.20 
(0.89) 

1926.03 
(49.99) 

19.87 
(6.88) 

73.01 
(8.36) 

93.17 
(1.12) 

2027.17 
(65.16) 

27.67 
(6.69) 

18 3.50 
(4.08) 

78.37 
(0.98) 

1639.60 
(26.71) 

174.00 
(87.97) 

-3.32 
(2.10) 

78.35 
(0.43) 

1633.10 
(15.59) 

50.20 
(7.83) 

-1.04 
(3.39) 

78.97 
(0.77) 

1718.84 
(57.39) 

40.13 
(5.75) 

19 78.67 
(4.77) 

93.57 
(0.57) 

1232.97 
(29.65) 

197.07 
(17.78) 

73.85 
(5.26) 

89.12 
(1.46) 

1277.43 
(25.03) 

104.13 
(10.22) 

31.47 
(6.60) 

79.03 
(1.48) 

2080.80 
(99.89) 

68.80 
(7.78) 

20 95.59 
(1.09) 

99.57 
(0.13) 

788.33 
(11.61) 

32.00 
(4.10) 

95.40 
(1.26) 

99.51 
(0.16) 

783.10 
(11.87) 

5.40 
(2.36) 

65.75 
(19.75) 

94.21 
(3.31) 

1150.67 
(265.54) 

24.77 
(5.18) 

21 97.09 
(0.56) 

99.62 
(0.12) 

843.07 
(12.13) 

17.73 
(3.85) 

96.98 
(0.63) 

99.61 
(0.13) 

845.90 
(24.27) 

3.33 
(2.25) 

86.37 
(8.17) 

98.12 
(1.06) 

946.40 
(95.59) 

11.97 
(4.14) 

22 94.52 
(1.81) 

99.44 
(0.17) 

647.60 
(4.47) 

31.07 
(5.93) 

93.39 
(1.57) 

99.33 
(0.15) 

648.47 
(5.77) 

4.40 
(1.50) 

63.01 
(30.29) 

95.18 
(4.09) 

1069.60 
(390.61) 

7.30 
(3.80) 

23 92.49 
(2.83) 

97.18 
(0.32) 

1100.00 
(20.79) 

73.93 
(15.34) 

92.26 
(3.64) 

97.04 
(0.40) 

1092.23 
(16.36) 

19.20 
(6.12) 

33.90 
(38.65) 

89.76 
(5.08) 

1645.60 
(398.13) 

22.50 
(4.15) 

24 90.15 
(1.63) 

97.39 
(0.48) 

654.57 
(9.21) 

69.67 
(8.07) 

80.56 
(3.41) 

95.89 
(0.35) 

665.90 
(14.13) 

31.33 
(7.58) 

36.55 
(30.77) 

90.59 
(4.10) 

1276.30 
(340.62) 

14.73 
(3.78) 

Overall 
 

78.32 
(0.87) 

92.54 
(0.27) 

1158.04 
(23.05) 

129.38 
(25.19) 

71.32 
(0.88) 

91.44 
(0.31) 

1186.81 
(28.49) 

45.04 
(6.62) 

48.51 
(4.04) 

87.65 
(0.68) 

1570.39 
(222.54) 

39.95 
(7.46) 

 
But in Case 2 the performance is very sensitive to the 

power deviation controlled by ρ. Because of the larger 
power deviation (ρ=0.3), the algorithm concentrates on the 
minimization of the total deviation (TV) and estimated 
signal at each time instance can be quite different from the 
original aggregated value. In other words, as the power 
deviations (ρ) of the devices are larger, then the possibility 
of the absolute error (E) between the measured and the 
estimated aggregated signal can shoot up at the expense of 
minimizing TV. Therefore, in Case 2, it can be observed 
that as the power deviation (ρ) increases, TV decreases, E 
increases. 

To show the effect of the power deviation on the 
disaggregation performance of the algorithm, we present the 

pie charts of the ground truth, Case 1, Case 2 (ρ=0.1) and 
Case 2 (ρ=0.3) for hour 3 in Figure 4. From the pie charts, it 
is evident that as the ρ values or as the power deviation 
increase the possibility of a high power device (Printer) 
replacing other devices (Water Cooler) increases, resulting a 
lower EDA. In other words, as the power deviation is 
increased, the possibility of high power devices replacing 
the low power devices occurs and as result the performance 
of the algorithm (SPA and EDA) decreases. In Table 2, the 
reduction in EDA is more evident as the high power device 
replaces low power devices. A similar observation can be 
made in Hour 5. 
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Table 3. Performance comparison of different Cases in terms of performance indicators for different hours on Instance 2 

Hr Case1 Case2 
ρ = 0.1 ρ = 0.3 

EDA SPA E TV EDA SPA E TV EDA SPA E TV 

1 33.73 
(13.91) 

51.00 
(4.33) 

243.91 
(9.24) 

1691.03 
(138.55) 

23.71 
(26.18) 

51.23 
(8.60) 

1148.18 
(74.09) 

70.63 
(31.11) 

19.24 
(22.91) 

51.84 
(11.25) 

3246.68 
(387.99) 

32.27 
 (12.58) 

2 34.34 
(16.40) 

50.78 
(5.26) 

270.50 
(13.12) 

1681.00 
(141.53) 

27.37 
(23.01) 

54.28 
(10.73) 

1102.77 
(111.94) 

84.30  
(39.80) 

15.56 
(23.82) 

52.12 
(10.99) 

3349.80 
(430.16) 

29.83  
(13.75) 

3 33.19 
(14.18) 

51.30 
(6.29) 

255.23 
(18.78) 

1602.67 
(187.12) 

25.07 
(22.07) 

51.28 
(10.45) 

1215.87 
(108.79) 

77.07 
(45.82) 

28.57 
(23.91) 

49.82 
(10.81) 

3305.57 
(317.98) 

26.93 
(14.20) 

4 37.45 
(14.02) 

53.06 
(3.83) 

242.77 
(10.79) 

1729.77 
(106.57) 

30.73 
(25.90) 

56.18 
(9.99) 

1137.47 
(100.96) 

69.57 
(45.59) 

26.07 
(20.28) 

55.25 
(8.81) 

3443.23 
(425.97) 

21.07 
(10.92) 

5 32.62 
(14.71) 

51.02 
(4.18) 

247.17 
(10.16) 

1627.60 
(94.56) 

19.92 
(21.25) 

52.52 
(6.78) 

1162.10 
(89.63) 

71.80  
(33.37) 

22.62 
(27.58) 

48.14 
(11.04) 

3434.97 
(407.97) 

31.43 
(14.22) 

6 43.37 
(13.99) 

54.79 
(5.75) 

226.17 
(11.96) 

1535.27 
(125.48) 

31.63 
(16.54) 

53.96 
(8.49) 

1105.60 
(68.35) 

55.17 
(35.27) 

33.11 
(18.88) 

53.12 
(11.91) 

2891.52 
(427.54) 

25.70 
(17.30) 

7 30.14 
(9.98) 

50.18 
(4.24) 

255.56 
(14.76) 

1637.10 
(121.40) 

7.92 
(28.08) 

49.57 
(11.90) 

1080.58 
(73.75) 

65.13 
(38.02) 

0.92 
(26.70) 

48.22 
(12.42) 

3512.35 
(504.29) 

23.40 
(15.45) 

8 35.03 
(13.95) 

50.86 
(3.44) 

233.26 
(10.61) 

1806.67 
(124.06) 

18.37 
(31.12) 

50.37 
(10.73) 

1164.43 
(94.45) 

69.73  
(19.29) 

18.40 
(32.63) 

50.01 
(12.51) 

3282.65 
(334.68) 

32.23 
(17.85) 

9 34.65 
(10.05) 

51.22 
(4.14) 

243.23 
(13.54) 

1687.27 
(156.15) 

27.88 
(21.05) 

52.65 
(7.25) 

1135.13 
(102.79) 

73.50  
(38.95) 

28.94 
(24.16) 

49.86 
(10.78) 

3253.70 
(340.03) 

35.50 
(14.14) 

10 57.81 
(8.69) 

48.66 
(3.07) 

283.97 
(13.71) 

1928.10 
(109.95) 

50.55 
(11.63) 

50.21 
(7.80) 

1436.67 
(92.97) 

168.10 
(33.96) 

45.90 
(16.68) 

48.82 
(10.60) 

4263.27 
(337.14) 

86.73 
(14.16) 

11 47.17 
(10.48) 

51.88 
(3.43) 

274.27 
(11.58) 

1812.47 
(107.92) 

40.37 
(25.51) 

52.66 
(8.02) 

1384.40 
(162.36) 

147.20 
(43.40) 

35.41 
(24.19) 

47.73 
(9.31) 

4057.10 
(362.15) 

79.67 
(11.31) 

12 48.81 
(10.38) 

53.42 
(2.79) 

292.07 
(13.50) 

1918.97 
(110.66) 

33.75 
(16.89) 

55.04 
(6.17) 

1377.53 
(102.20) 

183.43 
(54.31) 

33.33 
(14.96) 

54.53 
(6.29) 

4149.60 
(317.96) 

88.83 
(16.44) 

13 52.29 
(10.13) 

49.63 
(3.43) 

283.63 
(14.90) 

1931.00 
(98.85) 

36.18 
(13.32) 

53.37 
(6.81) 

1520.33 
(90.21) 

191.67 
(22.87) 

39.47 
(15.08) 

56.28 
(9.66) 

4512.00 
(312.38) 

98.93 
(10.60) 

14 50.81 
(10.89) 

55.13 
(4.14) 

267.63 
(12.02) 

1785.43 
(88.00) 

38.29 
(14.22) 

52.49 
(6.46) 

1185.27 
(53.17) 

140.77 
(33.40) 

34.12 
(14.71) 

52.29 
(8.95) 

3514.47 
(254.91) 

63.90 
(13.26) 

15 51.37 
(9.64) 

58.01 
(2.63) 

251.80 
(10.46) 

1653.13 
(89.04) 

43.71 
(23.34) 

61.08 
(10.00) 

1235.43 
(106.09) 

86.47 
(27.71) 

35.01 
(26.64) 

59.64 
(13.20) 

3648.70 
(313.61) 

24.97 
(12.20) 

16 55.17 
(14.88) 

57.95 
(4.89) 

268.03 
(12.28) 

1627.43 
(105.46) 

41.65 
(16.26) 

61.20 
(9.41) 

1229.97 
(72.78) 

79.17 
(32.98) 

41.34 
(24.88) 

61.55 
(13.49) 

3620.93 
(264.07) 

26.97 
(12.33) 

17 51.12 
(16.48) 

57.04 
(5.85) 

271.07 
(16.05) 

1625.17 
(179.63) 

58.67 
(25.76) 

70.69 
(13.22) 

1153.00 
(63.08) 

81.00 
(54.04) 

51.0 
(25.79) 

60.68 
(12.30) 

3385.03 
(310.56) 

27.93 
(20.76) 

18 47.66 
(10.75) 

51.86 
(3.32) 

262.24 
(9.82) 

1706.30 
(119.76) 

36.38 
(22.38) 

56.81 
(6.46) 

1328.27 
(98.08) 

81.23 
(24.75) 

31.12 
(21.74) 

53.98 
(10.02) 

3903.13 
(494.87) 

34.43 
(11.51) 

19 52.12 
(9.25) 

53.94 
(3.00) 

276.40 
(16.05) 

1828.80 
(104.66) 

39.75 
(17.58) 

56.23 
(9.71) 

1374.47 
(97.35) 

157.13 
(33.38) 

40.07 
(17.32) 

56.06 
(11.15) 

4200.93 
(386.56) 

75.20 
(17.68) 

20 44.26 
(11.35) 

55.87 
(3.81) 

256.83 
(12.52) 

1718.00 
(137.81) 

27.52 
(22.57) 

56.54 
(8.39) 

1210.40 
(77.62) 

55.70 
(31.25) 

31.65 
(22.27) 

58.01 
(9.72) 

3317.63 
(472.60) 

29.50 
(21.20) 

21 58.73 
(9.19) 

59.23 
(3.13) 

227.20 
(11.62) 

1583.67 
(120.43) 

43.89 
(11.79) 

57.83 
(6.18) 

1210.40 
(79.68) 

46.90 
(28.45) 

42.44 
(15.93) 

58.25 
(9.16) 

3389.33 
(304.16) 

17.80 
(9.64) 

22 42.64 
(12.10) 

54.12 
(5.22) 

245.43 
(14.51) 

1700.57 
(161.24) 

25.59 
(19.07) 

53.55 
(8.67) 

1205.80 
(73.45) 

59.67 
(28.58) 

27.49 
(20.06) 

57.14 
(10.98) 

3345.60 
(264.74) 

20.80 
(8.13) 

23 38.15 
(14.02) 

55.59 
(3.17) 

273.83 
(12.58) 

1794.37 
(83.65) 

22.30 
(25.06) 

57.77 
(7.87) 

1207.77 
(95.53) 

109.23 
(52.72) 

28.95 
(28.48) 

60.98 
(9.16) 

3355.17 
(363.96) 

43.87 
(17.69) 

24 30.00  
(13.81) 

52.81 
(5.02) 

260.80 
(12.09) 

1675.47 
(175.65) 

23.61 
(21.20) 

55.71 
(11.16) 

1101.63 
(102.32) 

88.83  
(50.27) 

24.98 
(25.42) 

53.52 
(12.73) 

3344.00 
(525.29) 

28.43 
(19.93) 

Overall 48.17 
(2.48) 

53.30 
(0.71) 

258.88 
(12.78) 

1720.30 
(124.50) 

46.55 
(4.77) 

51.20 
(1.72) 

1225.56 
(91.31) 

96.39  
(36.63) 

46.42 
(5.80) 

54.24 
(2.85) 

3571.97 
(369.23) 

41.93 
(14.46) 

In Instance 1, the overall performance with ρ = 0.1 is 
significantly better than the overall performance with ρ= 
0.3. However, as the number of devices increases, the 
overall performance with ρ= 0.3 is better than ρ = 0.1. 
Therefore, the appropriate selection of the power deviation 
plays a significant role. In both Case 1 and Case 2, in certain 
time instances (Hours 8 & 18) SPA is better. However, 
EDA is quite low because one of the devices (Printer) 
replaces another devices (Water cooler) that has similar 
power states as shown in Figure 5. As mentioned in the 
earlier sections this is a common problem in most 
disaggregation methods.  

From the results, it can be observed that the average 
error of Case 1 is less than Case 2. In addition, in Case 2, 

the average error is less when power deviation is less. This 
is because of the nature of the objective function employed 
for the optimization. In Case 2, as the power deviation is 
reduced the absolute error is reduced because the constraints 
force the estimated signal at each time instance to be close 
to the measured aggregated value. However, TV is in Case 1 
is larger than in Case 2 as in Case 1 the objective is to 
minimize the absolute error (E) and not restriction on the 
number of total variations is enforced. In addition, in Case 
2, the TV decreases as the power deviation increases. This is 
due to the relaxation of the constraints. This is also evident 
in the Figures 4 and 5. 
 



   

 
 
Figure 4. Pie charts of Ground Truth, Case 1, Case 2 (ρ = 0.1) and 

Case 2 (ρ=0.3) on Instance 1 for hour 3 

 
Figure 5. Pie charts of Ground Truth, Case 1,  Case 2 (ρ = 0.1) and 

Case 2 (ρ=0.3) on Instance 1 for hour 8 
 
6 Conclusion 
In this paper, we discussed the challenges posed by the 
current problem formulation of energy disaggregation to 
swarm and evolutionary algorithm. In addition, from the 
different problem formulation by literature, we proposed a 
framework for evolutionary energy disaggregation. Pursuant 
to the simulation results in the previous section, it is evident 
that the evolutionary algorithms were able to optimize the 
objective functions with/without constraints. In addition, it 
is clear that our proposed framework is practical (feasible) 
for using in NILM systems. In the last few decades, the 
advancements in evolutionary algorithm literature has 
reached the capability of solving even complex optimization 
problems. However, the applicability of swarm and 
evolutionary algorithms to energy disaggregation 
optimization is limited by the appropriate objective and 
constraint formulation. 
 
7 Future works 

From the simulation results, the degraded performance of 
the evolutionary algorithms with respect to the energy 
disaggregation is due to the limitations in the problem 
formulation including objective function and constraints. In 
other words, the current problem formulation and the 
constraints do not actually represent the problem and need 
to include the following aspects:  

1. The objective function should take into account the 
uncertainties in the data measurement into account.  

2. Constraint related to device operation can be placed. 
For instance, a proper operation of a device last for a 
significant amount of time. Therefore, the sparsity 
constraint can be placed over a small duration of time. 

3. A constraint on the number of switching instances at 
given time instance can be placed. 

4. In pattern recognition based methods, the algorithm is 
provided with lot of training data and correlation between 
the devices, which plays a crucial role in some instances, 
can be implicitly learnt. However, in the case of 
optimization-based approaches the correlation between 

devices needs to be explicitly incorporated in the form of 
constraints.  

5. Identifying devices with similar states is generally not 
possible without the feedback from the user. The problem 
formulation should facilitate the interaction between the 
user and the algorithm. For instance, the information such as 
“time of the day” as well as the “appliance usage duration” 
from the user can be included to enhance the performance of 
disaggregation algorithm (this information can change 
depending on the day and the house). With the advancement 
in interactive evolutionary algorithms, it is possible to 
incorporated user information into the optimization process.    

Some advantages of optimization-based approaches 
compared to pattern recognition-based approaches: 

1. Pattern recognition-based approaches require huge 
amount of training data to learn. During the training process 
the time-based correlation between devices is implicitly 
learnt by the algorithm. However, the process cannot be 
controlled by the user and the user is not sure if the learning 
process incorporated the information. However, in case of 
optimization-based approaches the correlation can be 
modelled as a constraint and the level of constraint 
satisfaction can be observed by the user.   

2. After, the final disaggregation is done and the user 
want to provide some feedback regarding the process (for 
instance, the Printer is identified in the place of Coffee 
machine) and the user wants to provide the feedback. This 
can be easily done with interactive evolutionary algorithms. 
In other words, with advancement of interactive 
evolutionary algorithms, it is possible for the humans to 
interact with the system to specify some information about 
how many times a device is operated etc. This is not easy in 
supervised machine learning algorithms as the algorithm 
mainly learns from the data.  

3. The current challenge in applying swarm and 
evolutionary algorithms to energy disaggregation is 
hindered by the absence of exact problem formulation. 
Therefore, once the appropriate objective functions and 
constraints are identified then advanced evolutionary 
algorithms in the literature  (Awad, Ali et al. 2018, Biswas, 
Suganthan et al. 2018, Awad, Ali et al. 2019, Cai, Wang et 
al. 2019, Cai, Zhang et al. 2019) can be employed to 
effectively solve the energy disaggregation optimization 
problem. 
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