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1 Introduction 

Human beings have a great ability to grasp information presented graphically  
(Keim, 2001). Attempts to visually summarising information began with histograms and 
pie-charts, which aggregate the information of large volumes of data. However, they are 
limited to present simple statistical measurements. A challenge in the information 
visualisation field is to deal with the ever increasing volume of data generated by the 
nowadays computational systems, allied to the expanding diversity of data types. 
Moreover, data types are much more complex and larger than the numbers and short 
strings of characters traditionally managed by the Database Management Systems 
(DBMS). Complex and large data, which are inherently abstract, come from applications 
of most diverse fields, such as medicine, astronomy, surveillance, business and 
entertainment, materialised as images, videos, time series, genetic sequences, and so on. 
Since it is not feasible to use the conventional indexing structures for unidimensional 
domains, e.g., B-tree (Bayer and McCreight, 1972) and B+-tree (Comer, 1979), 
commonly available in commercial DBMS, special structures more suitable to efficiently 
index, manage and query complex data have been proposed. The reason that conventional 
structures, like the B-tree, cannot handle complex data is that such structures rely on the 
total ordering property, which holds for numbers and short strings of characters, but not 
for complex data. Even Spatial Access Methods (SAM), such as the R-tree (Guttman, 
1984) and its variants (Beckmann et al., 1990; Sellis et al., 1987) cannot deal with data 
that do not have a fixed number of attributes. 

Traditional DBMS storing complex data has to follow a similar approach employed 
by human beings in order to compare complex data, which is mainly done by comparing 
pair of elements to find those that are the most similar to the intended one. For example, 
consider a surveillance environment where images containing people faces are stored  
in a database. When a new image needs to be checked whether it belongs to a given 
database of images, the new image is compared one by one with the ones in the database. 
The probability of having exactly the same image in the database tends to zero, as people 
and the acquisition environment changes over time. The same happens with equivalent 
settings for any complex data types. Thus, complex data are mainly compared by 
similarity, not equality. Usually, similarity (or distance) between two complex elements 
is measured using a distance function (see Section 2) that gives small values for similar
elements, and larger values for more dissimilar elements. 

Metric Access Methods (MAM) are index structures suitable to efficiently index and 
retrieve complex data from large datasets. The only requirement to build a MAM for a 
particular set of complex elements is defining a proper distance function. MAM are  
well-suited structures to support answering similarity queries, such as the range and  
k-nearest neighbour queries (explained in the Section 2).  

As MAM can rely only on the distances between elements, the indexes, their internal 
structure and similarity query algorithms are more complex and far less intuitive than 
those for unidimensional data or SAM; the later can take advantage of intrinsic  
spatial representation. This fact makes learning, developing and tuning MAM-enabled 
databases a burdensome task. This paper presents a visual framework called MAMView 
that overcomes the spatial limitation of MAM, providing to the user – who can be a 
student learning a MAM structure, a MAM developer or a database administrator  
tuning a MAM-based index – an interactive visual presentation of the indexed data.  
The MAMView allows users/developers to highlight/fade elements of the structure at the 
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users’ desire, as well as to show the algorithm traversing over the data when answering 
similarity queries. This paper makes the following main contributions: 

• It presents the MAMView framework and its underpinning techniques, including a 
complete, practical and easy-to-use tool to generate visualisations of MAM and their 
operations. The MAMView framework allows users to interactively explore the data 
indexed by MAM, as well as to follow the paths of execution of similarity queries, 
driving the developer to examine the structure bottlenecks and to analyse possible 
optimisation scenarios. 

• It describes the MAMView architecture, which is platform independent and takes 
takes advantage of XML format to store and share the visualisations and the 
graphical support given by the OpenGL library (Group, 2009) 

• It improves the understanding of MAM, through a discussion of users’ experiments 
performed with graduate students of a database class and by experienced MAM 
developers. 

It is important to highlight that, distinctly from other existing works in the literature 
(Baker et al., 1999; Brabec et al., 2003; Hadjieleftheriou et al., 2005; Livny et al., 1997; 
Shah et al., 1999), the MAMView framework allows users to manipulate, visualise and 
browse data indexed by MAM, depicting the indexed data or its structure.  
The visualisation of high-dimensional or even non-dimensional data is possible due  
to an extension of the FastMap algorithm (Faloutsos and Lin, 1995), which was 
employed to produce intuitive low-dimensional spatial representations of MAM-indexed 
data. Moreover, this paper shows a way to take advantage of the strong ability of human 
beings to understand graphically presented information (Ware, 2000), fostering the 
human ability to understand a MAM and helping analysts and database administrators in 
their implementation and tuning tasks. 

The remainder of the paper is structured as follows: Section 2 summarises related 
concepts required to understand this paper; Section 3 details the proposed MAMView 
framework and the techniques developed to implement it; in Section 4 we present and 
discuss some evaluation results performed on the MAMView framework to help users to 
understand various MAM algorithms; and Section 5 gives the conclusions of this paper. 

2 Background 

Visualisation techniques greatly improve the understanding of data distributions 
(Elmqvist et al., 2008; Keim and Kriegel, 1994; Keim, 2001). Therefore, many works 
have targeted the problem of designing tools to help developing new access methods.  
The amdb tool (Shah et al., 1999) aims at visualising access methods built on top of  
the Generalised Search Tree (GiST) abstraction (Hellerstein et al., 1995), taking 
advantage of the spatial (or multidimensional) behaviour of the indexed objects.  
Many other visualisation tools specifically designed for SAM have been proposed, 
examples of such tools are the SaIL (Hadjieleftheriou et al., 2005) and VASCO  
(Brabec et al., 2003). Unfortunately, none of these tools designed for multidimensional 
domains can be employed to metric domains. Another interesting work is the  
DEVise system (Livny et al., 1997), aimed at visualising and browsing datasets stored  
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in relational DBMS. The JDSL Visualiser (Baker et al., 1999) was introduced for 
teaching traditional data structures. 

Many works concerning visualisations documents and bibliography information have 
been proposed. In the Bead system (Chalmers and Chitson, 1992) a set of bibliographies 
are displayed in a 3D space, thanks to the use of a multidimensional scaling approach 
(Kruskal and Wish, 1978). The main complaint about Bead is the high computational cost 
required to produce visualisations. The SPIRE system (Miller et al., 1997) encompasses 
four types of 2D projections, allowing users to intuitively perceive which documents are 
more related to others, and possibly browse them. However, such data are not organised 
by access methods or can handle metric data, which makes them infeasible for our 
problem. 

The techniques presented in this paper are not restricted only to visualise MAM or 
data having inherent spatial properties. In fact, as human beings capture graphical 
information in low-dimensional environment (2D and 3D) more intuitively, the 
visualisation proposed herein maps any data in metric domains to 2D or 3D Euclidean 
spaces, which are the most suitable for an intuitive study. 

2.1 Metric spaces and trees 

A metric space is defined by a pair  = < , d() >, where  is the metric data domain and 
d() is the distance function, which measures the similarity between a pair of elements. 
The distance function d() is required to comply with the following three properties in 
order to  be considered a metric space, for any s1, s2, s3 ∈ :

• symmetry: d(s1, s2) = d(s2, s1)

• non-negativity: 0 ≤ d(s1, s2) ≤ ∞ for all s1 ≠ s2, or d(s1, s2) = 0 for s1 = s2

• triangle inequality: d(s1, s3) ≤ d(s1, s2) + d(s2, s3).

Spatial data following an Lp-metric, such as the Euclidean distance L2 or the Manhattan 
distance L1, are special cases of metric spaces. The two most common types of similarity 
queries are: 

• Range Query (RQ): Given a query element sq ∈ , a maximum query distance  
rq, and a search domain S ⊆ , RQ(sq, rq) returns a set of elements R ⊆ S,
such that ∀si ∈ R, d(si, sq) ≤ rq. An example is: “Select all proteins that  
are similar to the protein sq by up to 5 purine bases”, and it is represented  
as RQ(sq, 5) 

• k-Nearest Neighbour query (kNNQ): Given a query element sq ∈  and
an integer value k ≥ 1, kNNQ(sq, k) returns R ⊆ S containing k elements that  
have the smallest distance to the query element sq, according to the distance
function d(), that is k = |R| and ∀si ∈ R, sj ∈ {S – R}, d(sq, si) ≤ d(sq, sj).
An example is: “Select the 3 most similar proteins to protein sq”, and it is  
represented as kNNQ(sq, 3). 

MAM organise a dataset S ⊆  as a metric tree, dealing only with the elements S and the 
distances between pair of elements defined by d(). Basically, a metric tree divides a 
dataset into regions (or balls) and chooses well-suited elements, called representatives,
to represent the elements in each region. The elements in a region are stored in a disc 
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register called node The M-tree (Ciaccia et al., 1997) was the first dynamic MAM 
proposed in the literature that efficiently stores elements in disc pages. The Slim-tree 
(Traina et al., 2000) extended it, introducing faster splitting algorithms and presenting  
the first technique to estimate the overlap between subtrees, called the fat-factor.
The Slim-tree also has an optimisation algorithm called Slim-Down, which reorganises 
elements indexed in a Slim-tree to answer similarity queries more efficiently. 

Both the M-tree and Slim-tree have two node types: leaf nodes, where the  
elements are actually stored, and routing (indexing) nodes that organise the tree  
structure. Both types of nodes store the node representative and its covering radius.  
Leaf nodes also include the elements in the covered region and their distances  
to the representative. Routing nodes also store the representatives of its subtrees  
and their distances to the node representative. When a query search is evaluated,  
the query element is compared to the representative stored in the routing node,  
using the triangle inequality property to prune subtrees that cannot have elements 
qualifying for the answer. Region overlap is the major drawback of a MAM structure 
(Traina et al., 2000), as it leads to accessing many subtrees when traversing a  
tree to answer similarity queries. Figure 1(a) graphically represents a Slim-tree indexing 
19 elements (s1, …, s19) using the Euclidean distance, showing for each node, its 
representative and covering radius. The same Slim-tree is presented hierarchically  
in Figure 1(b), however this representation does not preserve the notion of the covering 
region and the distances among the elements. For example, the presentation  
in Figure 1(b) does not disclose possible overlap occurring among nodes or proximity 
between elements. 

Although the representation in Figure 1(a) is more intuitive in understanding the 
structure of the Slim-tree than the one shown in Figure 1(b), it has two drawbacks:  

• it is hard to scale to large datasets  

• it can only be drawn for multidimensional datasets, such as those following the 
Euclidean distance function. 

It should be noted that it is always possible to visualise datasets indexed in a MAM that 
are represented in the 2-dimensional domain. The problem comes when ‘purely’ metric 
or high dimensional data are indexed in MAM. In these cases, mapping or selection 
algorithms that produce a lower dimensional representation of the data need to be 
employed. There are some algorithms in the literature for this purpose, such as: 
Multidimensional Scale (MDS) (Kruskal and Wish, 1978) and its faster variations 
(Morrison and Chalmers, 2004), MetricMap (Wang et al., 1999), SparseMap (Hristescu 
and Farach-Colton, 1999) and FastMap (Faloutsos and Lin, 1995). 

In our work we use the FastMap (Faloutsos and Lin, 1995) algorithm since  
it has some properties that are needed and the other methods do not have. First,  
the FastMap algorithm has a low computational cost involved on mapping objects  
from its original domain to a 2-dimensional domain. Second, the FastMap algorithm 
outputs the mapping data in a k-dimensional Euclidean space (in our particular case,  
2- or 3-dimensional Euclidean space). And third, it also provides a measurement  
to verify the amount of mischaracterisation of the mapped dataset. Since all of these three 
properties are essential in our domain, the FastMap algorithm is the most suitable 
algorithm for our purposes. 
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Figure 1 Two possible ways to represent a Slim-tree indexing 19 elements: (a) spatial 
distribution of nodes and elements and (b) hierarchical view 

(a)

(b)

2.2 The FastMap algorithm 

FastMap is a mapping algorithm that receives as an input the dataset to be mapped in its 
original space, the distance function to be employed to measure the distance among 
elements in the dataset, and the target number of dimension k. The output of the 
algorithm is the mapped dataset represented in the k dimension. It executes an iterative 
process, where the number of iterations is the target number of dimensions k. For our 
problem, k is set to 2 or 3 depending on the user choice of the Euclidean space where the 
dataset should be visualised. At each iteration, two elements with the largest d() are 
chosen as ‘pivots’ of the target dimension. The pivots define the axis of the dimension 
(see Figures 2(a)–(c)). Thereafter, the projections of all other elements in this axis  
are calculated triangulating the element and the two pivots using the Cosine Law.  
Thus, the algorithm requires only the distances between pairs of elements, as illustrated 
in Figure 2(d). The error imposed in the positioning of each element due to this projection 
is measured using the stress formulation given in equation (1): 
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where d(si, sj) and (̂ , )i jd s s  are the distances in the original and in the mapped spaces, 
respectively. Small values for stress mean that the mapping procedure closely follows the 
original distances, thus resulting in a mapping with better quality. The k-dimensional 
points preserve the original distances as much as possible, by spreading the error among 
the mapped elements. For our intended application, we implemented two versions of the 
FastMap algorithm: 

• FastMap(): Receives a dataset with N elements, a distance function d() and the target 
k number of dimensions. It scans the dataset to find k pairs of elements (pivots) that 
are far apart to each other. 

• CoordinateFastMap(): Receives an element si, a distance function d() and the k pairs 
of pivots. It maps the given element si to a point in the k-dimensional space defined 
by the k pairs of pivots. 

This process exhibits three important properties:  

• It is a linear algorithm, O(N), so it is scalable to process very large datasets. 

• The k pairs of pivots can be stored to reuse in further executions of the algorithm, 
which is done by the CoordinateFastMap(). Elements can be mapped incrementally, 
enabling to map the different layers of the tree and different query results, in a 
unique and consistent target space. 

• As it preserves the original distances as much as possible, it enables the 
representation of geometric structures overlaying the element in a way similar  
to the visualisation of the hyper-bounding regions defined by traditional access 
methods. 

In this way, we are able to visualise the ‘balls’ that cover regions in metric spaces. 

Figure 2 Steps of the FastMap algorithm (one iteration only): (a) an arbitrary element is chosen 
to start the iteration, then the most distant element is chosen to be the first pivot; (b) the 
farthest element to the first pivot is chosen to be the second pivot; (c) the distance 
between both chosen pivots are the largest in the dataset and (d) all the remaining 
elements are mapped using the Cosine Law (see online version for colours) 

(a) (b) 



      

      

      

   A visual framework to understand similarity queries and explore data 377    

      

      

      

      

Figure 2 Steps of the FastMap algorithm (one iteration only): (a) an arbitrary element is chosen 
to start the iteration, then the most distant element is chosen to be the first pivot; (b) the 
farthest element to the first pivot is chosen to be the second pivot; (c) the distance 
between both chosen pivots are the largest in the dataset and (d) all the remaining 
elements are mapped using the Cosine Law (see online version for colours) (continued) 

 (c) (d) 

It is important to find pivots in each dimension as farther from each other as  
possible to achieve good mappings. Finding pairs of elements far apart is the most  
time-consuming part of FastMap algorithm. However, by construction, the elements 
stored at the routing nodes contain elements naturally distant from each other.  
Thus we choose the pivots from the routing elements of the first levels of the that  
amount to at least 50 elements. In our experiments, 50 pivots showed to be good  
enough – increasing it does not improve the visualisation, whereas much smaller  
numbers deteriorates the visualisation. Thus, the selection of pairs of elements  
far apart is restricted to a much smaller number than N, speeding up the process. The 
algorithm to build visualisations is presented in Figure 3. 

Figure 3 Algorithms to visualise a metric tree 
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3 The visualisation framework 

One of the main challenges in developing a visualisation tool for data structures is on 
how to create intuitive graphical representations that properly shows the organisation and 
behaviour of the structure. Traditional data structures, such as binary trees and B-trees, 
take advantage of the inherent ordering property among elements, which makes them 
quite simple to represent graphically, as exemplified in Figure 4. However, when dealing 
with data in metric spaces, one need to answer the question “How to intuitively represent 
a MAM when there is no spatial or ordering relationship among the elements, but only 
distances among them?” An initial suggestion for such a graphical representation of low 
dimensional datasets is given in Figure 1, which compares a spatial presentation with a 
graph-like one. However, when the dataset is high dimensional or metric, a different 
approach must be employed. The modified FastMap algorithm, discussed in Section 2.2, 
produces a low-dimensional mapping of any indexed data, revealed to be a valuable 
resource to solve this problem, enabling the creation of the MAMView visualisation 
framework. 

Figure 4 Two examples of graphical representations of: (a) a binary tree indexing a sequence  
of characters and (b) a B-tree indexing 15 numbers 

 (a) (b) 

The main graphical primitives employed by MAMView to show MAM elements are 
displayed in Figure 5. An element is represented as a coloured point in the space, where 
colours represent the level where the element is stored in the tree. A metric ball specified 
by a pair element/radius is represented by a circle entered at the element. The node 
representatives are represented by a seven-point star. Elements are identified by textual 
tags representing their identifiers (ids). Elements stored in a node are represented by links 
between each element and the node’s representative. Special shapes and icons represent 
special cases of elements and connections. For example, a five-point black star represents 
a query centre and black triangles represent elements in the query result. 

Regions in metric space are mapped to the Euclidean space since it is the most 
intuitive space for users to compare distances. MAMView allows users to interactively 
traverse a MAM, following its behaviour during queries, insertions, dump operations,  
and so on. In this way, it helps both the MAM developer to drill-down its internal 
algorithms whom literally ‘see’ where to spend more optimising effort, and the  
database administrator to understand how to tune an index to obtain better behaviour.  
An interaction mechanism allows manipulating the MAM visualisation, helping to 
improve the intuitiveness even further, as well as it is a valuable tool aiding to deal with 
the inherent visual cluttering of large datasets. 
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Figure 5 Visual representations of a MAM indexing elements in the Euclidean space:  
(a) the abstraction of distances among elements; (b) a node region defined by an 
element and a radius r; (c) four elements stored in a node defined by the representative 
(7-point star) with identifier 34 and (d) different levels are represented using different 
colours, query results are show as black triangles, and query element as a 5-point black 
star (see online version for colours) 

 (a) (b)

 (c) (d) 

3.1 A Generic Model of MAM’s Organisation 

As the only information available to a MAM is the elements to be indexed and the 
distances among them, the great majority of MAM share the same inherent features. 
However, there is a broad variety of mechanisms and ways to organise data that must be 
considered when creating a generic model to organise MAM.  

In this paper, we describe a model that considers the MAM indexing data stored in a 
DBMS. The target access methods materialise as multi-via trees and divide the indexed 
space in metric balls. The balls are specified as <element, radius> pairs. A node is a node
ball, and the centre of a node ball is its representative. Notice that every element stored in 
a node must be covered by the node ball but, due to node overlapping, elements can exist 
covered by the node ball that is not stored in the node. A typical MAM leads to the 
hierarchical placement of the nodes. Thus, our generic model requires the following 
conditions to be met by a MAM: 

• Each node must have a single identifier 

• Nodes should have only one parent, except the root node that has none 
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• Nodes can have any number of children 

• Each node represents a space region defined by a <element, radius> pair 

• An element is associated to either a single node or to none (e.g., a query centre) 

• An element can occur more than once (a representative is also stored in a leaf node) 

• The tree is organised in levels, which indicates how far a node is from the root 

• A query requires one or more centres and one or more radii, resulting in a list  
of elements indexed in the tree. 

3.2 The MAM visualisation steps 

The MAMView framework works as a probe inside the metric-based algorithms.  
It first collects the necessary information from the MAM algorithms when they are 
executed. It then processes the information to provide an interactive visualisation  
of the MAM. The MAMView framework is composed of two logical modules:  
the MAM Sensor and the Visualiser. Figure 6 summarises this structure. A vital operation 
of any metric-based system is the distance calculation, which is performed as  
part of the Sensor. The Sensor then maps the elements in the original space to the 
Euclidean space for visualisation using the same metric employed by the MAM.  
On the other hand, the Visualiser employs the Euclidean metric in the mapped space. 
Besides the distances, the sensor gathers all required information when the MAM 
algorithms are executed, making them available to the Visualiser, which runs after the 
MAM operations have already finished. When all required information is available to the 
Visualiser, it virtually re-creates the algorithm execution, by simulating its execution. 
This model allows the user to freely interact with the visualisation, moving backward or 
forward the visualisation of the execution of the algorithm. 

Figure 6 The logical structure to generate a MAM visualisation (see online version for colours) 

3.3 The MAMView architecture 

The MAMView framework has two main modules: the MExtractor and the MViewer,
as is illustrated in Figure 7. The MExtractor is an Application Program Interface  
(API) for C/C++ environments that extracts data from the MAM itself, tracking the 
events (local transformations) installed by the developer, and maps the distances  
from the metric space to a 2- or 3-dimensional Euclidean space. The collected data are 
then processed and stored in the MAMView Animation (MVA) format files. The MVA 
file is formatted following the XML syntax as a set of frames that composes the animated 
visualisation. Each state of the MAM (the steps performed by the algorithms being 
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analysed) corresponds to one frame in the visualisation MVA file. Using a MVA file the 
MViewer builds the visualisation that the user can interacts with it. 

Figure 7 The MAMView tool architecture: the MExtractor and MViewer modules internals
(see online version for colours) 

The MViewer module compromises the Simulation and the Visualisation components. 
The Simulation component reads a set of frames in the MVA file. Each frame 
corresponds to a set of elements, in the Euclidean visualisation space, handled by the 
algorithm at the corresponding step. In the MViewer module, the user can select  
the desired portion of the information of each frame, as well as navigates through the 
algorithm’s execution by ‘playing’ the corresponding frames. The MViewer module uses 
the OpenGL library (Group, 2009) to manipulate the visualisation as following the user’s 
commands. 

To generate a visualisation for the MViewer module in the MVA format file, it is 
necessary to install the MAMView API in a MAM in order to gather information about 
the algorithms of the specific MAM. The API installation is intended to be performed by 
the MAM developer, since she or he has a good knowledge on how the algorithms being 
analysed work. Therefore, the MExtractor module is linked as part of the application 
program that executes the MAM operations. The first step to probe an algorithm in a 
MAM is to initialise the MAMView environment. In this way, the MExtractor is ready to 
receive event notifications from the MAM algorithm and to generate frames stored in 
MVA file(s). The event notifications are generated by the API that takes as input the data 
(nodes, radii, elements, representatives, etc.). As the animation in an MVA file is 
composed of frames, calls must start and finish a frame. Therefore, the MAM developer 
must plan what is the meaning of each frame, defining what composes each frame and 
what are the events that separate them. For example, to observe the traversing over a tree, 
the events can be grouped in frames to be visualised as follows: 

• MAMView.BeginAnimation() is called to initialise a new animation 

• MAMView.BeginFrame() starts a new frame 

• At each step of the loop, call MAMView.SetFrame() method to add data to the 
current frame 

• Other methods, e.g., MAMView.SetLevelDown() and MAMView.SetObject(),
can be used to change other status of the animation 
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• MAMView.EndFrame() is called to end a frame 

• MAMView.EndAnimation() finishes an animation. 

The main methods of the MAMView Extractor are shown in the Appendix A.  
Although data is collected sequentially into the frames from the execution of the 
algorithm being analysed, each frame treats the corresponding data as an unsorted set of 
descriptors. Figure 8 shows an example of API installation for the depth-first tree 
traversal algorithm in a MAM. The code in (a) shows the original traversal algorithm, and 
in (b) the augmented code with the MAMView Extractor methods. In this example, only 
a single frame is built with the whole tree structure with the elements indexed. 

Figure 8 Installing the MAMView to an algorithm to traverse a metric tree: (a) original code and 
(b) code with MAMView calls (in red colour) (see online version for colours) 

 (a) (b) 

A more complex example is shown in Figure 9. In this example, the MAMView 
Extractor methods were installed in the range search algorithm to construct an animation 
of a query. In this animation, a frame is created every time a node or elements are 
accessed in the search process. Also, a new frame is created whenever an element is 
inserted in the query set. The final sequence of frames allows recording all steps  
of the range search processing, thus enabling the user to inspect how the nodes and 
elements are analysed during the query execution. Figure 9(a) and (b) show the range 
search algorithm before and after, respectively, the installation of the MAMView 
Extractor methods. This code was used to generate the visualisations for the evaluations 
discussed in Section 4. 
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Figure 9 Enabling the visualisation of a Range Query algorithm: (a) original code  
and (b) MAMView calls to generate an animation of the Range Query (in red)  
(see online version for colours) 

 (a) (b) 

4 Evaluating the MAMView framework 

The MAMView framework was evaluated on two MAM: an already developed Slim-tree, 
and one under development DBM-tree (Vieira et al., 2004). We evaluated two distinct 
features of the framework:  

• for the already developed Slim-tree, the MAMView was employed to trace the 
algorithms and to teach new students the internal Slim-tree mechanisms to answer 
similarity queries, highlighting how it can be tuned to achieve good performance 

• for the team developing the DBMtree, the MAMView was employed to help develop 
and adjust its algorithms. 
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The MAMView framework was implemented in C++ and OpenGL, as part of the 
Arboretum library (GBDI-ICMC-USP, 2005), a portable platform to implement, test and 
extend MAM. We evaluated both the Slim-tree and the DBM-tree indexing several 
datasets. In this paper, we show the results using five real-world datasets, which are 
representative to illustrate the MAMView usefulness. Figure 10 shows a visualisation of 
the elements for each datasets using the MViewer. Notice that the visualisation only uses 
the distances among the dataset elements. The presented spatial datasets are used to 
validate the techniques, since one can easily understand what is being shown. The four 
dataset are described below: 

• USCities: A 2-dimensional dataset representing the longitude and latitude of 25,376 
cities in the US and Porto Rico (US-CENSUS, 2002). Although it is a spatial dataset, 
only the pair wise distances among the elements, measured by the polar distance 
function, were used to build the visualisation. This dataset has a well known 
behaviour, thus it is useful to understand the visualisation process. The page size was 
set to 1 KByte, producing 5 and 12 levels for the Slim-tree and DBM-tree, 
respectively

• BRCities: A 2-dimensional dataset representing 5507 cities in Brazil (IBGE, 2001). 
This dataset was employed during the user experiments explained in Section 4.3.  
The data page size is 1 KByte, resulting 3 and 7 levels for the Slim-tree and  
DBM-tree, respectively 

• English: 24,893 words representing a subset of words in the English dictionary.  
The Edit distance (Levenshtein, 1966) was employed to measure the amount  
of difference between two words.1 The data page size for this dataset was  
set for 4 KBytes, producing 3 and 7 levels for the Slim-tree and DBM-tree, 
respectively

• Eigenfaces: A dataset describing 16 distinct features extracted from human faces 
using the Eigenfaces method (Turk and Pentland, 1991). The data page size is 512 
bytes, resulting 6 and 9 levels for the Slim-tree and DBM-tree, respectively 

• Iris: A 5-dimensional dataset from the UCI-KDD data repository (Hettich and Bay, 
1999) describing features (sepal width and length, petal width and length, and flower 
type) of 3 types of Iris flowers (Setosa, Virginica and Versicolor), each type with
50 elements. The page size was set to 256 bytes to force 3 and 8 levels for the  
Slim-tree and DBM-tree, respectively. 

Figure 11 presents a visualisation of the USCities dataset indexed by the DBMtree using 
the MViewer. The elements in each level of the structure are shown in different colours. 
The colour pattern is shown at the top right (arrow number 3) of Figure 11, and it is the 
same for all visualisation frames. The graphical elements employed by the MViewer for 
each tree level are the ones shown in Figure 5. The navigation and graphical interaction 
controls are at the frame top left (arrows number 1 and 2). The messages posted by the 
MExtractor to inform about the settings and events occurred during the MAM algorithm 
execution are shown at the bottom of the MViewer window (arrow number 4). 
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Figure 10 Visualisation, using the MViewer, of elements of all five datasets used in the 
experiments (from left to right): USCities, BRCities (first row), English, Eigenfaces
and Iris (second row) (see online version for colours) 

Figure 11 Snapshots of the MViewer presenting the USCities dataset indexed by the DBM-tree: 
(a) only the data elements are shown. Arrow 1 points to the animation interaction 
controls, arrow 2 points to the visualisation controls, arrow 3 points to the colour pallet, 
and arrow 4 points to the message fields and (b) the elements and regions covered by 
each node are presented (see online version for colours) 

(a)
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Figure 11 Snapshots of the MViewer presenting the USCities dataset indexed by the DBM-tree: 
(a) only the data elements are shown. Arrow 1 points to the animation interaction 
controls, arrow 2 points to the visualisation controls, arrow 3 points to the colour pallet, 
and arrow 4 points to the message fields and (b) the elements and regions covered by 
each node are presented (see online version for colours) (continued) 

(b)

The animated MViewer visualisations allow users to navigate through the execution  
of the algorithm, continuously or frame by frame, forward or backward. The MViewer 
tool allows users to select to visualise only the elements indexed in the tree  
(no representatives, ids or radii), elements in any levels of the tree, node representatives, 
radii, element identifiers, query object, query answer, or any combination of the previous 
options. For an animation of a visualisation, composed of a set of frames, users can 
interact with each frame of the animation as well as a set of frames. In this last animation 
feature, users can visualise only a specific number of frames while playing the animation, 
defined here as the ‘tail’ feature. Another special effect that users can enable while 
playing an animation is the ‘fading’ feature, where old frames regarding the current frame 
being visualised are incrementally faded. This last feature provides users to focus only on 
the last frames in an animation, superimposing a selected number of frames in each 
visualisation with different dim effects. 

The MViewer tool also allows users to interactively rotate, translate or scale the 
visualisation to inspect specific regions of the visualisation. All these features are very 
important to visualise large datasets where there is potential for cluttering and occlusion 
in the visualisation. 
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4.1 A visual dump for MAM 

Exploring the organisation of elements indexed by a MAM is useful to understand the 
behaviour of the structure, as well as giving hints on how to improve the structure  
performance. Hence, users can check whether the algorithms are working properly,  
the parameters are set correctly, or where the bottlenecks in the structure are located.  
Figure 12 shows four different snapshots for a visual dump of the Slim-tree indexing  
the Iris dataset. For sake of simplicity, a single frame is used for a visualisation of a 
dump for a particular MAM. However, depending on the size and complexity of the 
dataset, different frames can be used allowing observing small details of a particular 
MAM. In Figure 12(a) only the elements (represented with dots) indexed and the 
representatives of nodes (7-points stars along with their id labels) are shown.  
Figure 12(b) adds to Figure 12(a) the links between elements and their respectively 
representatives. Figure 12(c) adds the radius for each node and Figure 12(d) shows 
another perspective of the same information as Figure 12(c). Figure 13 shows another 
visual dump but now for the English dataset. Figure 13(a) shows elements, 
representatives, radius and id for representatives, and Figure 13(b) only the elements 
indexed by the Slim-tree. 

Figure 12 Visual dump of the Iris dataset: (a) elements with representatives and ids;  
(b) connections between elements and representatives; (c) node radii and
(d) a different perspective of (c) (see online version for colours) 

 (a) (b) 

 (c) (d) 
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Figure 13 Three snapshots of the MViewer with the English dataset: (a) elements and node 
representatives and (b) only the elements indexed by a Slim-tree (see online version  
for colours) 

 (a) (b) 

For comparison purposes, we also implemented a Hypertext Dump for MAM.  
This Hypertext Dump is improved by hyperlinks to allow users to navigate from a node  
to its subtrees. Figure 14 presents a screenshot of a Hypertext Dump for a Slim-tree 
indexing the USCities dataset. This figure shows both an index (node 1676 with  
5 representatives) and leaf (node 1677 with 8 entries) nodes. Index nodes have links  
to their subtrees, and leaf nodes have the elements and distances to their node 
representative. In the experiments performed with users (see Section 4.2), we compared 
the visualisation provided by the MViewer tool against the Hypertext Dump for the same 
MAM (Figure 14).

Figure 14 A Hypertext Dump with hyperlinks of the tree shown in Figure 11 for the USCities
dataset. The index (routing) nodes have links to their subtrees. The elements indexed
by the MAM are all stored in the leaf nodes (see online version for colours) 
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4.2 Evaluating the applicability of the MAMView framework 

Processing similarity queries over multimedia data can be very time consuming.  
Thus, MAM developers strive to optimise the construction and query algorithms as much 
as possible. As MViewer allows visual inspections and analysis of the changes and 
navigation steps performed by the algorithms, developers can literally ‘see’ where to put 
efforts in order to improve and/or tune the structure or the query algorithms. Figure 15 
shows global views of some snapshots of the Slim-tree indexing the Eigenfaces dataset, 
from a 230-frame animation generated by the execution of a RQ. Figure 15(a) shows the 
dataset with the representatives and their identifiers, and in Figure 15(b) the node radii 
are included; Figure 15(c) shows the 1st frame, out of 230 frames, for the RQ centre 
drawn as the 5-point black star and the three subtrees in the root node represented by 
representatives 585, 30 and 441; Figure 15(d) shows the 2nd frame where subtree 
represented by the representative 585 is evaluated. Different colours represent different 
levels in the subtree; Figure 15(e) shows frame 13rd when the range algorithm reaches a 
leaf node (node 90 at level 3). This particular animation was zoomed and rotated;  
Figure 15(f) shows frame 18th where index node (node 71) is evaluated; Figure 15(g) 
shows the same frame as Figure 15(f), but focusing on index node 71. Cluttering in the 
visualisation makes it difficult to recognise where the processing focus is, but the ‘tail’ 
resource can spot the important parts of the visualisation. This resource is fading previous 
frames to allow the user to focus only on the last 5 frames of the animation; Figure 15(h) 
shows the 229th frame where the algorithm finished evaluating subtree 30. The result of 
this particular range query is null. 

Figure 15 Some snapshots for a Range Query of a Slim-tree indexing the Eigenfaces dataset:  
(a) elements and representatives; (b) elements, representatives, radii and ids;  
(c) shows the 1st frame, out of 230 frames, for a Range Query with query object 
represented by a 5-point black star (only the tree subtrees, represented by their 
representatives and radii, in the root node; (d) shows the 2nd frame where one subtree
is being explored to evaluate the Range Query; (e) shows the 13rd frame where the leaf 
node 90 in the third level is explored; (f) shows the 18th frame where the index node
71 in the second level is being evaluated; (g) shows the same frame as (f), but here only 
the last 5 frames are displayed using the ‘tail’ feature (tail with size 5) and (h) shows the 
229th frame where three subtrees (585, 441 and 30) are being evaluated (see online 
version for colours) 

 (a) (b) 
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Figure 15 Some snapshots for a Range Query of a Slim-tree indexing the Eigenfaces dataset:
(a) elements and representatives; (b) elements, representatives, radii and ids;  
(c) shows the 1st frame, out of 230 frames, for a Range Query with query object 
represented by a 5-point black star (only the tree subtrees, represented by their 
representatives and radii, in the root node; (d) shows the 2nd frame where one subtree
is being explored to evaluate the Range Query; (e) shows the 13rd frame where the leaf 
node 90 in the third level is explored; (f) shows the 18th frame where the index node
71 in the second level is being evaluated; (g) shows the same frame as (f), but here only 
the last 5 frames are displayed using the ‘tail’ feature (tail with size 5) and (h) shows the 
229th frame where three subtrees (585, 441 and 30) are being evaluated (see online 
version for colours) (continued) 

 (c) (d) 

 (e) (f) 

(g) (h) 
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4.3 Evaluating MAMView usefulness to understand similarity queries 

MAM are not as easy to understand as the spatial and order-based structures, so students 
usually have a hard time understanding them. We claim that the MAMView framework 
can facilitate users to understand MAM, improving the perception of the executed 
algorithms. Hence, here we present some experiments performed with students to 
evaluate our claim. We invited 22 graduate students from a database class to participate 
in the experiments. All those students were introduced to the basic concepts related to 
MAM and similarity queries. Furthermore, they were given practical exercises to fix 
these new concepts in class before introduced to the MAMView framework. All students 
also attended to a presentation where the MAMView framework was introduced, as well 
as the Hypertext Dump.

The experiments aim at comparing the adequacy of the animated visualisation  
given by the MViewer tool (Figure 11(a)) and the Hypertext Dump (Figure 14). The tasks 
that all the students needed to perform were to trace the execution of a RQ using the 
Slim-tree with the BRCities dataset. Such dataset was chosen in order to make it easier to 
compute the required distances between elements and the query centre and because all 
students were more familiar with it (country where all the students were originated from). 
All participants were asked to trace the same RQ, located in the vicinity of the students’ 
university. In the end, they were asked to answer the following three questions: 

1 What is the sequence of nodes accessed to answer the proposed query? 

2 How long did it take to answer Question 1? 

3 How difficult was to find the answer? 

The participants were randomly split into two groups to answer the previous three 
questions: group A employed only the MViewer tool; and group B employed only the 
Hypertext Dump to evaluate the RQ. The answers of both groups are summarised in 
Figure 16. The first question spots how many participants properly traced the RQ 
algorithm. Figure 16(a) shows that 10 out of the 11 users in group A (with MViewer) 
delivered correct answers, while only two users, out of 11, in group B (with Hypertext
Dump) achieved the correct answer. Question 2 tells us which tool allows users to get the 
results faster. Figure 16(b) shows that the majority of users in group A spent 10 min or 
less to answer the RQ, while users in group B spent more than 10 min. Two users in 
group B gave up since it took them more than 30 min to answer the first question. 

In the next step we asked each group to answer the same previous three  
questions again, but changing the tool employed, i.e., group A and B employed the 
Hypertext Dump and MViewer, respectively. In this way we could evaluate question 3, 
measuring the users’ satisfaction employing both tools. Figure 16(c) shows the results  
for question 3. As we can see, the students considered the MViewer tool the  
easiest to understand and answer the first two questions. We also asked the participants 
about which tool they think is the most appropriate to learn and understand the  
similarity query processing. 20 students said that the MViewer was better than the 
Hypertext Dump.
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Figure 16 Comparing MViewer and Hypertext Dump regarding: (a) number of users that delivered 
correct answers; (b) total time spent to give the final answer of the
proposed Range Query and (c) level of difficulty to follow the execution using each tool 
(see online version for colours) 

(a)

(b)

(c)

4.4 Evaluating MAMView usefulness to help developers 

It is quite challenging to setup an experiment to evaluate the MAMView ability to help 
developers in building new algorithms for MAM. One challenging aspect of this is that 
we would need several groups of developers to measure the spending time on the 
development process, as well as to measure the correctness and novelty of the new 
algorithms. Luckily, we were able to employ MAMView on the development of the 
DBM-tree. As it turned out, MAMView was fundamental to drill-down the DBM-tree 
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algorithms, including the tree construction and the similarity query algorithms. Therefore, 
we will briefly discuss, as a case study, the use of MAMView on the development of the 
DBM-tree.

The Density-Based Metric tree (DBM-tree) (Vieira et al., 2004) is a dynamic MAM 
that differs from the Slim-tree by building deeper subtrees at denser data regions.  
It achieves better query performance than other height-balanced MAM for datasets with 
skewed distributions. The total cost in developing the DBM-tree considering time  
and human effort was extremely reduced after introducing the MAMView tool, as related 
by the developers involved in the project. Each new proposed approach implemented and 
tested without the use of the MAMView framework took days to understand what was 
happening with the structure since the only way to measure the new approach was to 
perform several performance evaluations. After the introduction of the MAMView 
framework, the developers involved in the project of the DBM-tree related that the 
design/coding/debug cycle was accelerated from several days to a few hours. 

The DBM-tree was conceived after identifying several bottlenecks in the Slim-tree 
using the MViewer tool. As a result, the DBM-tree spotted several problems not known 
beforehand, whose solutions enabled improvements of up to twice over the Slim-tree, 
regarding running time, number of disc accesses and distance calculations. There were 
many choices on how to define policies to split the nodes of the DBM-tree, to choose 
subtrees to insert new elements, to choose representatives, among other algorithms.  
The MAMView was fundamental to narrow down a subset of options to test, highlighting 
the fact that – as often occurs regarding metric spaces – those intuitively seeming as the 
most promising, were in fact bad options. Therefore, the visualisation clues provided  
by the MViewer tool were fundamental in the process of developing the DBM-tree. 
Figure 17 shows 2 snapshots of the DBM-tree indexing the Iris and the USCities datasets. 

Figure 17 (a) The DBM-tree indexing the Iris and (b) the USCities datasets (see online version
for colours) 

(a)
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Figure 17 (a) The DBM-tree indexing the Iris and (b) the USCities datasets (see online version
for colours) (continued) 

(b)

5 Conclusions 

This paper presented a framework called MAMView, which assists in the analysis of 
MAM, including their insertion, querying and optimisation algorithms. This framework 
enables the visualisation of the data indexed by a MAM to help users in understanding 
the behaviour of MAM. The MAMView framework is the first visualisation tool 
allowing users to interactively explore the MAM behaviour during query processing.  
It is also a powerful tool to help drilling-down new algorithms for MAM. MAMView 
helps spotting potential bottlenecks and problems in already developed MAM, as well as 
to help MAM developers to come up with more efficient indexing approaches and 
optimisation techniques to answer similarity queries. 

The visual attributes of the animations can be changed on-the-fly in the MViewer 
tool. The MViewer is the component of the MAMView framework responsible in 
presenting the visualisation stored in the MVA format files. This format complies with 
the XML syntax, allowing users to share the files among other users/developers.  
Users can interact with the presentation though the MViewer tool. The visualisation can 
have several frames, each of which containing part of the animation. Users can interact 
with a single frame or by ‘playing’ an animation composed by a set of frames. 

The MAMView framework is implemented as part of the Arboretum Library of 
MAM. However, the MAMView framework can be employed to visualise operations 
performed by any MAM. 

In the experimental evaluation graduate students were asked to evaluate how easy,  
or difficult, was to evaluate a range query using the MAMView framework and  
a Hypertextual Dump representation of the same data indexed by the Slim-tree.  
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The results reported in this paper revels that users understood the concepts of MAM 
faster and easier using the MAMView framework. We also reported the developers’ 
experiences using the MAMView framework to detect bottlenecks in the Slim-tree and 
develop a new MAM. 
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Appendix A 

The main class in the MAMView Extractor is the stMAMViewExtractor. It implements 
all the extractor resources, except the Distance Mapper, which uses the same distance 
function used by the attached MAM. Its methods are: 

Table 1 Main methods of the stMAMViewExtractor class 

Init(samples) Initialises the extractor. Parameter samples has a set of 
elements employed to initialise the stFastMapper

SetOutputDir(outputDir) Specifies the directory path where the resulting files will be 
written to 

BeginAnimation(title, comment) Triggers the extractor to create a new animation file and start 
the animation. title and comment are attributes displayed in the 
MViewer 

EndAnimation() Triggers the end of an animation 
BeginFrame(comment) Starts a new frame. comment has the text content displayed in 

the animation 
EndFrame() Ends a frame 
SetNode(nodeID, reps, radii, n, 
parent, type, active) 

Creates a new node or changes the attributes of node nodeID

EnableNode(nodeID) Enables node with identifier nodeID
SetObject(obj, parent, active) Creates a new element or changes the attributes of element 

with identifier nodeID
SetResult(queryObj, result, k, 
radius) 

Creates a result set 

SetSample(queryObj) Set the query object for a query 
SetQueryInfo(k, radius) Set the k and radius attributes of a query 
SetLevel(level) Creates a new level in the visualisation 
GetLevel() Gets the current level 
LevelUp() Increases the level by one 
LevelDown() Decreases the level by one 


