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Abstract: As intelligent surveillance system applications become ubiquitous, 
automated crowd counting solutions must be made continually faster and 
accurate. This paper presents an improved convolutional neural network (CNN) 
architecture for accurate visual crowd counting in crowd images. Multi-column 
convolutional neural network (MCNN) is widely used in previous works to 
predict the density map for visual crowd counting. However, this method has 
limitations in predicting a quality density map. Instead, the proposed model is 
architected using powerful CNN layers, dense layers, and one regressor node 
with whole image-based inference. Therefore, it is less computationally 
intensive and inference speed can be increased. Tested on the mall dataset, the 
proposed model achieved 2.01 mean absolute error and 8.53 mean square error. 
Moreover, benchmarking on different CNN architectures has been conducted. 
The proposed model shows promising counting accuracy and reasonable 
inference speed against the existing state-of-art approaches. 

Keywords: visual crowd counting; convolutional neural network; CNN; whole 
image-based inference; edge embedded platform; multi-column convolutional 
neural network; MCNN. 
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1 Introduction 

Visual surveillance systems are getting to be more common and pervasive as social 
orders gotten to be more complex and populations continue to grow. The Population 
Division of Department of Economic and Social Affairs (DESA) of the United Nations 
predicts that the world population will reach 8.5 billion in 2030 and 9.7 billion in 2050 
(United Nations, 2019) (illustrated in Figure 1). Crowds can often be seen at airports, bus 
stations, tourist attractions, and public displays (presented in Figure 2). The issue of 
public security practice has arisen with the exponential development of the world 
population. The focus of crowd control is crowd counting and it has piqued the interest of 
many researchers. 

Early research (Zu et al., 2009; Chen et al., 2010; Hassan et al., 2016) on crowd 
counting focused primarily on detection-based approaches. This method aims to locate 
the exact position of each human object in the scene. Head detection and face detection is 
widely used trained detector to locate human object. However, these approaches did not 
work well in a complex scene such as perspective changes, different lighting, and strong 
occlusion. The researchers at that point proposed regression-based approaches to regress 
the number of human objects straight from the image or to create a density map to predict 
the crowd size. A density map illustrates the spatial arrangement data from the image. 
With the introduction of deep learning that is able to teach computer to do what comes 
naturally to humans, this technique is widely used and bring revolution to many different 
sector (Balasubramanian and Rajendran, 2019; Anitha et al., 2019; Priya et al., 2020; 
Padmapriya and Duraiswamy, 2020). With the significant improvement of the 
convolutional neural network (CNN) in solving computer vision tasks (Yu et al., 2021), 
many researchers are motivated to exploit the potential to predict a quality density map 
and ultimately determine an accurate count. Among the CNN models, multi-column 
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convolutional neural network (MCNN) has made significant progress in generating a 
quality density map. The multi-column architecture can learn the image characteristics of 
different receptive fields by using non-identical columns and filter sizes. These features 
are brought together in the final layer of the CNN model to create a density map. 
However, Li et al. (2018) ran a validation test on MCNN and was found to have 
significant drawbacks. The output of the multitask convolution kernels show the same 
results when the crowd density changes from sparse to crowded or from crowded to 
sparse. In addition, it is difficult to predict a good density map when the scene contains 
varieties in appearance, non-uniform brightness and different human scale. 

Figure 1 World population development from 1950 to 2050 (see online version for colours) 

 

Source: United Nations (2019) 

Figure 2 Interpretation of different crowd scenes [from (a) to (c)] airport, tourist spot, and public 
display (see online version for colours) 

   
(a)   (b)   (c) 

Note: Static and dynamic human objects, occlusions and a distinctive point of view can 
be observed from the images. 

Another aspect that will influence the accuracy of the CNN-based crowd estimation is the 
inference methodology. It can be classified into patch-based inference and whole-image-
based inference. For patch-based inference, the features are trained using small image 
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patches cropped from the images and the crop sizes shift depending on the methods used. 
Within the testing phase, a sliding window is dragged through the image and an estimate 
of the crowd count is acquired for each window and the individual count of each window 
is added up to obtain the total crowd count. In contrast, the whole image-based inference 
will learn the features directly from the image during the training phase and will perform 
crowd estimation directly from the image during the test phase. This method avoids 
computation-intensive scrolling windows. Researchers (Shang et al., 2016; Sheng et al., 
2018) who applied whole image-based inference observed an increase in crowd 
estimation accuracy and a better inference rate. 

Considering all the factors, a fast regression convolutional neural network (FRCNN) 
is proposed. FRCNN is a deep CNN regression model that architected carefully with 
convolutional layers, dense layers and a regressor node. The whole image-based 
inference method is applied for training and testing the CNN model. The model estimates 
the crowd size directly from the image rather than using a density map. In addition, 
whole image-based inference can help reduce the learning time and inference time of 
compute-intensive scrolling windows. 

The rest of this article is organised as follows. Section 2 reviewed the related 
literature on crowd counting and inference methodology. Section 3 outlined the proposed 
network architecture. Section 4 presents the experiment results and benchmarking with 
state-of-art approaches. Finally, the conclusion and future work are drawn in Section 5. 

2 Related work 

As crowd analysis gained attention, the challenge of estimating crowd size from imagery 
has been revealed and tackled from different angles. The crowd counting method can be 
generally classified into two groups: detection-based approaches make use of computer 
vision algorithm and emerging regression-based approaches constructed on CNN. The 
late CNN models have greatly raised the crowd counting accuracy. The inference 
methodology on the CNN model will also be reviewed in this section. 

2.1 Detection-based approaches 

Detection-based approaches perform crowd counting by using monolithic detection 
techniques by training a classifier using full-body features such as histogram-oriented 
gradients (HOG) to detect a pedestrian or part-based techniques such as head detection, 
face detection or other human detector to acquire the approximate location of each human 
in the scene. In a sparse crowd, parts and shape-based detectors are good at alleviating 
occlusion problems. Handcrafted features extracted from state-of-art computer vision 
algorithms are used extensively in this approach. (Hassan et al., 2016) recognise human 
objects from the image by classify the HOG feature using a support vector machine 
(SVM) classifier. The crowd size is counted from recognised human objects. Hassan’s 
approach is more fitting in a less crowded crowd setting. Zu et al. (2009) and Chen et al. 
(2010) used a facial detection technique to identify the faces of the pedestrians when they 
enter the camera’s view. The detected faces are finally added to determine the size of the 
crowd. However, these approaches required the sight of the human face within the 
camera view. The aforementioned research works are engaged previously by the 
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researchers. These methods have limitations when the human parts are not fully visible 
for detection in a crowded and occluded environment. 

2.2 Regression-based approaches 

Although human part detectors were used to solve occlusion problems, these approaches 
were ineffective in an extremely crowd scene. Unlike detection-based approaches, 
regression-based approaches generate either a density map for pedestrian counting, or a 
direct estimate of crowd size based on image features. In early research, regression-based 
algorithm is designed to extract the valuable features from the image and used together 
with regression approaches such as support vector regression (Conte et al., 2010), ridge 
regression (Chen et al., 2012) and Gaussian process regression (Deng et al., 2015) to 
predict the number of human objects. In addition, the image features obtained are  
hand-crafted. 

With the establishment of a CNN, a lot of CNN-based researches are proposed and its 
superiority presented. Out of many research works, the multi-column network and the 
deep regression model are widely used. (Wang et al., 2015) took over the AlexNet 
network (Alex et al., 2012) and developed an end-to-end deep CNN regression model to 
determine the total crowd count from the extremely dense crowds. The final dense layer 
is substituted by a single layer of neurons to predict the size of the crowd. To increase the 
accuracy of the prediction, additional negative samples of the training data are added and 
the ground truth is marked with zero. Instead of predicting density maps, Fu et al. (2015) 
proposed a CNN regression multi-stage CNN to classify the crowd size into five groups. 
These groups vary from very low crowd density to very high crowd density. Before the 
multi-column network was introduced in crowd counting research, the CNN was widely 
used for image recognition (Ciregan et al., 2012). Zhang et al. (2016) proposed a  
multi-column network with convolution kernel of different sizes to generate a density 
map. (Onoro and Sastre, 2016) implemented a self-adaptive counting model called hydra 
CNN which branches from a single column CNN to a multi-column CNN to merge the  
multi-scale features. In contrast, Sam et al. (2017) trained a classifier to select an optimal 
regressor based on the input image patch rather than training all regressors. The input 
image patch is then sent to the optimal sub-regressor to predict a density map. In more 
recent work, Xue and Li (2019) introduced a stack of residual building blocks CNN s to 
predict high-quality density maps and crowd density estimation. Each building block 
generates a feature map is cascaded from the end of the current building block to the end 
of the next building block. The performance of their work is tested on the ShanghaiTech 
dataset, a large-scale crowd counting dataset; UCSD dataset, a small to medium size 
crowd counting dataset; and Mall dataset, a dynamic crowd counting dataset. 

2.3 Inference methodology 

The training process of CNN is a fundamental part of building a strong network. The 
weights of the neural network are determined together with the training loss calculated 
during the inference process. The inference methodology can be classified into  
patch-based inference and whole image-based inference. Patch-based inference 
methodology utilise patches extracted from the image to train the neural network and a 
sliding window that scrolls over the test image during the test phase to predict the crowd 
counts. Researchers such as Zhang et al. (2016), Sam et al. (2017) and Xue and Li (2019) 
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predicting a density map for crowd counting uses the patch-based inference methodology. 
However, from the observation, patch-based inference is computationally intensive 
(Vishwanath and Vishal, 2018). In contrast, many CNN models (Shang et al., 2016; 
Zhang et al., 2016; Sheng et al., 2018) are trained and tested with the whole image-based 
inference methodology. This method takes in the entire image as input and directly 
predicts the final count. The authors observed that using the whole image for inference 
leads to a reduction in complexity as the computations are distributed in overlapping 
areas (Vishwanath and Vishal, 2018). 

From the literature’s observation, several processing steps and complex structures are 
required to generate a quality density map. CNN models predicting the density map 
typically required ground truth creation as an additional task. Furthermore, the  
patch-based inference is computationally complex. Therefore, the new proposed FRCNN 
model was designed based on this argument. The details of the network details are 
presented in the next section. 

3 Proposed method 

This section presents the proposed network architecture, followed by training details for 
the model. 

3.1 The proposed network architecture 

This paper aims to design an efficient end-to-end regression CNN model to learn the 
useful features in a comparatively easy and straightforward way to accurately estimate 
the crowd size in crowd images. Instead of splitting the image into multi-patches, the 
model takes the whole image as input and directly computes the final crowd count. Since 
the whole image-based inference distributed the computations across overlapping regions 
and multiple processing steps are combined, this resulted in a reduction of complexity. 
The proposed deep regression model contains three parts, a convolutional layer stack for 
filtering useful features, fully connected layers, and a regressor node for the final crowd 
count. 

The deep regression model takes an input image and computes the high-level features 
from the convolutional layers. This layer is stacked with five convolutional layers that 
allow a hierarchical decomposition of the input image. A large filter size (11 × 11) is 
used in the first convolutional layer to recognize human object as it usually occupied big 
number of pixels. Rectified linear unit activation function (ReLU) is applied on the 
convolutional layers to highlight the useful features. Max-pooling operation is applied to 
scale down the convolutional features in a nonlinear way to significantly reduce the 
number of network parameters. Features created from the convolutional layers are 
flattened out into fully connected layers. Instead of applying ReLU in the fully connected 
layers, the Leaky rectified linear unit (Leaky ReLU) activation function is applied to 
prevent dying neurons. The reason for this is that the neuron weight due to Leaky ReLU 
activation function has a wider range than the ReLU activation function. From 
observations obtained during the model training, it appears that it did not perform well in 
predicting dynamic crowds using the ReLU activation function on fully connected layers. 
Eventually, the Leaky ReLU is applied on all the dense layers for better performance in 
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predicting the dynamic crowd. Batch normalisation is applied in the layers to normalise 
the output of the previous layers. It helps to make the model more stable and avoid 
overfitting the model. Finally, a regressor node is architected in the final layer to compute 
the final count. The total parameter of the proposed network is 60,903,617. The overview 
of the proposed deep regression network is illustrated in Figure 3. The summary of the 
CNN architecture is presented in Figure 4. 

Figure 3 The dataset sample and the architecture of the proposed network (see online version  
for colours) 

 

Note: The convolutional layers’ parameters are represented as ‘Conv(layer number) 
(filter number x filter size x filter size)’. The fully connected layers’ parameters 
are denoted as ‘Fc(layer number) (number of neurons)’. 

Figure 4 CNN architecture summary 

 

3.2 Model training 

The model takes an image size of 227 × 227 as input and propagates forward through five 
convolutional layers to produce a feature map measuring 256 × 6 × 6. This feature map is 
then flattened and aggregated by four fully connected layers. The last fully connected 
layer is connected to a single regressor node to generate the final crowd count. 

The deep regression neural network is trained in an end-to-end approach from 
scratch. During the training period, the model is optimised end-to-end with Adam’s 
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optimisation algorithm. Neural network’s weights are initialised with Kaiming weight 
initialisation (He et al., 2015) which works best with ReLU or LeakyReLU activation 
function. The learning rate is configured at 0.001. The mean square error (MSE) loss 
function is adopted to calculate the loss between the ground truth and the estimated count 
during the model training process. The formula is shown as follows: 

2

1

1 N

i i
i

L y y
N =

′= −  (1) 

where L is the loss function, N is the number of test data, yi is the ground truth and yi′ is 
the estimated result corresponding to the ith data. To avoid overfitting the model to the 
training data, a dropout layer is applied. With the adaptive learning rate of Adam’s 
optimiser, the model achieved local optimum after 50 epochs. 

4 Experiments 

The proposed network is evaluated with the mall dataset (Chen et al., 2012). This section 
also presents the evaluation metrics to validate the model. Next, the experimental results 
are studied and benchmarked with state-of-art approaches (Chen et al., 2013; Pham et al., 
2015; Kumagai et al., 2017; Xu and Qiu, 2016; Sheng et al., 2018). Finally, the inference 
speed of the proposed model is evaluated in a computer platform and embedded 
platforms to demonstrate the efficiency of the proposed model. 

4.1  Evaluation metrics 

The mean absolute error (MAE) and the MSE are mainly used as evaluation metrics to 
assess the regression problem. This evaluation metrics are also adopted by  
regression-related research works (Zhang et al., 2016, 2018), therefore these metrics are 
adopted to evaluate the performance of the proposed model. The formula of MAE and 
MSE are given as follows: 

1

1MAE
N

i i
i

y y
N =

′= −  (2) 

2

1

1MSE
N

i i
i

y y
N =

′= −  (3) 

where N is the number of test data, yi is the ground truth and yi′ is the estimated result 
corresponding to the ith data. The estimated result yi′ will be rounded to the nearest 
integer to keep the value intact before evaluating with MAE and MSE. Evaluation with 
the non-rounding estimated result is also analysed. In general, MAE denotes the accuracy 
of the visual crowd counting and MSE denotes the robustness of the visual crowd 
counting. The lower MAE and MSE score show the CNN model has good counting 
performance. 
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4.2 Experiment results on mall dataset 

Chen et al. (2012) collected a dataset with dynamic illumination conditions and diverse 
crowd densities from a surveillance camera installed in a shopping mall. The scene 
contained generally high static and moving crowd density, and strong scene perspective 
distortion, resulting in different sizes and different appearances of human objects. Severe 
occlusions such as movable sheds, houseplants make the task of estimating the crowd 
difficult. Therefore, this dataset is adequate to analysis the proposed method. It contains a 
total of 2,000 images measuring 320 × 240. More than 60,000 instances are tagged as 
human objects from this dataset. The number of pedestrians varies from 13 to 53 per 
image. To increase the training precision and the crowd estimation accuracy, the 
proposed model is configured to train with 1,200 frames as a training set, validate with 
300 frames as a validation set, and test with 500 frames as a testing set. The testing set is 
treated as out-of-sample data. The proposed model is trained with the training set by 
adjusting the model’s hypermeters and validating the result using the validation set. This 
method can prevent the model parameters from being overfitted the validation set and not 
able to perform well in the testing set. The test was conducted on an Ubuntu 16.04 LTS 
computer using an Intel i5 CPU with 6 cores (2.50 GHz per core). The experiment is 
implemented in Python 3.7.5 using the PyTorch v1.7.1 libraries. The proposed network is 
benchmarked with state-of-art traditional methods and CNN-based methods, the results 
of which are presented in Table 1. The experimental results demonstrate that the 
proposed network is more effective because it produced the lowest MAE and MSE score. 
Table 1 Experiment results 

Methods MAE MSE 
Chen et al. (2013) 3.43 17.07 
Pham et al. (2015) 2.50 10.0 
Xu and Qiu (2016) 3.22 15.5 
Kumagai et al. (2017) 2.75 13.4 
Sheng et al. (2018) 2.41 9.12 
Zhao et al. (2020) 3.80 10.8 
Gao et al. (2021) 2.47 10.56 
Our network (without rounding) 2.14 8.53 
Our network (with rounding) 2.01 9.04 

4.3 Error rate distribution analysis 

For a better analysis of the performance of the proposed method, the estimated results are 
compared with the ground truth on several selected images in the testing set. 50 images 
from four categories of crowd size are selected and analysed for easy and clear 
comparison of results. These categories are low density, medium density, high density, 
and dynamic density. The comparison of the estimated results and the ground truth based 
on the order of the density categories is presented in Figure 5(a), Figure 5(c), Figure 5(e), 
and Figure 5(g). As the figures show, the estimated results are mostly close and same to 
the ground truth. Finally, the distribution of the error rate of the proposed network is 
analysed. The error rate is defined as the following: 
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i i
i

i

y yE
y

′ −=  (4) 

where Ei be the error rate of the ith image, yi′ be the estimated result of the ith image and yi 
be the ground truth of the ith image. The error distribution is calculated from the images 
of the four crowd size categories respectively. The error rates are presented in  
Figure 5(b), Figure 5(d), Figure 5(f), and Figure 5(h). As can be seen from the figures, 
the error rate is in the range of [–0.15, 0.16] and is mainly centralised at the range of  
[–0.1, 0.1). From the analysis, it can be concluded that the proposed method has a 
superior performance in this dataset. 
Figure 5 Performance of the proposed method on the mall dataset (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

 
(e)     (f) 

  
(g)     (h) 
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4.4 Performance analysis 

Developing a low-latency crowd counting model that can be leveraged in real time is 
another interesting question and rarely addressed by researchers. The speed of execution 
of the proposed model should be evaluated so that it can be accepted by the end user. 
With the invention of an affordable and powerful edge embedded platform (Nvidia, 2020; 
Huawei, 2020), many computer vision algorithms are implemented on the edge side. For 
a better performance analysis, the proposed model is tested with an NVIDIA Tx2 board 
and Intel Up board. The experiment performed on the NVIDIA Tx2 board consists of a 
quad-core 2 GHz ARM CPU, 8GB of RAM, and 256 NVIDIA CUDA cores running on 
the Ubuntu 16.04 LTS operating system. This test was implemented using the same 
libraries with the computer, which is Python 3.7.5 and PyTorch v1.7.1 libraries. With the 
limited resources of the embedded board, the proposed model can perform the crowd 
estimation at the average speed of 1.2 seconds. 

In the other hand, the experiment is also performed on the Intel Up board consists of a 
quad-core 1.44 GHz Atom CPU, 4 GB of RAM and an integrated 500 MHz Intel GPU. 
This test was also implemented in Python 3.7.5 using the PyTorch v1.7.1 libraries but 
with additional OpenVINO toolkit (OpenVINO, 2021). It consists of two components: 
the model optimiser (MO) a.k.a. the trained model and the inference engine (IE). The 
trained model is optimised by the MO and generates an IE for optimal performance on 
the Intel Up board (Teoh et al., 2021). The OpenVINO architecture is illustrated in  
Figure 6. The proposed model operates at an average speed of 1.12 seconds. It is slightly 
faster than NVIDIA Tx2 board due to the IE is optimised to execute faster with Intel core 
processor. 

Figure 6 OpenVINO architecture (see online version for colours) 

 

To assess the minimum accuracy requirements accepted by the end-user, the mean 
relative error (MRE) is used. The definition of MRE is given as follows: 

1

1MRE 100%
N

i i

ii

y y
N y=

′−= ×  (5) 

where N is the number of test data, yi is the ground truth and yi′ is the estimated result 
corresponding to the ith data. According to an internal study cited by Regazzoni et al. 
(1993), ‘The end-users accept a mean error of 20% with respect to the real number of 
people present in a scene’. MRE less than 20% meets the minimum accuracy 
requirements of the system operator. A lower MRE value indicates a higher estimation 
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precision. The proposed model implemented in the edge embedded platform is rated with 
MRE, NVIDIA Tx2 board achieved 6.50% and Intel Up board achieved 6.39%. The 
summary of the performance analysis is presented in Table 2 and Figure 7. 
Table 2 Performance analysis on the proposed method 

 NVIDIA Tx2 board Intel up board 
Execution speed (s) 1.2 1.12 
MRE (%) 6.50 6.39 

Figure 7 Embedded platform performance analysis (see online version for colours) 

 

5 Conclusions and future work 

As intelligent surveillance system becomes more ubiquitous in society, research into 
creating fast, accurate and efficient crowd counting solutions become necessary. Deep 
learning has become an excellent framework for creating crowd counting solutions as its 
demonstrated potential for state-of-the-art computer vision performance. 

In this research work, an improved deep regression CNN architecture named FRCNN 
for visual crowd counting is proposed. The inference methodology that influences the 
performance of the crowd counting network is also analysed. The proposed network is 
architected with five convolutional layers, four dense layers, and one regressor node. The 
model is configured and optimised in an end-to-end manner with carefully tuning the 
network hyperparameters. The proposed network achieved a better local optimum after 
50 epochs. Experiment results indicated improvement in the crowd counting performance 
from applying the whole image-based inference in both model training and testing. 
Finally, a comprehensive analysis is conducted with the evaluation metrics of MAE, 
MSE, and MRE. MAE evaluated on the mall dataset is 2.01 and MSE is 8.53. The 
proposed model was also deployed in an embedded platform to test the execution speed 
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and evaluated with MRE. For the NVIDIA Tx2 board, the model has an execution speed 
of 1.2 seconds and an MRE of 6.39%. For the Intel Up board, the model has an execution 
speed of 1.12 seconds and an MRE of 6.50%. Experiment results demonstrate that the 
proposed network achieved remarkable performance in the mall dataset. The deep CNN 
framework plays an important role to this research for able to effectively highlight useful 
features from the raw image and make good crowd estimation prediction. The framework 
also contributes to the experimental work in various embedded platform to measure the 
efficiency and achieved acceptable execution speed. 

Although the proposed model proved the accuracy and potential for embedded 
systems, the model inference would be more applicable to real-world situations with 
increased scene variance. Therefore, future work involves re-training and re-architecting 
the model with different dataset for instance ShanghaiTech dataset (Zhang et al., 2016) 
and UCF-QNRF dataset (Idrees et al., 2018) to make it able to perform in scene invariant. 
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