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Abstract: The economic crisis of the last decade, started from the real estate 
sector, has spread the awareness of the importance of the use of advanced 
evaluation models, as a support in the assessments and in the periodic value 
updates of public and private property assets. With reference to a sample of 
recently sold properties located in the city of Rome (Italy), an innovative 
automated valuation model is explained and applied. The outputs are 
represented by different mathematical expressions, able to interpret and to 
simulate the investigated phenomena (i.e. the market prices formation). The 
application carried out outlines, in the selection phase of the best model, the 
fundamental condition that the valuer must adequately know the reference 
market. In this way, it is possible to identify the existing patterns in the detected 
data in terms of mathematical expressions, according to the empirical 
knowledge of the economic phenomena. 
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1 Introduction 

In the last years, the advanced analytics have been characterised by an increasing 
attention. This contingence is related, on the one hand, to the consistent rise of digital 
information data and the surprising advances in artificial intelligence (AI); on the other 
hand, to the widespread need of more accurate interpretative and forecasting models to be 
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quickly implementable and easily adaptable to the unexpected variations of the starting 
scenario. In the USA, the National Bureau of Economic Research has pointed out the 
opportunities in a large amount of data and its important implications for the economics 
profession (Lohr, 2012; Rosasco et al., 2018). With reference to the future governance 
and management of smart cities, several scholars (Gillespie, 2013; Thatcher, 2014; 
Rabari and Storper, 2015) have highlighted the fundamental role played by ‘spatial’ 
property data for the public and private sectors. 

Following the global economic crisis triggered out by the US sub-prime in 2007, in 
order to ensure more objective and reliable assessments and to analyse the functional 
relationships between the influencing factors and the property market values, the need to 
systematise property data from heterogeneous sources (Dachuan and Baoshan, 2012; 
Juan, 2013; Morano and Tajani, 2014) and to exploit the potential of AI for processing 
the amount of available large quantity of data (Du et al., 2014) has also spread in the real 
estate sector. In Italy, where the real estate market has traditionally been opaque and 
characterised by the scarce availability of property market data, there has been a change 
of the trend, thanks to the emergence of easily accessible databases [i.e., the Real Estate 
Observatory (OMI) of the Italian Revenue Agency], or websites dedicated to the real 
estate market, which allow for the detection of market data, including geo-referenced 
ones. 

Known as automated valuation methods (AVM) and computer assisted mass appraisal 
(CAMA), the applications of AI on property data are numerous in the reference literature. 
In particular, McCluskey and Anand (1999) have elaborated a review of the main 
intelligent hybrid techniques for the residential properties mass appraisal, pointing out the 
respective strengths and weaknesses. Pagourtzi et al. (2003) have detected the main 
AVMs implemented in the real estate market, in order to provide for a better 
understanding of the assessment of locational effects on selling prices. Metzner and Kindt 
(2018) have outlined the main parameters to be considered in the AVM implementation 
for the evaluation of residential properties. 

The need for mass appraisal models capable of constantly modifying in the short-term 
and of taking into account real-time economic indices (Bolam, 2017) has been pointed 
out by the outputs of various AVM applications (Potepan, 1996; Taltavull de La Paz, 
2003; Kryvobokov, 2007; Gibler et al., 2014; Cao et al., 2019; Pérez-Rave et al., 2019). 
These works have showed the fundamental role on changes in property values played by 
socio-economic variables – in particular, the disposable income – with respect to the 
technological and locational variables. In this regard, the Art. 208 (3) (b) of the Capital 
Requirements Regulation (EU) No. 575/2013, that represents the main EU law aimed at 
decreasing the probability that banks go insolvent, highlights the importance that credit 
institutions “use statistical methods to monitor the value of the immovable property and 
to identify the immovable property that needs revaluation.” Although the useful of the 
AVMs for urban planning processes and for contributing to the performance of urban 
information systems is widely shared (Stumpf González and Torres Formoso, 2006), 
several authors have warned about the danger of ‘black boxes’ or models that are not 
very transparent and difficult to manage from less competent users (Batty, 2012; Boyd 
and Crawford, 2012; Burgess and Bruns, 2012), who are forced to rely on experts, even if 
they do not know very often how good these experts are (Giddens, 1990). 

Therefore, on the one hand, there is the need to exploit the available property data 
through algorithms able to process, adapt and effectively replicate the observed 
phenomena, on the other hand, it is mandatory to ensure the empirical reliability of the 
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results obtained and to provide for easily interpretable and repeatable models, avoiding 
excessively complex tools which would inevitably lead to the automatism of the process 
and an increasing uncertainty in the end user (Siwei, 2009). 

In the outlined context, some recent data analysis techniques aimed at discovering 
existing economic relations in detected data are finding great employment. In particular, 
approaches based on data-driven techniques are gaining considerable interest. Among 
these techniques artificial neural networks (ANNs) and genetic programming (GP) are 
probably the most known. 

The first applications of ANNs date to the early 1980s. Recently, ANNs have been 
used to investigate different aspects of real estate market (Morano and Tajani, 2013). 
However, in spite of their usefulness and spread, ANNs require to identify ‘a priori’ the 
structure of a neural network (e.g., transfer functions, model inputs, number of hidden 
layers, etc.). Another trouble is that ANN models do not result into easily interpretable 
relationships, which might improve the understanding and the simulation of the economic 
phenomenon. 

GP is a modelling technique that simulates the natural evolutionary selection, where 
the most suitable individuals (i.e., mathematical expressions of model) improve through 
successive generations. This method allows a complete exploration of the model’s 
expression space that can use certain criteria set by the user. This strategy generate robust 
model search and it potentially allows the user to obtain additional information on system 
behaviour driving out relationships between input and output data. The GP methods  
are generally considered more appealing than ANNs for those contexts where the 
understanding of the phenomenon is not complete. The GP methods called ‘symbolic 
regression’ (Koza, 1992) is probably the most used. This technique uses the evolutionary 
search paradigm for developing explicit mathematical expressions of the model to fit a 
set of data points. However, this technique has some limitations since it produce 
expressions that grow in length during the evolutionary search. 

2 Aim 

The topic of the present work concerns the framework outlined. With reference to a case 
study relating to a sample of 300 properties sold in the city of Rome (Italy), for which the 
total selling prices and the main influence factors that contribute to the market price 
formation have been detected, the research has two objectives. The first one consists in 
the implementation of an innovative AVM to identify, from the detected data, the 
relationships between the property prices and the influencing factors in terms of 
mathematical expressions, according to the empirical knowledge of the phenomenon. The 
methodology employed is a hybrid data-driven technique named evolutionary polynomial 
regression (EPR), that combines the effectiveness of GP for developing ‘transparent’ and 
structured mathematical expression of input-output relationships, with the advantages of 
classical numerical regression. EPR is capable of generating, for the same case study  
(i.e., the same data sample), several equations characterised by different statistical 
performance and consequently different complexity in the functional relationships. About 
the applications of the EPR method to the real estate sector, the papers in the literature 
are very few and recent (Tajani et al., 2017a; Morano et al., 2018, 2019, 2020), although 
the method is characterised by interesting and unexplored potentialities. 
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The second objective aims at highlighting the fundamental role of the valuer in 
identifying and selecting the best model, among those generated by EPR, for the 
interpretation of the actual functional correlations among the variables involved. In 
particular, the research will verify if a higher statistical performance of the model 
returned by EPR, which is generally associated with a higher interpretative complexity of 
the outputs, corresponds to a better and reliable representation of the real phenomena that 
contribute to the property price formation. 

The application, carried out on the case study articulated in the two phases of: 

1 implementation of EPR 

2 identification of the best model in statistical and empirical terms, defines a 
procedural code that should be ‘mandatory’ for the valuer, i.e., an ‘instruction 
manual’ of AI innovative algorithms, that constitute a support to the decision, but 
that cannot substitute the ability to verify the results, the sensitivity and the 
knowledge of the actual market phenomena of an expert user. 

The paper is structured as follows. In Section 3, the case study is described, by specifying 
the variables considered and the respective descriptive statistics. In Section 4, the applied 
EPR method is explained, the calculations for the case study are developed and the 
results are illustrated. In Section 5, the best model – in terms of both statistical 
performance and consistency with the empirical phenomena – is identified. Finally, in 
Section 6 the conclusions of the work are discussed. 

3 Case study 

The case study is constituted by 300 properties located in the city of Rome (Italy), 
characterised by office and retail intended uses, sold in 2006–2015. The sample has been 
collected borrowing the data published by ‘Immobilium-Nomisma’, managed by 
‘Immobilium’ (http://info@immobilium.com) for 2004–2012 and then integrated by 
‘Nomisma’ (http://www.nomisma.it) for 2007–2015. This is a database relating to the 
sale of corporate properties located in the city of Rome, generally constituted by entire 
buildings with executive or commercial intended uses. The same database typology is 
also available for the city of Milan (Tajani et al., 2017b). 

In particular, for each property, several factors have been reported in the mentioned 
database, among which the selling price and the year of sale, the intended use, the total 
gross floor surface, the location in terms of the property address, the year of construction 
and the year of the last refurbishment (in the case in which it was realised). The data have 
been then integrated through local surveys and via the web (http://www.google.it/maps, 
http://www.agenziaentrate.gov.it/) in order to analyse the main database property 
characters and the urban context in which each one is located. 

It should be outlined that several property characteristics affect market property 
prices, and it is not possible to determine what may have been the certain deciding factors 
in the single transactions (Malpezzi et al., 1998). In fact, the market price formation 
mechanism is a complex problem which remains an open question. Empirical surveys 
have outlined that the contribution of each factor can change even for adjacent 
neighbours or for similar properties (Robinson, 1979; Smith et al., 1988; Lavender, 1990; 
Sheppard, 1999; Boyle and Kiel, 2001). The selection of the explanatory variables is 
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always somewhat arbitrary and involves an unavoidable trade-off between bias from 
omitted factors and increased sampling variance associated with collinearity (Grether and 
Mieszkowski, 1974; Gelfand et al., 1998; McCluskey et al., 2000; Oven and Pekdemir, 
2006; Selim, 2009; Ozus, 2009). There is relative agreement, however, on what 
constitutes major influencing factors (Janssen and Yang, 1999; Rabianski et al., 2001; 
Bourassa et al., 2010). 

With reference to ‘office’ properties, several studies highlighted that better features of 
social sustainability and ‘comfort’ in the workplace, in terms of improvement of 
employees’ well-being (Feige et al., 2013; Nappi-Choulet and Décamps, 2013; Fuerst and 
McAllister, 2011), increase buildings’ attractiveness for occupiers and decrease risk for 
investors, leading to higher occupancy rate and premium on rents or asset values. 
Therefore, according to the studies mentioned above and taking into account Bourassa  
et al. (2003), who conclude that it is probably unhelpful to employ too elaborate 
statistical methods, underscoring the importance of the practical knowledge of real estate 
agents, the influencing factors have been selected through the support of the experience 
of appraisers and real estate agents consulted. 

In the developed model, the average market value and the average market rent have 
been introduced among the factors that contribute to the formation of the selling price. 
The real estate market in the last decades has been characterised by a highly cyclical 
trend that does not allow considering an uniformity of the economic factors into the 
formation of the selling prices phenomena in a period of over two years. In order to 
assume the study sample constituted by 300 collected properties sufficiently consistent 
for mass appraisal analysis, the two ‘market’ variables mentioned above, allow to 
examine the real estate market trends in the final model and to appropriately represent the 
real estate cycle phase of the homogeneous market area in which each property 
considered in the analysis, is located. In particular, the values of two economic variables 
are published by the Italian Revenue Agency with reference to the ‘office’ and ‘retail’ 
intended uses, to the year of sale and to the OMI Micro-zone in which the property is 
located (http://www.agenziaentrate.gov.it/). The definition of ‘micro-zone’, according to 
the Presidential Decree No. 138/1998 and ensuing Regulation issued by the Ministry of 
Finance, for the Italian regulation, is a part of the urban area that must be homogeneous 
from an urbanistic point of view and at the same time must constitute a uniform real 
estate market segment. The two economic variables selected in the analysis can be 
considered a synthetic indication of the extrinsic characteristics relating to the specific 
OMI Micro-zone in which the property is located and the specific time period, i.e., the 
sale year. Finally, the inclusion of these two economic variables allows to apply on the 
study sample the logic of a static econometric analysis, and to simultaneously obtain a 
versatile model to the economic evolutions related to different time of assessment. 

3.1 Variables e correlations 

For each property considered in the analysis, the main factors that contribute to the 
formation of the total selling prices (P) – the dependent variable of the model – have been 
collected. 

The influencing factors considered have been the following: 
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• The total surface (S) of the property, expressed in square metres of gross floor area. 

• The quality of the maintenance conditions (M), considered as a qualitative variable 
and differentiated, through a synthetic evaluation, by the categories ‘to be 
restructured’, ‘good’ and ‘excellent’ as a dummy variable. In particular, for the 
definition of the quality of the maintenance conditions (M), the assessment has been 
carried out by comparing the information obtained from the databases consulted 
about the year of construction and the year of last refurbishment and surveys 
conducted by web and on site, i.e., through digital photographs or user comments. 
Each of the three categories that summarise the three possible states of maintenance 
denotes different quality and conditions. The ‘to be restructured’ condition (Mp) 
indicates properties for which substantial restructuring interventions are necessary, 
the ‘good’ state (Mg) indicates office or retail properties that are immediately usable 
and in which the maintenance conditions are acceptable, whereas the ‘excellent’ state 
(Me) refers to properties characterised by high aesthetic and structural values (trophy 
properties) with valuable trimmings and architectural qualities. 

Finally, with reference to the locational factors information related to the year of sale 
of each property, thematic maps published on websites, planning official documents, 
street maps, reports of the city of Rome have been consulted, in order to capture the 
real situation to the analysis period. 

• The distance from the nearest subway (A), expressed in km it takes to walk to it. 

• The distance from the central station of the city (T), expressed in km it takes to walk 
to it. 

• The distance from the nearest highway (H), expressed in km it takes to get there by 
car. 

• The distance from the nearest urban park (G), expressed in km it takes to walk to it. 

• The distance from the central pole (C) of the city, expressed in km it takes to walk to 
it. As central pole of Rome the ‘Altare della Patria’ has been considered, that is a 
historical monument located in a nerve centre of the city of Rome, from which the 
main arterial roads of the city develop. 

• The average market value (MV), expressed in euro per square metre of gross floor 
area, published by the OMI of the Italian Revenue Agency, relative to the ‘office’ or 
‘retail’ intended use, with reference to the year of sale and to the micro-zone in 
which the property is located. 

• The average market rent (LV), expressed in euro per square metre of gross floor area 
and per month, published by the OMI of the Italian Revenue Agency, relative to the 
‘office’ or ‘retail’ intended use, with reference to the year of sale and to the  
micro-zone in which the property is located. 

In order to obtain a model to be used both for interpretative and predictive purposes, it is 
necessary to define the functional correlations ordinarily expected by the local market 
operators between the dependent variable (the total selling prices) and the explanatory 
variables. Therefore, after having carried out a survey through interviews to the local real 
estate agents, the following functional relationships have been identified: 
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• The factor surface (S) is linked to the total selling prices through a positive 
correlation. This trend is verified up to very large sizes (> 25,000 m2), beyond which 
there could be a change of the functional relationship, due to the reduction in the 
number of potential buyers able to afford significant monetary amounts for the 
property purchase. 

• For the dummy variables relating to the building’s maintenance conditions (Mp, Mg, 
Me) the variation from a worse state to a better one causes this change in the 
property prices: the reduction is higher in the ‘to be restructured’ condition; if the 
quality of the maintenance conditions is ‘excellent’, the model does not include any 
reduction in the selling prices, whereas the decreases occur in the event that one of 
the other two ‘pejorative’ states of maintenance conditions is verified. 

• A growing trend of the economic variables [average market value (MV), average 
market rent (LV)] generates an increase in the total selling prices. 

• For all the locational variables [distance from the nearest subway (A), distance from 
the central station of the city (T), distance from the nearest highway (H), distance 
from the nearest urban park (G), distance from the central pole (C)] the increase in 
the distance determines a reduction in the total selling prices. 

With the exception of the variables surface (S) and the building’s maintenance conditions 
(Mp, Mg, Me) – for which the functional correlations with the dependent variable of the 
total selling prices are logically expected – and the economic variables – average market 
value (MV) and average market rent (LV) – which constitute a summary indication of 
market prices relating to a specific temporal and spatial context –, for locational variables 
the local real estate agents survey outputs confirm the existing literature results. 

The extensive literature on the economic effects of transit accessibility in terms of 
urban and suburban property prices, addresses various transportation modes, among 
which the main ones are the rapid urban transit (subway, underground, tube, etc.), the 
urban rail transit (railway trains, tram, etc.) and the extra-urban and urban roads for the 
private and public transportation facilities (fast road, highway, motorway, etc. for the 
transit of private and public cars and buses). 

With reference to the presence of adequate public transport infrastructures in the 
urban systems, several authors have pointed out the importance of this factor for buyers 
and sellers in the negotiation phases. The main researches concern the analysis of the 
relationships between the possible collective transport modes and the prices of residential 
and commercial properties (Cervero and Kang, 2011; Trojanek and Gluszak, 2018), 
demonstrating a ‘premium’ for each increase in the service efficiency rating. 

Since analysis of Dewees (1976) on subway in Toronto, and Damm et al. (1980) on 
subway construction in Washington, DC, the hedonic regression method represents the 
most applied technique to test the above-mentioned relationships. Benjamin and Sirmans 
(1996) have attested a decrease of –2.5% for every 0.16 km away from the metro station. 
Using the panel data for 35 Chinese cities for 2002–2013, Zhang et al. (2016) have 
demonstrated that transit facilities can significantly elevate average real estate prices. 

With regards to the property value impacts of rail station proximity, it is noted that 
the train stations may raise the value of nearby properties by reducing commuting costs 
or by attracting retail activity to the neighbourhood (Bowes and Ihlanfeldt, 2001;  
Hass-Klau et al., 2004). Debrezion et al. (2007) have found a stronger positive impact of 
new rail station realisation on commercial property values at short distances and on 
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residential values at slightly longer distances. Martínez and Viegas (2009) have attested a 
positive impact for the proximity to the Cascais Line in the Lisbon metropolitan area with 
increasing coefficients on selling prices ranging between +6.75% and +10.73%, 
confirming a positive influence of proximity the closer the home is to a railway 
infrastructure. Al-Mosaind et al. (1993) in the context of the metropolitan city of Portland 
(Oregon) have showed a positive capitalisation of proximity to train stations for 
residential properties within 500 m of actual walking distance using two distance models. 

In the context of the urban projects for the highways realisation, the reference 
literature aims to analyse the effects of nearby streets on selling prices in terms of 
homeowners’ utility to reach the destination as quickly as possible (Chernobai et al., 
2011; Cohen and Schaffner, 2019; Allen et al., 2015). Levkovich et al. (2016) have 
investigated the housing price dynamics following the development of two highways in 
the east of the Netherlands. Their studies demonstrate the effect of the new highways has 
increased housing values in the surrounding residential area by approximately  
+2.5%–4.3%. Ossokina and Verweij (2011) have studied the economic impacts of a new 
highway in The Hague on the surrounding residential properties using a repeat sales 
approach and focusing particularly on the positive effects of the reduced traffic density. 
Moreover, their outputs confirm selling prices increased by an even higher rate of 
approximately +5% even before the highways were completed. 

However, in the framework outlined numerous studies aimed to examine the 
relationships between the presence of transportation railway infrastructure or highway 
and the property prices highlight the negative externalities on nearby properties. In 
particular, the negative effects linked to the railway proximity are mainly due to noise, 
view obstruction, and the presence of neglected buildings on adjacent plots (Portnov  
et al., 2009), whereas the harmful impacts deriving from the new highway realisation 
may result from an increase in traffic noise pollution, which could be a cause of discount 
in the value of properties that are located along a newly developed highway (Kim et al., 
2007; Nelson, 1982; Theebe, 2004; Wilhelmsson, 2000; Andersson et al., 2009;  
Del Giudice et al., 2017). With reference to the case study considered in this research, it 
should be highlighted the specificity of the city of Rome, for which the local real estate 
agents have underlined a significant utility of the proximity to the access to the nearest 
highway, especially for the workers who reach the city every day. 

Among the locational variables selected in the present analysis as the most 
influencing characteristics in the selling formation processes, the distance from the 
nearest urban park (G) constitutes one of the most relevant factor discussed in the 
reference literature, consistent with the current policies for sustainable urban 
development. Over the last few decades, in fact, numerous researches corroborate the 
assumption that there is a significant impact of urban green areas on real estate prices 
(Lutzenhiser and Netusil, 2001; Netusil, 2013). In this sense, the main outputs show an 
increase in selling prices corresponding to a higher proximity of the property to an urban 
green space – +5.9% (Tajima, 2003), +60% (Fennema et al., 1996), +8/10% (Crompton, 
2001). The City Parks Forum Briefing Papers (American Planning Association, 2002) 
highlights a +117% increase in property prices following the construction of the 
Centennial Olympic Park, in Atlanta. On the other hand, Troy and Grove (2008) have 
estimated a positive variation in prices of +5% in the situation in which a house is 
adjacent to an urban park, compared to another, ceteris paribus and in the same 
conservative state, is 1 km away from the same park. Similar results have been obtained 
in numerous analysis aimed at examining the impact on real estate prices of the houses 
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direct view towards a green space – +23.1% (Jim and Chen, 2007), +18% (Damigos and 
Anyfantis, 2011), +7.1% (Jim and Chen, 2006), +4.9% (Tyrvainen and Miettinen, 2000). 

In the analysis carried out, the adopted criterion of distance for the locational 
variables has been selected among those mostly used in the reference literature. In 
particular, a relevant and current debate among urban planners, traffic engineers and 
researches concerns the definition of ‘the best’ modality to objectively measure the 
accessibility to public spaces or facilities between the distance – expressed in km/miles it 
takes to walk to them and/or it takes to get there by car (Yang, et al., 2018; Andersson  
et al., 2010; Apparicio et al., 2007; Robitaille and Herjean, 2008; Larsen and Gilliland, 
2008) and the travel time to reach them (Zahavi, 1973; Goodwin, 1978; Schwanen et al., 
2002; Dijst and Vidakovic, 2000; Bates et al. 1987; Levinson and Kumar, 1994; Nishii 
and Kondo, 1992). With reference to the residential market of the city of Rome, the local 
operators generally outline a higher appreciation for the ‘metric’ distance modality, as the 
travel time does not always provide an objective indication, taking into account the 
different walking speed (e.g., younger people compared to older ones) and the 
uncertainty related to the vehicular traffic, especially in the context of metropolitan cities 
(e.g., rush hours compared to weekends). Furthermore, among the different typologies of 
distance that can be used, e.g., Euclidian (straight-line), Manhattan (distance along two 
sides of a right-angled triangle, the base of which is the Euclidian distance), the shortest 
network paths (Lotfi and Koohsari, 2009), in the present research the path network 
distance, measured through the Google Maps geolocation system (http://www.google.it/ 
maps), has been considered. It should be highlighted, in fact, that the criterion of ‘real’ 
distance from facilities, transport, green areas or any other points of interest, in terms of 
the path to be taken (by walking, by car, by bus, etc.) to reach them, represents an 
effective proxy of the time to reach an interest point compared to the geometric distances, 
as the used geolocation tool also takes into account the real traffic situation in the 
connecting paths network. 

In Table 1 the main descriptive statistics of the variables considered have been 
reported. In particular, the mean of the dependent variable of the selling prices is equal to 
21,161,560 €, with values ranging between 261,000 € and 180,000,000 €, whereas the 
mean of the total surface is equal to 5,428 m2, with minimum and maximum values 
respectively equal to 600 m2 and 34,967 m2. The mean values of the variables distance 
from the nearest subway and distance from the nearest highway are respectively equal to 
1.46 km walking – value range: (0.02–11.7) – and 3.29 km by car – value range:  
(0.26–7). As regards to the variable distance from the nearest urban park, the mean value 
is equal to 1.47 km walking, with a wide range of values and whose extreme values are 
respectively equal to 0.19 km and 12.4 km. The variable distance from the central station 
also shows a wide range of values: the mean value is equal to 4.46 km walking, with the 
minimum distance detected equal to 0.3 km and the maximum value equal to 15.9 km 
walking. Analysing the variable distance from the central pole, the average value is equal 
to 4.41 km, the minimum value is equal to 300 metres and the maximum value is equal to 
14.6 km. As regards to the quality of the maintenance conditions, most of the sample is 
immediately livable (46%) or constitutes a trophy asset (42%), whereas only 12% needs 
restructuring interventions. Finally, the economic variables average market value and 
average market rent are characterised by mean values respectively equal to 5,800 €/m2 
and 29.96 €/m2 for month, with maximum values up to 11,950 €/m2 and 72 €/m2 for 
month and minimum values equal to 2,450 €/m2 and 11,25 €/m2 for month. 
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Table 1 Descriptive statistics of the variables 

Variable Mean Standard deviation Levels/intervals Frequency 
Selling price (€) 21,161,560 30,353,242   
Total surface (m2) 5,428 7,432   

  < 1,000 0.29 
  1,000–3,000 0.23 
  3,000–6,000 0.22 
  6,000–20,000 0.20 
  > 20,000 0.06 

Distance from the 
nearest subway (km) 

1.46 1.84   
  < 0.5 0.26 
  0.5–1 0.15 
  1–2 0.43 
  2–4 0.11 
  > 4 0.05 

Distance from the 
nearest highway 
(km) 

3.29 1.66   
  < 1 0.11 
  1–3 0.30 
  3–5 0.47 
  > 5 0.12 

Distance from the 
nearest urban park 
(km) 

1.47 1.68   
  < 1 0.40 
  1–1.5 0.24 
  1.5–2 0.26 
  > 2 0.10 

Distance from the 
central station (km) 

4.46 3.49   
  < 1.5 0.15 
  1.5–3 0.36 
  3–5 0.18 
  5–10 0.24 
  > 10 0.07 

Distance from the 
central pole (km) 

4.41 3.22   
  < 2 0.21 
  2–3 0.25 
  3–5 0.24 
  5–10 0.24 
  > 10 0.06 

Maintenance 
conditions 

  Excellent 0.42 
  Good 0.46 
  To be restructured 0.12 

Average market 
value (€/m2) 

5,800 2,060   

Average market rent 
(€/m2 ∙ month) 

29.96 14.28   
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4 The method 

EPR can be defined as a nonlinear global stepwise regression, providing symbolic 
formulas of models. It is global since the search for optimal mathematical expressions of 
model is based on the exploration of the entire space of formulas by leveraging a flexible 
coding of mathematical structures (Giustolisi and Savic, 2006). 

The generic EPR expression is given as equation (1) shows: 

( ) ( ) ( ) ( )( )( ,1) ( , 1)( , ) ( ,2 )
0 1 1

1

... ...
n

i i ji j i j
i j j

i

Y a a X X f X X+

=

 = + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   (1) 

where n is the number of additive terms, i.e., the length of the polynomial expression 
(bias excluded), ai are numerical coefficients to be assessed, Xi are candidate explanatory 
variables, (i, l) – with l = (1, …, 2j) – is the exponent of the lth input within the ith term in 
equation (1), f is a function selected by the user among a set of possible alternatives, 
including no function selection. The exponents (i, l) are chosen by the user from a range 
of candidate values (real numbers) which should include the value 0. 

In brief, the search for model structure is performed by exploring the combinatorial 
space of exponents to be assigned to each candidate input of equation (1). Thus, although 
exponent values could be any real number, they are coded as integers during the search 
procedure. It is worth noting that, when an exponent is = 0, relevant input Xi is basically 
deselected from the resulting equation. This, in turn, reduces the complexity of final 
mathematical expressions. 

Through the use of a genetic algorithm and the iterative implementation of the least 
squares method, EPR searches for statistically better expressions of functions that link the 
possible combinations of vectors of the explanatory variables (i.e., the influencing 
factors) to the dependent variable (i.e., the selling price). In particular, the algorithm of 
the EPR method does not require the exogenous definition of the mathematical 
expression and the number of parameters that fit better the data collected, since the 
iterative process of the genetic algorithm directly returns the best solution. 

The EPR is configured as a procedure whose implementation consists of two main 
phases. In the first, the search is performed to identify the structure of the model by 
generating a set of polynomial expressions. In the second one, the classical (numerical) 
regression method is used in order to estimate the polynomial coefficients. 

The key idea of the algorithm used is to generate an entire population of functional 
expressions based on the capacity of each of them to adapt to the data available. To 
achieve this goal, the algorithm searches both the expressions forms (i.e., the structure of 
the model) and the parameters values (i.e., the values of the polynomial coefficients). The 
technique does not require that the structure of the price function be identified ‘a priori’, 
i.e., that the model inputs, the numerical coefficients, the exponents, etc. are preliminarily 
defined by the user in first step of the technique implementation. 

The statistical accuracy of each model returned following the EPR implementation is 
checked through its coefficient of determination (COD), that ranges between 0 and 1, 
defined in equation (2): 
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−
−= − ⋅

−




 (2) 

where yestimated are the values of the dependent variable assessed by the method, ydetected are 
the collected values of the dependent variable, N is the sample size in analysis. The 
model statistical accuracy is greater when the COD is close to the value 1. 

A recent version of EPR (named EPR-MOGA) exploits multi-objective genetic 
algorithms to search those model expressions which maximise accuracy of data and 
parsimony of mathematical expressions simultaneously (Giustolisi and Savic, 2009). The 
main advantage of such approach is that EPR-MOGA returns a set of explicit expressions 
with different accuracy to experimental data and different degree of complexity of 
mathematical structure of models. The analysis of such trade-off solutions between 
accuracy and complexity allows the expert selecting those models which are better suited 
for specific applications. 

In practice, the genetic algorithm underlying EPR-MOGA carries out a  
multi-objective optimisation strategy based on the Pareto dominance criterion. These 
objectives are conflictual, and aim at: 

1 the maximisation of model accuracy, through the satisfaction of appropriate 
statistical criteria of verification of the equation 

2 the maximisation of model’s parsimony, through the minimisation of the number of 
terms (ai) of the equation 

3 the reduction of the complexity of the model, through the minimisation of the 
number of the explanatory variables (Xi) of the final equation. 

The optimisation strategy defined above, leads to a range model solutions (i.e., the Pareto 
front of optimal models) for the three objectives considered, among which the user could 
select the most appropriate one according to the specific requirements, the available 
information of the phenomenon in analysis and the typology of experimental data 
applied. 

5 Application of the method 

In this research EPR-MOGA is implemented considering the generic model mathematical 
structure shown in equation (1) with no function f selected and, taking into account 
several studies outputs (Cassel and Mendelsohn, 1985; Tajani et al., 2016), the dependent 
variable is represented by the natural logarithm of the selling price (Y = ln (P)). The  
log-linear form of equation (1) has two attractive characteristics: it allows for the prices 
of one component to depend in part on the other characteristics in the real property, and it 
partially mitigates a common form of heteroschedasticity (Malpezzi et al., 1998). 

Each additive monomial term is a combination of the selected explanatory variables 
raised to the proper exponents. In particular, candidate exponents belong to the range (–2; 
–1; –0.5; 0; 0.5; 1; 2), in order to have a wide set of solutions. Except for exponents 1 and 
0 which correspond, respectively, to the case in which an independent variable 
participates to the price formation or not, the other exponents have been chosen on the 
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basis of the empirical knowledge of the investigated phenomenon and therefore of the 
type of expected linkages between the dependent variable (i.e., the market prices) and the 
independent variables. For example, the exponent ‘–1’ translates the inverse relationship 
that in practice is generally found between the property prices and the distance from 
infrastructures (e.g., the central station, the nearest motorway access, the subway, etc.) or 
from specific amenities (e.g., an urban park, the central pole, etc). 

The maximum number n of additive terms in final equations is assumed to be eight, 
i.e., equal to the number of explanatory variables considered in the analysis. 

The application of EPR-MOGA has generated 14 equations (Table 2) classified – 
from the 1st to the 14th – according to the increasing statistical accuracy of the outputs in 
terms of COD (Figure 1) and to the complexity of the models in relation to the number of 
terms, the number of selected explanatory variables and the combination of the 
explanatory variables that constitute each term. 
Table 2 Models generated by the application of EPR-MOGA 

[n] Equation COD 
(I) 0.50.03112 13.984Y S= ⋅ +  69.22 

(II) 0.5 0.50.00049999 13.6747Y S MV= ⋅ ⋅ +  82.16 

(III) 0.5 0.5 0.50.2822 0.00050153 14.2224Y T S MV= − ⋅ + ⋅ ⋅ +  84.08 

(IV) 0.50.074071 0.00063951 0.027163 12.7337Y LV MV S= − ⋅ + ⋅ + + ⋅ +  85.65 

(V) 
0.5 0.5

0.5
0.7053 0.051784 0.022734 11.3341LVY MV S

S
= − ⋅ + ⋅ + + ⋅ +  

92.17 

(VI) 
0.5

0.5

0.5

0.67373 0.00027288 0.23159 0.023182

14.032

LVY MV T
S

S

= − ⋅ + ⋅ + − ⋅ +

⋅ +
 

92.85 

(VII) 0.5
0.5 0.5

0.5

0.5

13.2721 0.50164 0.029437

0.16201 0.00091219 16.0111

CY Mp G LV
S
G S LV

= − ⋅ − ⋅ − ⋅ ⋅

+ + ⋅ + ⋅ ⋅ +
 

94.62 

(VIII) 0.5
0.5 0.5

0.5

0.5

13.2721 0.50164 0.029437

0.16201 0.00091219 16.0111

CY Mp G LV
S
G S LV

= − ⋅ − ⋅ − ⋅ ⋅

+ + ⋅ + ⋅ ⋅ +
 

95.21 

(IX) 0.5
0.5 0.5

0.5

0.5 0.5 0.5

12.438 0.42821 0.51164 0.032765

0.066977 0.0008904 16.973

CY Mp C
S

G LV G C S LV

= − ⋅ − ⋅ − ⋅ + −

⋅ ⋅ + ⋅ ⋅ + + ⋅ ⋅ +
 

95.55 

(X) 0.5 0.5 0.5
0.5

0.5 0.5

0.5 0.5 2 0.5 0.5 8

6.8001 0.30242 1,391.839 2.2312

0.00025939 0.011887 3.2935 10
13.9319

G C AY Me
S MV LV

A C LV S LV
S MV

−

= − ⋅ + ⋅ − ⋅ + + ⋅

− ⋅ ⋅ ⋅ + + ⋅ ⋅ − ⋅
⋅ ⋅ +

 

95.92 

(XI) 0.5
0.5

0.5 0.5 0.5 2
0.5

0.5 0.5 8

63.7145 0.2825 0.085433 1,087.8892

0.36817 0.00027038 0.93453

0.012108 3.2875 10 14.5701

CY Mg Mp T
S MV

AG A C LV
LV

S LV S MV−

= − − ⋅ − ⋅ ⋅ − ⋅

+ − ⋅ − ⋅ ⋅ ⋅ + ⋅

+ + ⋅ ⋅ − ⋅ ⋅ ⋅ +

 

96.37 
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Table 2 Models generated by the application of EPR-MOGA (continued) 

[n] Equation COD 
(XII) 0.5

0.5 0.5

0.5 0.5 2
0.5

0.5 0.5 8

66.0516 0.27245 1,322.3486 0.034431

0.02429 0.0002511 1.1555

0.012039 3.2682 10 14.423

CY Mg G LV
S MV

AH Mp T A C LV
LV

S LV S MV−

= − − ⋅ − ⋅ − ⋅ ⋅

+ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅

+ + ⋅ ⋅ − ⋅ ⋅ ⋅ +

 

96.51 

(XIII) 0.5 0.5
0.5

0.5 0.5 0.5 2

0.5
0.5 0.5 8

0.5

0.0272857 0.27454 1278.414 0.042673

0.027348 0.00021483 0.31446

0.011714 3.1038 10 14.5684

C MV CY Mg
S MV

G LV H Mp T A C LV
A T S LV S MV
LV

−

⋅= − ⋅ − ⋅ − ⋅ + −

⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + +
⋅⋅ + ⋅ ⋅ − ⋅ ⋅ ⋅ +

 

96.62 

(XIV) 0.5 0.5
0.5

0.5 0.5

0.5 2 2

0.5 0.5 2 0.5 0.5
0.5

8

0.00082742 0.23958 43.1698

0.0024846 0.010173 0.0054782

0.00014608 0.6664 0.011314

3.0496 10 15.259

C MV CY Mg
S MV

C T G LV H Mp T
AA C LV S LV

LV
S MV−

⋅= − ⋅ − ⋅ − ⋅

+ ⋅ ⋅ + − ⋅ ⋅ − ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅

− ⋅ ⋅ ⋅ +

 

96.89 

In particular it is evident that, as the COD increases from equations (I) to (XIV), the 
complexity of the equations also grows, and therefore the difficulty in interpreting the 
analysed phenomena accordingly rises. The CODs related to the models range from the 
minimum value of 69.22% for equation (I) to the maximum value of 96.89% for  
equation (XIV). 

Figure 1 Trend of the CODs of the models obtained by the application of EPR-MOGA 

 

With reference to the case study in analysis, the only use of the statistical criterion would 
lead to choose equation (XIV) as the model that is most capable of replicating the 
analysed phenomenon, as it is characterised by a COD next to unity and therefore by a 
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very high degree of statistical reliability. This model consists of all the explanatory 
variables considered. 

Figure 2 Functional relationships between the influencing factors and the selling prices for the 
model of equation (XIV) 
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However, the complexity of the terms of the mathematical expression does not allow an 
immediate interpretation of the functional relationships among the variables. Therefore, 
the functional links of the ith independent explanatory variable with the variation of the 
selling prices have been explained through an exogenous simplified approach that, 
instead of determining the partial derivative of the dependent variable with respect to the 
ith variable, considers the values of the other variables in the model equal to their average 
values of the starting database, and provides the analysis of the variations in value of the 
assessed changes of selling prices in correspondence of each ith variable in the admissible 
range of its corresponding sample values. 

The outputs of the elaborations carried out for the model of equation (XIV) have been 
represented in Figure 2. Firstly, it should be outlined that the empirical evidences 
detected by the interviews to the local real estate agents (see paragraph ‘variables and 
correlations’) are not verified for all the functional relationships between the selected 
explanatory variables and the selling prices in the model of equation (XIV). In particular, 
the functional relationships of the variables distance from the nearest subway (A) and 
distance from the central station (T) are ‘parabolic’ type: the correlation is negative for 
distances close to the considered infrastructures, beyond which it becomes positive. 
These correlations, therefore, do not correspond to the empirical phenomena ordinarily 
expected. Furthermore, the economic variables average market value (MV) and average 
market rent (LV) are characterised by functional relationships with the selling prices that 
are not always increasing, that are instead the reasonably expected trend from an 
empirical point of view. Therefore, although equation (XIV) is able to reproduce the data 
of the starting sample with the highest statistical precision, it cannot be identified as the 
best model, as it does not return an interpretation of the economic phenomenon that is 
consistent with what is normally observed in the local market. 

Analysing the equations generated by the EPR-MOGA implementation, it can be 
observed that, starting from the model of equation (VII) and up to equation (XIV), the 
complexity of the mathematical expressions significantly changes, but the statistical 
performance increases in a limited way. 

At this point, it is appropriate to cross-check the results in terms of statistical 
reliability (COD) with the empirical knowledge of phenomena, in order to identify the 
model among those generated by EPR-MOGA that, in addition to reproduce the 
investigated data, allows the optimal interpretation of the economic phenomena. For this 
purpose, for each of the equations in Table 2, the following selection criteria have been 
considered (Table 3): the number of terms (including the bias), the number of variables 
selected among those initially considered in the analysis, the maximum number of 
variables in each additive term, the statistical performance coefficient (COD), the 
empirical consistency expressed as the number of correlations between the dependent 
variable and the explanatory ones that do not verify the trend of the market phenomena 
outlined by the local real estate agents. 
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The analysis of Table 3 shows that, except for equations (I) to (VI), for which there is 
a less significant statistical performance, only for equations (VII) and (VIII) the empirical 
evidence is fully verified, i.e., all the correlations between the dependent variable and the 
explanatory ones are consistent with the expected trend of the phenomena (number  
of functional relationships for which the empirical correlation does not occur = 0). 
Therefore, in order to select a model capable of reproducing the economic phenomena 
and at the same time of interpreting it reliably, it is appropriate to choose one of these two 
equations. 
Table 3 Synoptic matrix of the values of the criteria for each model 

Model Number of 
terms 

Number of 
variables 

Maximum number of 
variables in the terms 

COD 
[%] 

Empirical consistency 
not verified 

(I) 2 1 1 69.22 0 
(II) 2 2 2 82.16 0 
(III) 3 3 2 84.08 0 
(IV) 4 3 1 85.65 1 
(V) 4 3 2 92.17 1 
(VI) 5 4 2 92.85 1 
(VII) 6 5 2 94.62 0 
(VIII) 7 5 2 95.21 0 
(IX) 8 7 2 95.55 1 
(X) 8 7 3 95.92 2 
(XI) 10 9 3 96.37 3 
(XII) 10 10 3 96.51 3 
(XIII) 10 10 3 96.62 4 
(XIV) 11 10 3 96.89 4 

Both the equations involve only five factors among the explanatory variables considered 
(C, S, G, Mp and LV). Furthermore, the difference in the statistical performance between 
the two equations is really low [COD of equation (VII) = 94.62%, COD of equation 
(VIII) = 95.21%], whereas the most obvious difference is that equation (VIII) is slightly 
more complicated in mathematical terms, as it is constituted by an additional term and 
two square root variables. These considerations lead to the identification of equation 
(VII) as the best model, as it well satisfies the criterion of the statistical reliability, it is 
relevant from an empirical point of view and it allows a generalisation of the functional 
relationships for the examined context. 

Retracing the same exogenous simplified approach previously implemented for the 
verification of the qualitative and quantitative correlations among the variables, in  
Figure 3 the functional relationships of the five influencing factors with the selling prices 
have been represented according to the model of equation (VII). In this case, the explicit 
correlations – positive for the surface (S) and the average market rent (LV), negative for 
the distance from the central pole (C), the distance from the nearest urban park (G) and 
the ‘to be restructured’ maintenance conditions (Mp) – are all characterised by a 
complete empirical reliability. 
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Figure 3 Functional relationships between the influencing factors and the selling prices for the 
model of equation (VII) 

 

6 Conclusions 

The economic crisis of the last decade generated by the real estate sector, has spread the 
awareness of the importance of the use of advanced models of AI also in the property 
valuations, as a support in the assessment and the periodic updates of the values of public 
and private property assets. 

The risk of an excessive automation of the evaluation process is however inevitably 
high. Through the logic-evaluative process described in this research, articulated in the 
two phases of the innovative AVM implementation and the identification of the best 
model in statistical and empirical terms, the present work defines a behavioural code of 
the expert valuer for the identification of the property price function. The experimental 
application of the proposed AVM has highlighted the need to take into account, in 
selection phase the model that at best represents the phenomena of property price 
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formation, the criteria of statistical performance, empirical evidence of the outputs, 
appropriate market knowledge and possibilities of generalisation of the results. 

Therefore, the figure of the valuer plays a central role in the control phase of the 
outputs that an AVM model generates, through the interpretation of the results obtained 
and the verification of the generalisability of the achieved outputs, in order to escape 
from particular contingencies related to specific input data. The development of 
increasingly sophisticated and complex information systems cannot replace the need for 
interpretative analysis of the results, but it rather implies the peremptoriness that the 
valuers possess the appropriate skills in terms of mass appraisals and management of 
automation models (Faishal Ibrahim et al., 2005). The interconnected agendas of smart 
cities and available property data provide for bold and exciting opportunities for built 
environment professions (Dixon et al., 2018). A wider awareness of the considerable 
potentialities deriving from the effective management of a wide amount of data through 
the use of innovative tools represents an important goal for subsequent research: the 
willingness to adapt to its evolution will divert or deliver future opportunities. 

Future insights may concern the comparison between the functional relationships 
derived from the stated preferences of the local market operators – obtained through 
appropriate elaborations on surveys, interviews and direct investigation to be carried out 
– and the models generated by the EPR-MOGA application and/or by the implementation 
of several econometric techniques, in order to point out the different outputs and to verify 
the consistency with the expected empirical phenomena. 
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