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Abstract: With the possibility of system crashes and network failures, the design of robust
client/server interactions for collaborative process execution is a challenge. If a business process
changes its state, it sends messages to the relevant processes to inform about this change.
However, server crashes and network failures may result in loss of messages. In this case,
the state change is performed by the sending process in isolation, resulting in state/behaviour
inconsistencies among processes and possibly undistinguished deadlocks. Our basic idea to solve
this problem is to cache the response (in a synchronous request-response interaction) if the state
of the process instance has changed by the request message. The possible state inconsistencies
are recognised and compensated by state-caching and by retrying failed interactions.
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1 Introduction

The electronic collaboration of business organisations
has grown significantly in the last decade. Often data
interchange is based on processes run by different
parties exchanging messages to synchronise their states.
With the possibility of system crashes and network
failures, the design of robust client/server interactions for
collaborative process execution is a challenge. In general,
a state inconsistency is not detected by a process engine
(a software executes business process). This can be seen
from a screen dump of an error after a system crash of
an process engine such as Apache ODE (see Figure 1).
Figure 1(a) shows the case where the client sends the
message to a unavailable server. Figure 1(b) shows the
case where the responder crashes without sending the
response message. Figure 2(a) illustrates the problem with
a ticket selling process and multiple client processes. At
runtime, each client process may have multiple instances.
Multiple client instances (client1, client2) submit order
messages (order1, order2). The client1 process may crash
after submitting the order1 message without receiving
the result1 response message. At a certain state s1, the

ticket process receives the order1 message, changes its
state to s2 and sends the result1 response. However, the
response is not received by the client1 due to the crash.
The client2 process submits message order2 to the ticket
process afterwards. The ticket process changes its state
to s2’. Now, the client1 process re-submits the order
after recovery. By re-processing the same order at state
s2’, the ticket process will reply with a different result’,
which may incur state inconsistency. Some operations can
be safely repeated. A request that has this property is
called ‘idempotent’ (Tanenbaum and van Steen, 2002). For
example, a request asking for weather information can be
repeated as many times as possible. However, the ticket
subscription operation described above that receives the
order submission does not have this property. First, the
ticket process state changes to s2, but client1 does not
change its state accordingly. Second, the ticket process
further changes its state to s2’ after interaction with client2.

Standard technical solutions are reliable messaging
protocols or business transactions. However, these solutions
require additional infrastructure components or changes
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in the process, respectively. Our aim is to transform
the process to provide improved reliability with regard
to system crashes and network failures. In previous
work (Wang et al., 2012a, 2012b) we have considered
coordination scenarios where the effects of the state changes
in one collaboration do not affect other collaborations.
In this paper, we focus on a server process instance
collaborating with multiple client process instances, where
one collaboration may affect another collaboration. Our
basic idea to solve the problem is that whenever the state
of a business process changes, the response message is
cached. As shown in Figure 2(b), after a state change from
s1 to s2, the ticket process caches result1. When client1
re-submits order1 after recovery, the ticket process uses
cached result1 as response to restore state consistency. The
state of a business process is described by the values of
the process variables. In this paper, in order to identify
process state as a subset of the process variables, we model
processes using Petri nets (CPN Tools, 2012) to extract
the data dependencies. We propose state identification
criteria and we represent them in the formal model.
The original processes can be (automatically) transformed
into their synchronisation-enabled counterparts via process
transformations. The transformation is done in such a way
that in the resulting processes possible state inconsistencies
are recognised and compensated by state-caching, and these
processes retry failed interactions based on the contents of
the cache.

Figure 1 Apache ODE state synchronisation errors,
(a) service unavailable (b) pending response
(see online version for colours)

(a)

(b)

We assume that in the case of server crashes or network
failures, the state of the business process can be restored
once recovered. This is a reasonable assumption, since most
available business process engines, such as Apache ODE
(Apache Software Foundation, 2011) and Oracle SOA Suite
(Oracle Fusion Middleware, 2011), work in this way. We
assume that each message is uniquely identifiable. This
is a reasonable assumption for a real business scenario,
since e.g., each order information that is submitted for
some product has a different identifier and each payment
information is submitted with a different timestamp.
We choose WS-BPEL (2007) as an illustrative process

specification language, because as an OASIS standard it
is widely used by enterprises. However, our mechanisms
are applicable to other process specification languages that
support similar workflow patterns (van der Aalst et al.,
2003).

Figure 2 Caching response message
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This paper is an extension of our previous paper (Wang
et al., 2013). The additional contents of this paper is the
following.

1 we analyse the possible synchronisation failures in
more detail

2 more Petri net models of WS-BPEL activities are
described in this paper, such as, ‘while’ and ‘pick’
activities

3 the formal failure model is presented

4 omitted information on the correctness criteria and
correctness evaluation process is presented in this
paper.

This paper is further structured as follows. Section 2
investigates failures caused by network failures and
system crashes. Section 3 presents our formalisation of
WS-BPEL processes using Petri nets. Section 4 proposes
state determination criteria based on the formalisation.
Section 5 discusses the implementation of our cache-based
process transformation. Section 6 evaluates our mechanism.
Section 7 discusses related work and Section 8 gives our
conclusions.
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2 Analysis of process state types and synchronisation
failures

2.1 Process state types

At runtime, state information is propagated and shared
between multiple process instances. Each process instance
synchronises its state with partner process instances via
messages. Thus, state information is ‘shared’ implicitly
between multiple process instances. How state information
is shared (Atkinson and Bostan, 2009) depends on the
service interaction patterns (Barros et al., 2005) of the
client and server processes. From the client’s point of view,
one client instance can interact with one server instance
(1-1) or many server instances (1-n). From the server point
of view, one server instance can interact with one client
instance (1-1) or many client instances (n-1). From a global
point of view, we take the combination types as shown in
Figure 3, and visualised in Figure 4. In Figure 4(a), the state
information is ‘shared’ between clients. One client instance
interacts with one server instance (1-1), while globally one
server instance interact with multiple client instances (n-1).
The number of server instances is ‘static’ (could be one
or more, but it is a fixed number at runtime). This state
information type is named shared, static. In Figure 4(b),
the state information is shared between ‘multiple’ server
instances, but ‘private’ to each client instance. Each client
instance interacts with multiple server instances (1-n). Each
server instance interacts with multiple client instances (n-1).
In Figure 4(c), the state information is private to the
requester-responder pair. Each initiator process instance is
dedicated to synchronise its state with a single responder
instance (1-1). In Figure 4(d), the state information is
shared between all instances. Each client instance interacts
with multiple server instances (1-n). Each server instance
interacts with one client instance (1-1). We name this state
information type multiple, private.

2.2 Process synchronisation failure analysis

We consider the failure scheme shown in Figure 5
(Tanenbaum and van Steen, 2002). With regards to
client/server interactions with system crashes and network
failures, we focus on ‘crash failure’, ‘omission failure’ and
‘timing failure’. ‘Arbitrary failure’ (also called ‘Byzatine
failure’) is more like a security issue. ‘Response failure’
is triggered by the flaw of the process design. ‘Arbitrary
failure’ and ‘Response failure’ are out of the scope of
this work. In our previous work (Wang et al., 2012a,
2012b), the state synchronisation failure of state type
private [Figure 4(c)] has been considered. In this paper, we
propose a solution for the synchronisation failure of state
type shared static [Figure 4(a)]. This subsection analyses
possible synchronisation failures for the state information
type shared static.

Figure 3 State information types

Client Server Shared Namestate types

a) 1-1 n-1 Cn – S Shared, static
b) 1-n n-1 Cm – Sn Shared
c) 1-1 1-1 C – S Private
d) 1-n 1-1 C – Sn Multiple, private

Figure 4 Multiple processes instances shared state types,
(a) shared static(b) multiple private (c) private
(d) shared (e) legend
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Figure 5 Failure scheme

Type of failure Description

Crash failure A server halts, but is working
correctly until it halts.

Omission failure A server fails to respond
to incoming requests.

Receive omission A server fails to receive
incoming message.

Send omission A server fails to send messages.
Timing failure A server’s response lies outside

the specified time interval.
Response failure A server’s response is incorrect.

Value failure The value of the response is wrong.
State transition failure The server deviates from

the correct control flow.
Arbitrary failure A server may produce arbitrary

responses at arbitrary times.
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The UML sequence diagram of the synchronisation for the
state type shared, static is presented in Figure 6. Multiple
initiator process instances (A1, A2) synchronise with the
responder process instance B. The possible failure points
for a synchronisation between A1 and B are marked as
Xfp1 ∼ Xfp6. Failure Xfp1 does not affect the partner
process because the initiator process (A1) has not started
the synchronisation. Failures Xfp3 and Xfp6 do not affect
the synchronisation because the failure occurs when the
synchronisation is finished. The failure points Xfp4 and
Xfp5 are regarded as service unavailable failure and
pending response failure in our previous work (Wang et al.,
2012a, 2012b) respectively. The service unavailable failure
happens when the network fails to deliver the request
message m1 (failure point Xfp4 2) or the ProcessInstanceB
crashes before the message m1’s delivery (failure point
Xfp4 1). The pending response failure happens when the
ProcessInstanceB crashes before the delivery of response
message (failure point Xfp5 1) or the network fails to
deliver the response message (failure point Xfp5 2). These
type of synchronisation failures can be solved using
the synchronisation mechanisms proposed in Wang et al.
(2012a, 2012b). In this work we focus on failure point
Xfp2. If A1 fails after sending m1, this is an omission
failure because m2 cannot be received by A1. If A1 restores
and re-sends m1, the processes will not synchronise, since
the interaction between A2 and B has already changed the
state of B. This failure is referred in this paper as pending
request failure.

Figure 6 Synchronisation failure analysis for shared, static
state type

3 Modelling: business processes to Petri nets

Collaborative business processes are autonomous, and
furthermore it is difficult to change the communication
protocol to solve the process synchronisation problem.
Therefore we transform the business process to make it
capable to synchronise its state on the notice of partner
process failures. The transformation is done in such a way
that in the resulting processes possible state inconsistencies
are recognised and compensated by state-caching, and these
processes retry failed interactions based on the contents of
the cache.

An overview of our solution to failure is shown in
Figure 7. Given a business process, we infer state change
for all synchronous process operations. We model the
business process as a Petri net and also generate the
occurrence graph/automaton models. By applying proposed
criteria to the Petri nets and occurrence graph/automaton
models, we detect whether a sta te change happens. For all
process operations that change the process state, we modify
the original behaviour of the process in the following way:

1 for a new request coming from the client, the server
caches and replies the response message

2 for the same synchronisation request sent multiple
times from the same client (which implies that a
client failure happened), the server process replies
with the cached response.

Figure 7 Solution overview (see online version for colours)
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We formalise WS-BPEL processes as Petri nets in which
the dataflow is also annotated. A WS-BPEL process
is a container where relationships to external partners,
process data and handlers for various purposes and, most
importantly, the activities to be executed are declared.
We use Petri nets to describe the underlying semantics
of WS-BPEL and use them as a basis for our state
determination criteria. WS-BPEL models using Petri nets
have been reported in the literature, however, each approach
has its particular focus and hardly fits our needs. For
example, Ouyang et al. (2007) focuses on control flow
modelling thus state information is implicit. Stahl (2005),
Hinz et al. (2005) and Lohmann (2008) address activity
stops and correlation errors, which are not relevant and
therefore unnecessarily complicate our formalism. Thus, we
propose a simplified Petri nets representation, in which the
Petri net structure of each WS-BPEL activity has one start
place and one sink place. The net structure of each activity
can be nested or concatenated with the structure of other
activities, which is the semantics of WS-BPEL structured
activities.
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Figure 8 Convention for reading and writing of BPEL process
variables, (a) read (b) write

VV act act

(a)

v2

VV act act

v1

(b)

This Petri nets model is Petri net WS-BPEL processes, but
its purpose is to allow the inference of data dependencies.
Based on the Petri nets model generated, we will specify
rules to identify data flows, based on which the criteria
of determining state to be cached will be applied. In
order to improve readability, we use the two conventional
notations to denote the reading or writing of process
variables by activities. As shown in Figure 8(a), the Petri
net representation of an activity reading a process variable
V is that the transition takes a token from the place that
represents the variable and then puts a token back. We
use dashed arrows as a graphical notition for this. As
shown in Figure 8(b), the coloured Petri net representation
of an activity writing a process variable V is that the
transition takes a token v1 out from the place that represents
the variable and then puts another token v2 into it. We
use double arrows as a graphical for this. We use Petri
nets without coloured extension since we do not need to
distinguish v1 from v2.

WS-BPEL activities is divided into two categories: basic
and structured activities.

3.1 Basic activities

Figure 9(a) shows the Petri net of a receive activity, where
places c1 and c2 are the input and output control places,
respectively. In order to express the receive semantics of
WS-BPEL, the transition takes a token out from the msg
place and ‘writes’ to the place v1. Similarly, we have
modelled basic activities reply, assign, and invoke as shown
in Figure 9(b) to 9(d), respectively.

We denote data flow as a subset of the arcs annotated in
bold. The data flow of the assignment activity [Figure 9(c),
denoted as bold arcs] is from place v1 (and v2) to the
transition assg, then to the place v3.

3.2 Structured activities

The Petri net of an if activity is presented in Figure 10,
where places c1 to c6 model the control flow. In WS-BPEL,
the condition of an if activity is an expression, such
as $v1 < $v2. The process variables that appear in the
condition expression are modelled as places p v1, p v2
in our Petri nets. The positive (negative) evaluation of
the condition results in the execution of the true (false)
branch of the WS-BPEL process, which is modelled as
a hierarchical transition body true (body false), and is
initialised by firing transition cond true (cond false). In the
Petri net model, the transitions cond true and cond false
‘read’ the places p v1 and p v2. A token in the place
in true (in false) represents that the modelled WS-BPEL
executes the true (false) branch. We name this place control
boundary indication place.

The data flow (denoted as bold arcs) starts from the
‘reading’ of places p v1 (and p v2) by the transition
cond true (cond false), to the control boundary indication
place in true (in false). The evaluation of values of
variables in a condition determines the variables that are
changed, because it determines the branch to be chosen.
Thus the process variables changed inside of the if branches
should depend on the conditional variables. We model this
as a ‘read’ of the control boundary indication place by the
assignment transition that is hierarchically nested in the if
construct. This is illustrated in Figure 11, which shows a
true branch of an if activity. The transition assg is the Petri
net representation of an assignment activity. The data flow
generated by if activity model is the path from conditional
variable p v1 (and p v2) to the transition cond true, and
then from the transition cond true to the control boundary
indicator place in true. The data flow model generated for
the assignment activity is from the places p v4 and p v5
(representing the process variables v4 and v5 which appear
in the R-value part of the assignment) to the transition assg,
and then from assg to the place p v3 (representing the
process variable v3 which appears in the L-value part of the
assignment). By the application of the rule, we add a ‘read’
of the indicator place in true by the transition assg, so that
the data dependency path representing that v3 depends on
v1 and v2 can be generated.

Figure 9 The Petri net model for basic activities, (a) receive (b) reply (c) assign (d) invoke (e) legend
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Figure 10 The Petri net model for if activity
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Figure 11 The data flow path of if activity
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The Petri net model for a while activity is shown in
Figure 12. Places c1 to c4 model the control flow. The
variables (v1 and v2) which appear in the while conditional
expression are modelled as places p v1 and p v2. At
runtime, the evaluation result of the conditional expression
will determine whether the body of the while iteration
is executed or not. This is modelled as the transitions
cond true and cond false. These transitions ‘read’ the
places p v1 and p v2.

Figure 12 The Petri net model for while activity
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The process variables could be changed inside the while
iteration, so a data dependency should be generated to
indicate that these variables depend on the variables which
occur in the while condition (v1 and v2). This mechanism
is similar with the if model, in which we use the place
in while to indicate that the WS-BPEL execution is inside
the while iteration. This place works together with Petri
net model of the assignment activity to generate this
dependency.

The Petri net model for a pick activity is shown in
Figure 13. Places c1 to c5 model the control flow of the
pick activity.r Transitions rec1 and rec2 (could be more)
model the receiving behaviour of each <onMessage>
branch. Hierarchical transitions body onMsg1 and
body onMsg2 model each of the onMessage branches
of the pick activity. If there is any reply activity
corresponding to the onMessage branch, the output

message corresponds to the resp msg. If there is no
reply for the onMessage (the message msg2 is a
one-way message without corresponding reply), we use the
transition end2 to model the end of this branch to facilitate
simulation. The timer-based event is not supported in our
current version of the pick model.

Figure 13 The Petri net model for pick activity
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The Petri net specified in this section is used for state
determination in Section 4. The idea of modelling system
crash (network failure) is to use a transition which takes
a token out from places modelling control flow (message
channel) and puts a tolen into a corresponding place which
represents failure. The Petri net that models failure is
presented in Section 6.

4 State determination criteria

4.1 Inbound message activity

In order to identify the synchronous operation boundaries,
we introduce the concept of Inbound Message Activity
(IMA) in WS-BPEL. IMAs are activities in which messages
are received from partners, and consists of the activities
receive and pick. Other types of IMAs, like eventhandlers,
are out scope of this paper. The control boundary of a
synchronous process operation starts with an IMA and ends
with a reply activity.

OMAs (outbound message activities) reply the response
message, and consist of the activities invoke and reply.

IMAs and OMAs correspond to the begin and end of
the control boundary of a synchronous process operation,
respectively. If a state variable is identified for a
synchronous process operation, we cache the response
message. We will use a ticket subscribing process to
illustrate our criteria to identify process state variables.
As shown in Figure 14, the core of the process is a
pick activity. Three onMessage handlers are nested inside
the pick activity for the corresponding message type:
‘subscribe’ for the subscription operation; ‘revoke’ for
the ticket revoke operation and ‘termination’ to end the
business process. The pick activity is nested in a while
activity, allowing the process operations ‘subscribe’ and
‘revoke’ to be executed multiple times.

4.2 Inside process operation criteria

Below we discuss the criteria used inside the control
boundary of a process operation.
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Figure 14 Snippet of ticket process (see online version
for colours)

1 2

4.2.1 Read before write

The process variable should be read first and written
afterwards. Formally, in Figure 15, this criterion is
presented as an automaton with the alphabet {read(v),
write(v), *}, where read(v) and write(v) denote the reading
and writing of the process variables v, respectively. State 0
denotes the initial state, State 1 denotes the state in which
the process variable v is read but not being written, and
State 2 is the accepted state, which represents that variable
v is read first and written afterwards.

Figure 15 Criterion automaton of read before write

0

*/read(v)

11
read(v)

*/write(v)

write(v)

*

22

We discuss the use of the criteria automaton to check the
Petri net model in Section 5.

4.2.2 Circular dependency

The data flow denoted by the bold arcs in the Petri net
representation of the places should form a cycle, and the
place representing the variable should be included in this
cycle. The Petri net model of the operation ‘subscribe’ of
the ticket process is shown in Figure 16. The data flow
path true, inT, assg2, sub, assg1, ticket, true forms a cycle,
where two places representing variables can be found: sub
and ticket, which are considered as state variables.

4.3 Cross-process operation criteria

If a variable v has its value written inside an operation
and read outside the operation afterwards, v should
considered as a state variable. Without loss of generality,
for a specific synchronous process operation, say, the
subscribe ticket process operation, we can construct a
criteria automaton {q0, Q, F,

∑
, δ}, with the alphabet

∑
=

{IMA subscribe,OMA subscribe, r history, w history}
for a process variable $history. IMA subscribe represents
the receive activity. OMA subscribe represents the reply
activity. r history is an assignment activity that reads the

value of $history and w history is an assignment activity
that writes the value of $history. We define state set Q to
contain five states, indexed from 0 to 4. The initial state
q0 is state 0. The final state set is {4}. Figure 17 shows
the automaton constructured in this way. The transition
function δ is specified as follows:

1 From state 0: IMA subscribe leads to state 1; Stay in
state 0 otherwise.

2 From state 1: OMA subscribe leads to state 0;
w history leads to state 2; Stay in state 1 otherwise.

3 From state 2: OMA subscribe leads to state 3; Stay in
state 2 otherwise.

4 From state 3: w history leads to state 0; r history
leads to state 4. Stay in state 3 otherwise.

5 From state 4: Stay in state 4 for any element of
∑
.

5 Implementation details

The architecture of our prototype implementation is shown
in Figure 18. We implemented the state determination
criteria proposed in Section 4 in the State Dependency
Analysis module to determine the state information.
The result is used to decide whether to trigger the
process transformation. The Process Transformation module
performs the actual process transformation to cache the
response message to achieve robust client/server interaction.

5.1 State dependency analysis module

At the bottom layer is the CPN simulation module and the
Automaton Class Library of our architecture in Figure 18.
The CPN simulation module generates the occurrence graph
model from the Petri net model. Inside this module, the
Access/CPN Class Library provides the Petri net simulation
support and the Graph Search Library provides graph
representation support. The occurrence graph generation
algorithm implemented in the state space generation module
is presented below.

1 Init : Queue : Q ⇐ Empty,

2 add init marking m0 to Graph : G
3 Enqueue(Q,m0)
4 while(Q is not empty) do
5 marking u ⇐ Dequeue(Q)
6 for(each v in directly reachable markings

from u) do
7 if(v is not in G) then

8 Enqueue(v,G)
9 add v to G
10 add < u, v > to G
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Figure 16 Petri net of subscribe operation of the ticket process
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In the middle layer, the occurrence graph is mapped to the
automaton. Figure 19 shows how Petri nets concepts are
mapped to automaton concepts. The Petri net transitions
are annotated with the names of the business activities, so
when the Petri net transition set is mapped to the automaton
alphabet, an additional alphabet Σ′ is required as input.
If the transition name is in Σ′, the Petri net transition

is mapped to the corresponding automaton transition. If
not, the Petri net transition is mapped to an ϵ automata
transition. We then transform the non-deterministic finite
automaton (NFA) containing the ϵ to a Deterministic Finite
Automaton. Finally, we calculate the intersection of the
DFA with the criteria automata in order to determine the
necessary state information.
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Figure 19 A mapping from occurrence graph to automaton
(see online version for colours)
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Figure 20 Cache-pased process transformation details
(a) original (b) transformed (see online version
for colours)
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5.2 Process transformation module

As shown in Figure 20(a), a synchronous operation receives
a message, performs some processing and then replies.
Our transformation replaces the processing and reply by an
if activity, where the condition of the if activity checks
whether the request message has been cached before. If the
message is cached, the process uses the cached response
as reply. If the message is not cached, which implies that
the message was sent for the first time, the message is
processed. The response message is cached and replied.

The data structure of the cache is declared as an array
of cached items. Each item is a <request, response> value
pair. The cache structure is declared as an XSD definition
in WSDL. In the WS-BPEL process, the cache is declared
as a variable. Three cache operations are required:

1 given a request message, check whether the
corresponding response message is cached

2 given a request, get the corresponding response

3 given a value pair of request and corresponding
response messages, add it to the cache.

The cache data operation is implemented as a XSLT
transformation. An assign activity to check whether the
request is cached is shown in the following WS-BPEL code:

<b p e l : a s s i g n>
<bp e l : c o p y>

<bp e l : f r om>bpe l : d oXs lT r a n s f o rm (
t e s tC a c h e d . x s l ,
$ cache , cacheI tem ,
$ r e q u e s t . p ay load )

< / b p e l : f r om>
<b p e l : t o

v a r i a b l e = foundCachedReques />
< / b p e l : c o py>

< / b p e l : a s s i g n>

The from part of the assignment activity is the BPEL
function doXslTransform() with the request message and
$cache as its parameters. Variable $foundCachedReques
contains the result.

6 Evaluation

We evaluated our mechanisms in three aspects: their
correctness, their performance overhead and the complexity
of the process transformation.

6.1 Correctness evaluation

To evaluate the correctness of our transformation, we
started by proposing the correctness criteria, in the
form of finite state automata. The alphabet Σ accepted
by the automata is the set of sending and receiving
messages. Then we model the transformed business process
[in Figure 20(b)] to extract the automata model. We
demonstrate correctness by showing that the automata
model of the business process is subsumed by the criteria
automata.

6.1.1 Correctness criteria

Informally, for any message M1, it could be sent multiple
times due to failures, and ultimately received. We use
the DFA < Q,Σ, δ, q0, F > to formalise this correctness
criteria. The global message sending and receiving states
are modelled as the state set Q = {0, 1, 2}. The alphabet
Σ = {sendM1, receiveM1}. SendM1 (receiveM1)
models the sending (receiving) of message M1. q0 = 0
is the initial state and F = {0, 2} is the set of accepted
states. The transition rules are visualised in Figure 21(a).
A transition sendM1 from state 0 to state 1 models the
sending of message M1, a transition sendM1 from state
1 to itself models that the message may be sent multiple
times, and a transition receiveM1 from state 1 to state 2
represents that the message has be received.

The synchronous communication criteria should take
into consideration both request and response messages.
Informally,



336 L. Wang et al.

1 a request may be sent multiple times until received

2 a response message may be sent afterwards

3 the sequence of 1 and 2 can be repeated multiple
times until the response message is received.

The criteria automatia is visulised in Figure 21(b). The
state set is {Q = 0, 1, 2, 3, 4}. State 0 is initial state,
States 1 and 2 represent that the request message
M1 is sent and received, respectively, and States
3 and 4 represent that the response message M2
is sent and received, respectively. The alphabet Σ =
{sendM1, receiveM1, sendM2, receiveM2} models the
behaviour of sending and receiving of request message
M1 and response message M2. The transition rules are
specified as the following. At state 0, transition sendM1
to state 1 represents that the request message M1 is sent.
At state 1, transition receiveM1 to state 2 represents that
the message M1 has been received. At state 2, transition
sendM2 to state 3 represents that the response message
M2 has been sent. At state 3, transition receiveM2 to
state 4 represents that the response message M2 has been
received. At states 1, 2, 3, transition sendM1 to state 1
represents that the request message M1 can be sent multiple
times due to synchronisation failure. At state 4, transition
sendM1 to state 1 represents that the request message
M1 can be sent multiples times due to a specific process
design, for example, an invoke activity nested inside a
while iteration.

Figure 21 Correctness criteria, (a) single message
(b) synchronous request and response
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1 2
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6.1.2 Evaluation procedure

Figure 22 shows the correctness evaluation in three steps.
First we prove that a business process can pass the
correctness criteria when no failure happens, then we prove
that the business process cannot pass the criteria if the
pending request failure happens and finally we prove that
the transformed business process fulfills correctness criteria
when the pending request failure happens.

In each step of evaluation, we start from modelling
the business process as a Petri net. Then the Petri net
is transformed into occurrence graph (automata model).
Finally, we prove the correctness by proving that the

automata of the business process is subsumed by the criteria
automata.

The Petri net snippet of the ticket subscription operation
is shown as Figure 23. Places c1 to c3 model the control
flow of the initiator process, and c4 to c7 model the control
flow of the responder process. The sending and receiving of
the order message are modelled by the transitions send1
and receive1, respectively. The sending and receiving of
the result message are modelled by the transitions send2
and receive2, respectively. The transtions channel1 and
channel2 model the communication channel.

A system crash or network failure is modelled
with a transition which takes a token out from places
modelling control flow or messages, and puts a tolen into
corresponding place which represents failure. The Petri net
model of the synchronisation failure is shown as Figure 24.
The Service Unavailable failure caused by a system crash
is represented by the firing of transition SU1 or SU2, thus
a token is put into place SU SC to indicate the failure
state. The Service Unavailable failure caused by network
failure is represented by the firing transition SU3, thus a
token is put into place SU NF to indicate the failure state.
The Pending Request failure is modelled by transition REQ.
The Pending Response failure caused by a system crash
is modelled by the firing of transition RESP1 or RESP2.
The Pending Response failure caused by network failure is
modelled by the firing of transition RESP3 or RESP4. The
places RESP SC and RESP NF are used to represent the
corresponding failure states.

The Petri net model of our process that is able to recover
from pending request failures is shown in Figure 25. On the
initiator side, the message re-send behaviour is modelled
as transition reSend to take a token from REQ and put a
token in place c1. On the responder side, after the order
message has been received, we model our transformation as
the Petri net ‘between’ c5 and c6. The firing of transition
ifCached indicates that the request order message is cached.
The assign activity which assigns a cached response to
the variable result is modelled as transition getCache. The
case in which the order message is not cached is modelled
as the transition ifNotCached. In this case, we model the
behaviour of processing the order message.

We finish the correctness proof by checking that the
occurrence graph (automaton) model of the transformed
process is subsumed by the correctness criteria automata.
The subsumption checking algorithm (Hopcroft et al., 2006)
is implemented as a programme to check correctness.

6.2 Performance overhead evaluation

In case the infrastructure (software, hardware and network
configuration) is considered as fixed, performance
depends on the process design and the workload, i.e.,
performance = Test(ProcessDesign,workload).
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Figure 22 Evaluation procedure (see online version for colours)
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Figure 23 Petri net model of ticket subscription operation
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Figure 25 Transformation to recover from pending request failure
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We evaluated the performance overhead of our solution
with different workloads. The requests sent per minute
by the simulation client comply to a Possion distribution.
We collect performance under two workloads, namely
λ = 5 and λ = 10. We use these workloads because
according to our tests under the available hardware and
software configurations, higher workload exhausts the
server resources. Each test run lasted for 60 minutes, but
only the response time in the 30 minutes in the middle of
this period have been considered (steady state).

Figure 26 Average process response time different workload

Workload Origin Trans Overhead

λ = 5 313 ms 375 ms 62 ms
λ = 10 256 ms 440 ms 184 ms

Under the workload of λ = 5, the performance overhead
of our transformation mechanism is 62 ms. Under the
workload of λ = 10, the performance overhead of our
transformation mechanism is 184 ms. We conclude then
that the performance overhead increases with the workload.
However, we expect lower performance overhead when the
infrastructure is scalable, like in a cloud environment.

6.3 Process design complexity

We have implemented the process designed in Figure 20
using WS-BPEL. The synchronous interaction is presented
with two activities (one receive and one reply). By applying
our process transformation mechanism, the resulting process
is as follows:

<r e c e i v e . . . />
<a s s i g n name=” a s sg1 ” . . . />
< i f . . .>

<c o n d i t i o n . . . />
<a s s i g n name=” a s sg2 ” . . . />
<e l s e>

<!−− Some Pro c e s s i n g −−>
<a s s i g n name=” a s sg3 ” . . . />

< / e l s e>
< / i f>
<r e p l y . . . />

We add one structured activity and three basic activities.
One assignment activity is used to check whether a request
message was cached or not, while second assignment
is used to get the cached response message and add it
to the cache. The third activity is used to cache the
request message. In future work, the process transformation
can be done automatically based on XML transformation
techniques and thus transparently to process designers.

7 Related work

Fault handling approaches (Russell et al., 2006; Lerner
et al., 2010) require that the process designers are aware of
possible failures and their recovery strategies. Alternatively,
cache-based process transformations can be transparent
to process designers. As described in Tanenbaumand
van Steen (2002), the key technique for masking faults is
to use redundancy. As shown in Figure 27, three kinds
of redundancy are possible: information redundancy, time
redundancy and physical redundancy.
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Figure 27 Overview of related solutions
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Physical redundancy-based solutions include Modafferi
et al. (2006), Modafferi and Conforti (2006), Charfi
et al. (2009), Fredj et al. (2008) and Cavallaro et al.
(2009). Recovery mechanisms implemented as plug-ins
for a WS-BPEL engine, such as Modafferi et al. (2006),
Modafferi and Conforti (2006) and Charfi et al. (2009),
strongly depend on a specific WS-BPEL engine. The
approach to recovery presented in Fredj et al. (2008)
and Cavallaro et al. (2009) consists of substituting a
service with another one dynamically if a synchronisation
error occurs. In Moser et al. (2008) and Moo-Mena
et al. (2008, 2009), the QoS aspects of dynamic service
substitution are considered. An alternative to avoid the
loss of state synchronisation is to use reliable messaging.
Message exchange is realised at the technical level using
standard communication protocols like HTTP (on the
TCP/IP protocol stack). However, HTTP does not provide
reliable messaging. Reliable messaging protocols such
as HTTPR (Todd et al., 2005), WS-RX (2009) solve
the problem by introducing a middle layer, which
increases the complexity of the required infrastructure.
We assume that server crashes and network failures are
rare events, and therefore extending the infrastructure
introduces too much overhead. Further, adding a middle
layer could turn out to be a problem for some
outsourced deployments where the infrastructure layer is
out of control of the process designer. For example, in
some cloud computing environments, user-specific network
configuration capabilities to enhance state synchronisation
are not available. Another possibility is to design the
process to deal with unreliable messaging. However, this
makes the process design and the created model much
more complicated. Instead we propose to (automatically)
extend the original processes into synchronisation-enabled
counterparts via process transformations.

Information-based redundancy is achieved based
on replication. Our solution can be classified in
this category since caching is a kind of replication.
Time-based redundancy solutions include WS-Transactions.
Transaction-based process recovery approaches, such as in
the WS-AT (WSTX, 2009a) and WS-BA (WS-TX, 2009b)
standards, require a central coordinator, in contrast with
our approach, which is based on process transformations.

8 Conclusions

In this paper, we propose robust interaction mechanisms
for collaborative business processes. We identify four ways
in which state can be shared between multiple process
instances. We look into possible interaction failures of
the ‘shared static’ state type. The challenge is how to
cache process interaction messages in order to recover from
failures. We transform the business process design into
an automata model. The alphabet of the automata is the
sending and receiving of messages, and the reading and
writing of process state. We define a criteria automata
for identifying state changes that are worth caching. We
implemented a prototype to desmonstrate our approach. As
a next step, we will extend our work to include other types
of shared states, particularly involving multiple process
instances.
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