
62 Int. J. Business Process Integration and Management, Vol. 10, No. 1, 2020

Copyright © 2020 Inderscience Enterprises Ltd.

A context-based approach for modelling and
querying versions of BPMN processes

Mohamed Amine Chaâbane*, Imen Ben Said,
Fatma Ellouze and Rafik Bouaziz
MIRACL,
Université de Sfax,
Route de l’aéroport, BP 1088, 3018, Sfax, Tunisia
Email: mohamedamine.chaabane@isaas.usf.tn
Email: Imen.bensaid@fsegs.usf.tn
Email: fatma.ellouze@enis.usf.tn
Email: rafik.bouaziz@usf.tn
*Corresponding author

Eric Andonoff
IRIT,
Université Toulouse 1 – Capitole,
2 rue du Doyen Gabriel Marty,
31042, Toulouse Cedex, France
Email: andonoff@univ-tlse1.fr

Abstract: Versioning is an interesting solution to deal with business process flexibility.
It consists of the definition of several process versions for taking into account the significant
changes occurring to the processes. It allows the running of several instances of the same process
according to different models. However, in a multi-version environment, where numerous
versions co-exist, it is important to specify the context in which these versions can be used. The
context is used in particular to find out, for a given situation, the appropriate process version to
be executed at run-time. We aim in this paper at offering a solution to model the context of
versions of intra- and inter-organisational processes and query these versions using their context.
More precisely the recommended solution extends BPMN2.0, the de-facto standard for process
modelling, to consider versions and contexts, and introduces a context based language for
versions querying.

Keywords: business process flexibilty; modelling versions; BPMN private processes;
BPMN collaborations; BPMN for versions.

Reference to this paper should be made as follows: Chaâbane, M.A., Said, I.B., Ellouze, F.,
Bouaziz, R. and Andonoff, E. (2020) ‘A context-based approach for modelling and querying
versions of BPMN processes’, Int. J. Business Process Integration and Management, Vol. 10,
No. 1, pp.62–86.

Biographical notes: Mohamed Amine Chaâbane received his PhD from the University of
Toulouse, France in 2012. He is an Associate Professor at the Higher Institute of Business
Administration, University of Sfax, Tunisia. Since 2017, he was the Head of the Computer
Science and Quantitative Methods Department. He is also a Member of the Multimedia,
InfoRmation Systems and Advanced Computing Laboratory (MIRACL). His research interests
focus on business process management field. He is working on topics related to business process
modelling, process flexibility, context of process and self-adaptation of process.

Imen Ben Said received her PhD in Computer Science from the University of Sfax and
University of Toulouse 1 Capitole in 2017. Since 2009, she was a teacher/researcher at the
Faculty of Economics and Management, University of Sfax. She is a Member of the MIRACL
Laboratory. Her research concerns are information systems modelling and business process
management (BPM). Currently, her works are directed towards the flexibility of business
processes using the version notion.

Fatma Ellouze is currently a contractual assistant in the Department of Computer-science,
National Engineering School, University of Sfax, Tunisia. She received her PhD in Computer
Science from the Faculty of Economics and Management of the University of Sfax, Tunisia,

 A context-based approach for modelling and querying versions of BPMN processes 63

in September 2018. She is a Member of the Multimedia, Information systems and Advanced
Computing Laboratory, since 2013. Her current research interests include business process
management, process modelling, context modelling, ontologies and information systems.

Rafik Bouaziz is Professor Emeritus on computer science at the Faculty of Economic Sciences
and Management of Sfax University, Tunisia. He was the president of this University during
August 2014 – December 2017, and the director of its doctoral school of economy, management
and computer science during December 2011 – July 2014. His PhD has dealt with temporal data
management and historical record of data in Information Systems. The subject of his
accreditation to supervise research was “A contribution for the control of versioning of data and
schema in advanced information systems”. Currently, his main research topics of interest are
temporal databases, real-time databases, information systems engineering, ontologies, data
warehousing and workflows. Between 1979 and 1986, he was a consulting Engineer in the
Organization and Computer Science and a Head of the Department of Computer Science at
CEGOS-TUNISIA.

Eric Andonoff is an Associate Professor at the University of Toulouse and a Member of the IRIT
Laboratory. His research addresses issues in business process management such as (self-)
adaptation of processes, context-aware processes, versioning of processes, process-based crisis
management and social processes. He is an author of several papers dealing with these issues and
published in conferences and journals. He is also involved in several French and European
projects.

1 Introduction
Over the two last decades, there has been an increasing use
of business process management systems (BPMS) in
companies (Dumas et al., 2005). This is mainly due to the
fundamental role processes play in companies as they are
the support of the alignment between their information
systems (IS) and their business strategies (Rolland, 2010;
Alotaibi and Liu, 2017). This evolution is mainly due to the
maturity of the Business Process Management (BPM) area,
which is a well-established research area, defining concepts,
methods and rules to help systems support the whole
process life cycle, including not only process modelling and
enactment but also process analysis, simulation,
supervision, monitoring, and discovering (Weske, 2007;
Aalst et al., 2005). As a consequence, many standards have
emerged such as Business Process Model and Notation
(BPMN) (OMG, 2014), which is considered as the de-facto
standard for process modelling, and which is easily
understood by BPM practitioners. However, BPM systems
fail to become widely adopted by companies as they have
still important challenges to address. Process flexibility is
still one of these challenges (Reijers, 2006; Reichert and
Weber, 2012). Indeed, as the economic environment in
which companies are involved is more and more dynamic,
competitive and open, companies frequently change their
processes in order to meet, as quickly and efficiently as
possible, new organisational or customer requirements and
new law regulations, or to benefit from new collaboration
opportunities (Nurcan, 2008).

Generally, process flexibility is defined as the ability of
a process to accommodate changes happening in its
operating environment (Nurcan, 2008). In order to feature
process flexibility and to evaluate the ability of BPMS and
process schema/models to support process flexibility,
several taxonomies have been proposed in literature. The
more suitable one, which serves as a basis for the related

work analysis in this paper, is given in (Reichert and Weber,
2012). This taxonomy highlights two different times when
process flexibility can take place: flexibility at design-time,
which refers to foreseeable changes that can be taken into
account in modelled process schema, and flexibility at run
time, which refers to unforeseeable changes occurring
during process execution. In addition, this taxonomy
identifies four needs of flexibility:

1 variability, for representing a process differently,
depending on the context of its execution,

2 adaptation, for handling occasional situations or
exceptions which have not been necessarily foreseen in
process schema,

3 evolution, for handling changes in processes, which
require occasional or permanent modifications in their
schema, and finally

4 looseness, for handling processes whose schema are not
known a priori and which correspond to non-repeatable,
unpredictable, and emergent processes.

These last processes require loose specifications.
To address process flexibility in BPM, several

contributions have recommended versioning (Chaâbane et
al., 2009; Ekanayake et al., 2011; Zhao and Liu, 2013;
Ellouze et al., 2016; Lassoued et al., 2016; Ben said et al.,
2018). Versioning consists of the definition of several
process schema versions for taking into account significant
changes on processes and their components (i.e., activities,
data consumed and produced, roles involved in their
execution). Versioning is acknowledged as to be tailored to
address process evolution, process adaptation and process
variability, which are the main process flexibility needs in
BPM (Reichert and Weber, 2012). In addition, versioning
facilitates the migration of running instances from an old
process schema to a new one. In fact, changes performed on

64 M.A. Chaâbane et al.

such instances may affect already executed activities,
making the migration impossible: then versioning is very
useful as it allows the running of several instances of the
same process according to different schema.

Particularly, contributions recommending versioning for
process flexibility have addressed the modelling of versions
in BPM. Some of them have introduced versioning models
(Ekanayake et al., 2011) and graphs, e.g., Versioned
Preserving directed Graph VPG (Zhao and Liu, 2013).
Others have proposed specific meta-models supporting the
modelling of versions (Chaâbane et al., 2009; Ellouze et al.,
2016; Lassoued et al., 2016; Ben Said et al., 2017). Ben
Said et al. (2014, 2015) have proposed BPMN4V (BPMN
for Versions) to support process versioning. They have
introduced the BPMN4V meta-model, which is an extension
of the BPMN2.0 meta-model, supporting the modelling of
versions of private processes, version of collaborations and
versions of choreographies. They have also taken into
account the dynamic aspects of versions as they have
defined a set of operations for version management and a
set of patterns for making changes easier to perform (Ben
Said et al., 2015). This contribution is interesting since the
recommended approach for versioning takes into account
the three main process dimensions (i.e., the behavioural,
informational and organisational dimensions) and considers
both intra- and inter-organisational processes. In addition,
the BPMN4V-Modeller implementing the BPMN4V meta-
model has been implemented as an extension of the BPMN-
Modeller.

However, to address process versioning in a
comprehensive way, it is not enough to just consider the
version modelling issue, it is also necessary to address the
reuse/selection of modelled versions. Indeed, if a large
number of versions co-exist together, BPM practitioners
have to face the problem of selecting/retrieving, among
different versions of their processes, activities, data and/or
roles, the most appropriate ones to a given situation. This
may be the case both at run-time if practitioners have to
select the process version to be executed among several
process versions or/and at design-time if they have to select
a version (e.g., a version of activity, a version of role, a
version of data) that has to get involved in another version.

Several languages have been defined to query process
schema and these languages could be used to select versions
in BPM. These query languages are classified in Wang et al.
(2014) as follows:

1 structural languages, in which the user requirement is
defined as a graph and the retrieved process models
must contain this graph syntactically,

2 behavioural languages, in which the user requirement is
defined as a sequence of ordered activities and the
retrieved process models must include this sequence of
ordered activities and

3 contextual language, which is based on a given
descriptive information about a particular process.

However, as stated in Ellouze et al. (2017), these query
languages for processes have to be extended for version
selection as this latter is mainly based on descriptive
information. This descriptive information is modelled in the
contextual dimension of processes, which is another
important dimension of processes and which gathers the
minimum of elements that impact the design and the
execution of a process (Rosemann and Recker, 2006).

Thus we argue in this paper that version selection in
BPM should be supported by a contextual language, i.e., a
language using contextual dimension of processes for
version retrieval. To define such a language, we have to
deal with two issues: context modelling for versions in BPM
and context querying.

Regarding context modelling for versions, our purpose
consists of adding contextual dimension to BPMN4V
private processes and BPMN4V collaborations. This
contextual dimension is intended to specify the context in
which the (process, activity, data or resource) versions must
be used. As the vocabulary used in this definition may differ
from one designer to another and/or from one company to
another, we also intend to define an ontology supporting
multiple vocabularies for context element specification and
to exploit this ontology to enhance context modelling in
order to make version retrieval more effective. Context
enhancing consists of deducing new contextual information
based on semantic relationships between contextual
information.

As for context querying, it consists of retrieving and
visualising versions from queries expressed by BPM
practitioners. These latter do not necessarily have
knowledge of query languages used to query processes and
versions of processes (e.g., PQL). To make this step easier,
we recommend a new language for querying versions based
on their context.

To sum up, this paper addresses

1 context modelling for versions of BPMN processes

2 version querying using context.

To do so, we recommend the use of BPMN4V as the
starting point of this modelling. The paper extends this
contribution as follows. First, it introduces an extension of
BPMN4V meta-model, called BPMN4V-Context, and an
appropriate ontology, called Context-Process ontology, for
version context modelling. Second, it introduces a new
language, called BPMN4V-QL, for querying versions based
on their context and illustrates the implementation of this
language in the BPMN4V-Modeller.

Accordingly, the paper is organised as follows.
Section 2 provides a state-of-the-art of contributions
addressing process versioning, process context modelling
and process querying. Section 3 presents the background of
the paper; first it gives a case study from the maritime
domain, which will be used to illustrate the paper
contributions, and second it presents BPMN4V which is an
extension of BPMN for private processes and collaboration

 A context-based approach for modelling and querying versions of BPMN processes 65

versioning. Section 4 introduces the BPMN4V-Context
meta-model supporting context modelling for versions of
private processes and of collaborations. Section 5 is
dedicated to the presentation of the Context-Process
ontology used to enhance context of versions modelled
according to the BPMN4V-Context meta-model. Section 6
presents BPMN4V-QL a language to support querying
versions based on their context. Section 7 presents the
extension of the BPMN4V-Modeller to support the querying
of BPMN4V processes using context. Finally, Section 8
concludes the paper and gives some directions for future
works.

2 Related works
In this section, we present the most important contributions
addressing process versioning, context modelling for
processes and process querying. Then we give a comparison
and a discussion about the presented works.

2.1 Process versioning
Several works dealing with the version-based approach have
addressed the modelling of versions in BPM (e.g., Chaâbane
et al., 2009; Ellouze et al., 2016; Lassoued et al., 2016;
Ben Said et al.; 2017). They have introduced specific
versioning models and/or meta-models for capturing
process changes over time. These version-based meta-
models support the modelling of versions for concepts
relevant to the behavioural dimension of processes only
(e.g., Ekanayake et al., 2011, Zhao and Liu, 2013), or also
to the informational and organisational dimensions of
processes (e.g., Chaâbane et al., 2009; Ellouze et al., 2016;
Lassoued et al., 2016; Ben Said et al.; 2017). Moreover,
most of these contributions only addressed versioning of
processes internal to companies (e.g., Chaâbane et al., 2009;
Ekanayake et al., 2011; Zhao and Liu, 2013; Lassoued et al.,
2016) while only a few of them (e.g., Ellouze et al., 2016;
Ben Said et al., 2017) also addressed versioning of
processes crossing the boundaries of companies. For
example, the meta-model version business process meta-
model (VBP2M) introduced in Ellouze et al. (2016)
supports modelling of versions of processes, activities, roles
and informational resources for both internal processes and
processes crossing the boundaries of companies. However,
VBP2M is not a standard meta-model for BPM and its
recommended notation is not likely to be used by BPM
practitioners. To overcome these drawbacks, the BPMN4V
meta-model recommended in Ben Said et al. (2014, 2016)
extends the BPMN2.0 standard to integrate version
modelling capability; BPMN4V supports the definition of
versions of processes, collaborations and choreography.

Regarding version management, some of the works have
defined a set of operations enabling the creation, update and
derivation of versions (Chaâbane et al., 2009; Zhao and Liu,
2013; Ellouze et al., 2016; Ben Said et al., 2017). However,
the version management has been discussed from a
theoretical perspective, but practical applications are very

limited (Reichert and Weber, 2012; Natschläger et al.,
2016). For instance, the BPM tools in Signavio (2015) and
Scheer (2015), which support process version modelling,
especially lack functionality regarding version management:
versions are created separately, without any connection
between parent and child version(s) (i.e., no derivation
hierarchy). On the other hand, the BPMN4V-Modeller (Ben
Said et al., 2018) is an editor for modelling and handling
BPMN4V versions. It allows

1 the modelling of versions of processes, collaborations
and choreographies according to BPMN4V meta-model

2 the management of the modelled versions using
operations (creation, derivation, update, froze).

In this tool, relationships between versions, i.e., derivation
hierarchy, are well established. However, BPMN4V-
Modeller does not support version querying and must be
extended to do so.

2.2 Context modelling
Process context is defined in Rosemann and Recker (2006)
as “the minimum set of elements containing all relevant
information that impacts the design and execution of a
process”. To classify these context elements, several
taxonomies have been introduced (e.g., Wang et al., 2004;
Rosemann et al., 2008; Saidani et al., 2015; Brocke et al.,
2016). We outline the largest one, described in Rosemann et
al. (2008), which distinguishes four types of context:

1 immediate context, which covers elements on process
components, namely context of activities, events, and
resources

2 internal context, which includes elements on the
internal environment of an organisation that impacts its
processes

3 external context, which encompass elements relating to
external stakeholders of organisations, and finally

4 environmental context, which contains elements related
to external factors.

Other works (e.g., Santos et al., 2010; Chaâbane et al.,
2009) only distinguish two types of information to represent
process context: functional information related to the
process components (activities, events, resources…) and
non-functional information related to the process quality
(safety, security, cost, time…). In this work, we rather adopt
the taxonomy introduced in Rosemann et al. (2008), which
is more comprehensive.

Regarding context modelling, several approaches have
been introduced. The most relevant ones are the key-value
approach, the graphical model approach and the ontology-
based approach.

In the key-value approach, a context element is
represented as a pair (attribute, value) (Dey et al., 2001).
The attribute represents the name of the context element
while the value represents the current value of this element.
This approach uses the most simple data structure for

66 M.A. Chaâbane et al.

modelling contextual information. However, it lacks
expressiveness since it does not represent the relationships
between contextual information.

The graphical model approach uses models and meta-
models to model process context (Sheng and Benatallah,
2005; Saidani and Nurcan, 2009; Nie et al., 2014). Although
this approach allows modelling the relationships between
context elements, it does not offer a mechanism to express
semantic relationships such as synonyms and antonyms.
However, when a process crosses the boundaries of a
company, a semantic interoperability must be ensured
between involved partners and the lack of semantic
relationship is a drawback.

This drawback is overcome in the ontology-based
approach. Indeed, this approach provides a strong source of
semantic reasoning and conflict resolution thanks to its
capabilities of formal expressiveness and reasoning
techniques (Wang et al., 2004; Saidani et al., 2015; Hoang
et al., 2014; Lassoued et al., 2016). According to the survey
of Strang and Linnhoff-Popien (2004), the ontology based
approach is considered as the most promising approach for
the context modelling of processes.

Regarding contributions addressing context modelling in
BPM, we mention (Hallerbach et al., 2010; Saidani et al.,
2015; Lassoued et al., 2016). First the authors of
(Hallerbach et al., 2010) have recommended the Provop
approach, which helps define context-aware process
configurations. This approach consists of a base process, a
set of options and a context model. In Provop, this context
model comprises a set of context elements, each of which
represents one specific dimension of the process context and
is defined by a name and a value range. In the configuration
phase, each defined option is associated with a context rule
condition which is evaluated based on the data describing
the process context. Second, the authors of Saidani et al.
(2015) introduced a BPM ontology to facilitate the
adaptation of processes to different contexts. This ontology
is modelled following two abstraction levels:

1 the first one considers an upper context ontology that
captures general concepts about contexts, and

2 the second level considers a number of domain-specific
ontologies each of which is obtained by instantiating
the upper one according to a given domain.

In addition, the authors proposed inference rules for context
reasoning to both check the consistency of ontologies and
deduce new inferred contexts. However, elements described
in these ontologies did not refer to all types of the
Rosemann’s taxonomy (e.g., the external context). Third, in
Lassoued et al. (2016), the authors have addressed context
modelling only for versions of the intra-organisational
processes (i.e., internal processes). They proposed a specific
process context meta-model that focuses only on immediate
and internal context of Rosemann’s taxonomy. However, it
is important to consider also the other contexts defined by
this taxonomy as well as inter-organisational processes. In
addition, the main drawback of this contribution is its non-
conformity with the BPM standards. That is why we

advocate the extension of BPMN4V, which supports
versioning of BPMN processes, collaborations and
choreography, with the notion of context.

2.3 Process querying
Recommended approaches for querying process models can
be classified into three types (Wang et al., 2014):

1 structural querying which corresponds to queries
defined as a sub-graph of the process to be selected

2 behavioural querying which is based on a given
sequence of ordered activities

3 contextual querying which is based on a given
descriptive information (i.e., metadata describing the
context) about a particular process.

Note that literature survey demonstrates the lack of, and the
need for, dedicated precise contextual-based process
querying (Wang et al., 2014). This conclusion is also drawn
more recently in Polyvyanyy et al. (2017). Indeed most
contributions address structural and behavioural query, and
querying using context, which is of major importance for
version retrieval, is partially addressed.

The relevant contributions about structural querying
are especially discussed in Awad et al. (2008) and Beeri
et al. (2008). The former introduced a visual query
language, called BPMN-Q, using BPMN notation
extended with additional attributes. BPMN-Q queries
are first defined as a graph, and then converted into
semantically expanded queries using the ontology eTVSM
that exploits WordNet. As for the latter, it proposed BP-QL
query language, as an extension of XQuery language, for
BPEL4WS process definitions. The authors recommend a
graph-based query language in the form of a BPEL script, to
look for a sub-graph isomorphism in a repository of BPEL
scripts.

Behavioural querying focuses on behaviours induced by
the activities of the process models. Typical examples are
querying techniques based on Petri nets (Polyvyanyy et al.,
2014), YAWL nets (Jin et al., 2013), and process query
languages, e.g., APQL (Ter Hofstede et al., 2013).

There are only few contributions that support contextual
querying of processes. We mention (La Rosa and Dumas,
2008; Lu et al., 2009; Kumar and Yao, 2012). These
contributions have addressed querying of process variants.
However, these works did not advocate an ontology based
approach either for modelling or for querying the
context. First, in La Rosa and Dumas (2008), a new query
approach, called Questionnaire, is introduced. This is
applied to lead the user to configure process variants based
on formal conceptualisation of domain knowledge. This
approach considers especially the goal of each variant and
does not consider other types of Rosemann’s taxonomy.
Second, in Lu et al. (2009), a query (e.g., find all process
variants in which execution duration is less than 3 h, and
any performer of senior engineer role was involved) is
considered as a collection of one or more contextual
information elements. This approach allows retrieving

 A context-based approach for modelling and querying versions of BPMN processes 67

process variants based on the similarity between the
specified contextual information elements and the stored
ones. However, the variants cannot be retrieved if the users
use in their query synonyms or misnomers to the stored
contextual information. Third, Kumar and Yao (2012)
propose to describe each variant using a context rule and to

base the variant querying on the defined context rules.
Therefore, the user specifies SQL queries to query the
defined context rules, and the corresponding variant is
displayed to the user according to the retrieved rule. In
addition, the authors developed specific indexes to faster
access to the process models.

Table 1 Evaluation of examined works

Domain

Criteria
works

Version-based approach Context modelling Process querying

Derivation
hierarchy

Management
of versions

Standard
meta-
model

Ontology-
based

approach
Rosemann’s
Taxonomy Structural Behavioural Contextual

Ontology-
based

approach

Ekanayake
et al.
(2011)

+ – – – – Not addressed

Zhao
and Liu
(2013)

+ + – – – Not addressed

Ellouze
et al.
(2016)

+ + – – – + + + +

Lassoued
et al.
(2016)

+ – – – +/– – – + +

Ben Said
et al.
(2017)

+ + + – – Not addressed

Signavio,
Scheer

– + + – – – – + –

Hallerbach
et al.
(2010)

– – – – +/– Not addressed

Saidani
et al.
(2015)

– – – + +/– – – – –

Awad et al.
(2008) and
Beeri et al.
(2008)

– – – – – + – – +

Jin et al.
(2013) and
Polyvyanyy
et al.
(2014)

– – – – – – + – –

La Rosa
and Dumas
(2008),
Lu et al.
(2009) and
Kumar and
Yao (2012)

– + – – – – – + –

Regarding contextual querying for process versions, we
mention (Lassoued et al., 2016). This work has introduced
VBPQL, an SQL-like language, for the definition and the
manipulation of intra-organisational process version
context. This language helps query the context using a
domain ontology. The authors justified the use of the
ontology to make more efficient the implemented filtering

mechanisms, namely the exact comparison, subsumption
and plug-in mechanisms. However, this work poorly takes
advantage of the ontology as the authors do not implement
any reasoning strategy as no rules are modelled. In addition,
this work does not illustrate how process designers or users
specify queries for contextual querying and how they use
the filtering algorithms. Finally, this work does not provide

68 M.A. Chaâbane et al.

a specific modeller for modelling and retrieving versions of
processes.

Finally, some existing BPM tools ensure contextual
querying for process versions. Examples include Aeneis
(2014), Signavio (2015) and BPaaS (Scheer, 2015).
However, the retrieval mechanisms in these tools are very
basic and are confined to the search for versions by
keywords, such as process name, publishing date, author’s
name, revision comment, etc. They fall short of providing
any guideline or help to retrieve the process version
appropriate for a specified context.

2.4 Comparison and discussion
Table 1 gives an evaluation of the previous contributions
with respect to the version-based approach, the context
modelling and the process querying support. Regarding the
version-based approach, we indicate if the work allows or
not

1 the generation of a derivation hierarchy that gives a
comprehensive view of the process versions

2 the management of versions through a set of operations

3 the use of a standard notation.

As for the context modelling support, we want

1 to evaluate if the examined contribution advocates or
not an ontology-based approach to ensure semantic
interoperability

2 to check if the proposed ontology fully or partially
covers the context types defined in Rosemann’s
taxonomy (Rosemann et al., 2008).

Finally, regarding the process querying support, we firstly
mention the type of the query (structural, behavioural or
contextual) and then we evaluate if the examined
contribution advocates or not an ontology-based approach to
ensure semantic interoperability through reasoning based on
semantic relationships between context elements (e.g.,
symmetry, transitivity, specialisation). The evaluation is
notified as follows: + (–) means that the feature is supported
(not supported), while +/– means that the feature is partially
supported.

From this table we note that the main drawback of these
works lies in the context modelling. If the work of Saidani
et al. (2015) succeeded in modelling the context using an
ontology-based approach, the proposed ontology does not
fully cover the four context types identified in Rosemann et
al. (2008), namely the immediate, internal, external and
environmental contexts. Moreover, some of these works
recommended an ontology-based approach to query the
context, such as Awad et al. (2008) and Lassoued et al.
(2016), but they did not model the context with an ontology.
In addition, a common criticism of these works is that their
version-based approach (including the generation of the
derivation hierarchy and the management of versions) is not

based on a BPM standard, except the work of Ben Said
et al. (2017) that recommends BPMN4V to model versions
of BPMN private processes and versions of BPMN
collaborations. Indeed, BPMN is promoted by the OMG and
is more used by the BPM community than specific ad-hoc
notations. Thus we propose in this paper to extend
BPMN4V (Ben Said et al., 2017) to support the modelling
of the context for versions of BPMN private processes and
BPMN collaborations and the querying of versions of
BPMN private processes and BPMN collaborations using
context.

2.5 Aim of the paper
The work presented in this paper aims at overcoming the
drawbacks of existing works. First it introduces a
conceptual solution based on BPMN2.0 that supports the
modelling of the context of intra- and inter-organisational
process versions considering all process dimensions and all
process components (process, sub-process, activity, data,
role). Second it presents a context-based version query
language for efficiently retrieving versions using ontology.
In fact, in a multi-version environment, each version is
suitable for a specific context. Thus it is more efficient to
retrieve the suitable version for a given situation defined
according to user needs and/or environment requirements,
by exploiting their context rather than their structure or
behaviour. In addition, the use of ontology is an interesting
solution to ensure semantic interoperability especially in an
inter-organisational context. Third, we introduce a BPM
tool supporting the modelling of version and their
corresponding context of use and supporting version
retrieval using context.

3 Illustrative case study and background

3.1 Illustrative case study: pipeline installation
process

We introduce the subsea pipeline installation (SPI) case
study (Ellouze et al., 2017) to illustrate the notions and
contributions of the paper. The case study deals with the
modelling of a process supporting the installation of subsea
pipelines for water or energy transportation. Depending on
the context, the process is internal to a single organisation or
the result of collaboration between several organisations.
Thus it is modelled either as a BPMN private process or a
BPMN collaboration. In the following, we present
successively versions of the SPI private process and
versions of the SPI collaboration

3.1.1 SPI private process
The SPI Private Process (SPI_PP) takes place only within
SAROST, a company providing specialised and integrated
services in the field of sub aquatic environment. Five
activities are considered in this process, namely Specify

 A context-based approach for modelling and querying versions of BPMN processes 69

Team, Assembly, Test, Lay and Control (cf. Figure 1). First
SAROST specifies the necessary team and equipment. Then
it proceeds to the assembling and the test of pipes on shore
by welders, pipefitters and controllers. The next activity is
the laying of pipes offshore by the divers. Finally, when the
installation is over, a control has to be performed. Note that
the assembling, test and laying have to be repeated until
reaching the pipeline length. According to SAROST’s
domain experts, one version is defined for the Specify Team
and Test activities, two versions are defined for the Control
activity, seven versions are defined for the Lay activity, and
twelve versions are defined for the Assembly activity. As a
consequence, twelve versions of the SPI private process are
defined. Interested readers can consult (Ellouze et al., 2017)
to get additional information on how versions of activities
and process are defined.

Figure 1 SPI_PP’s first version (SPI_PP.v1)

Each version of the SPI private process depends upon the
following context elements:

Sea depth, which can be less than 50 m, between 50 m
and 90 m, or longer than 90 m. Indeed, the depth affects
both the divers’ skills and the diving methods. If the sea
depth is less than 50 m, then at least class-2 divers must
dive for assembling, while if it is more than 50 m, then at
least class-3 divers must dive. Regarding the diving method,
diving with umbilical has to be used when depth is less than
50 m, diving with wet bell has to be used when depth is
between 50 m and 90 m, and diving with saturation has to
be used when depth is more than 90 m.

Pipeline length, which can be less than 10 km, between
10 km and 50 km, or over 50 km. This length affects
the number of welders and/or pipefitters involved in
assembling.

Installation technique, which can be floating or sliding
and that respectively refers to J-Lay and S-lay techniques.

Transported substance, which can be oil, gas or water.
Table 2 gives the context of the different versions of SPI

private process. For example, the first version SPI_PP.v1 of
SPI private process is defined for the following context: sea
depth is less than 50 m, pipeline length is less than 10 km,
installation technique is floating and transported substance
is water.

3.1.2 SPI collaboration
The SPI Collaboration (SPI) involves three participants:
first the Client Company (Client) asking SAROST for the
installation of a subsea pipeline, second the SAROST
Company and third, the Bureau Veritas (BV) to which the

certification of the pipeline can be assigned. Three versions
are defined for SPI collaboration. In the first version, SPI.v1
(cf. Figure 2(a)), two participants are involved. The Client
initiates the collaboration and sends to SAROST a pipeline
installation order. After the pipeline installation, SAROST
prepares an acceptance certificate and sends it to the client.
SPI.v1 is defined in the following context: Sea depth is less
than 50 m, Pipeline length is less than 10 km, Installation
technique is sliding and Transported substance is water.

Table 2 SPI_PP versions and their contexts

Context
version

Number
Sea

depth
Pipeline
length

Installation
technique

Transported
substance

SPI_PP.v1 <50 <10 Floating Water
SPI_PP.v2 <50 <10 Sliding Water
SPI_PP.v3 <50 <10 Floating gas or oil
SPI_PP.v4 <50 10 to 50 Floating gas or oil
SPI_PP.v5 <50 >50 Floating gas or oil
SPI_PP.v6 >=50 10 to 50 Sliding gas or oil
SPI_PP.v7 >90 10 to 50 Sliding gas or oil
SPI_PP.v8 50 to 90 >50 Sliding gas or oil
SPI_PP.v9 >90 >50 Sliding gas or oil
SPI_PP.v10 <50 <10 Sliding gas or oil
SPI_PP.v11 <50 10 to 50 Sliding gas or oil
SPI_PP.v12 <50 >50 Sliding gas or oil

For oil or gas transportation and when the pipeline length
does not exceed 50 m, SAROST only proceeds to the
installation without doing the Control and the Certification
activities. These two activities are subcontracted to the BV.
The latter is contacted by SAROST, this is why we have
modelled the SAROST send and receive activities: SRC.v1
and RC.v1 (cf. Figure 2(b)).

Finally, in the case of big project involving the
installation of long and deep-water pipelines, SAROST only
proceeds with the installation. Once the installation is over,
it sends back a report to the Client which contacts BV
which proceeds itself to the certification of the pipeline (cf.
Figure 2(c)).

Table 3 gives the context of the different versions of SPI
Collaboration in terms of sea depth, pipeline length,
installation technique and transported substance.

Table 3 SPI versions and their contexts

Context
version

Number
Sea

depth
Pipeline
length

Installation
technique

Transported
substance

SPI.v1 <50 <10 Floating
or Sliding

Water

SPI.v2 <50 <50 Floating gas or oil
SPI.v3 <50 >50 Floating gas or oil

70 M.A. Chaâbane et al.

3.2 BPMN4V

3.2.1 Static aspect of BPMN4V: the BPMN4V
meta-model

The BPMN4V (BPMN for Versions) meta-model (Ben Said
et al., 2014, 2016) combines BPMN2.0 concepts for private
process and collaboration modelling (OMG, 2014) with the
notion of version. In this meta-model, authors recommend
handling versions for nine BPMN2.0 concepts in order to
model versions of private processes and collaboration:

Process, Sub Process, Event, Activity, ItemAwareElement,
Resource, ResourceRole, Collaboration and Message. The
underlying idea is to keep track of changes occurring to
components participating in the description of the way
business is carried out. In fact, each of these classes
represents a key concept for private processes and
collaborations and plays a strong role in their definition.
Figure 3 is an UML class diagram of the BPMN4V meta-
model: BPMN2.0 concepts are shown in white while
concepts related to the versioning are shown in grey.

Figure 2 Three versions of SPI

BPMN4V supports the versioning of concepts related to the
three main dimensions of private processes, i.e., the
behavioural, the informational and the organisational
dimensions. The behavioural dimension of a process
supports the description of its activities and their
coordination along with the events occurring during their
execution through the notion of FlowElementContainer,
which gathers SequenceFlow, FlowNode (Gateway, Event,
and Activity) and Data Object. A SequenceFlow is used to
show the order of FlowNode in a process. It may refer to an
Expression that acts as a gating condition. A Gateway is
used to control how SequenceFlow interact within a process.
An Event is something that occurs during the course of a
process. It can correspond to a trigger, which means that it
reacts to something (catchEvent), or it can throw a result
(throwEvent). An Event can be defined by one or more
EventDefinitions. An Activity is a work performed within a
process. It can be a Task (i.e., an atomic activity) or a Sub
Process (i.e., a non-atomic activity). A Task is used when
the work is elementary (i.e., it cannot be more refined). In

the frame of the organisational dimension of processes, an
activity is performed by a ResourceRole, which can refer to
a Resource. The latter can define a set of parameters called
ResourceParameters. A ResourceRole can be a Performer,
which can be a HumanPerformer, which can be in
turn a PotentialOwner. The informational dimension of
processes is considered in the concept ItemAwareElement.
This concept references elements used to model the
items (physical or information items) that are
created, manipulated and used during process execution.
An ItemAwareElement can be a DataObject, a
DataObjectReference, a Property, a DataStore, a DataInput
or a DataOutput. Thus BPMN4V considers the versioning
of the following concepts: Process, Sub Process, Event,
Activity, ItemAwareElement, Resource, ResourceRole.

BPMN4V also supports the versioning of concepts
related to collaboration. In a collaboration, each involved
partner is seen as a participant that represents a
PartnerEntity (e.g., a company) or a PartnerRole (e.g., a
buyer). A participant is often responsible for the execution

 A context-based approach for modelling and querying versions of BPMN processes 71

of a process. A process involved in a collaboration is a
FlowElementContainer that may contain SequenceFlow and
FlowNode. Furthermore, within a collaboration, participants
are prepared to send and receive Messages within
Messageflows. A messageflow illustrates the flow of
messages between two interaction nodes. An

InteractionNode is used to provide a single element as the
source (send relationship) or the target (receive relationship)
of a message flow, and therefore of a message. It can be a
participant, a task or an event. Therefore, BPMN4V
supports the versioning of collaboration and message
concepts.

Figure 3 BPMN4V Meta-model for private process and collaboration (see online version for colours)

To take into account the notion of version in BPMN2.0,
Ben Said et al. (2014) have recommended modelling,
for each versionable concept, both the concept itself
and the versions it gathers. As suggested in Ben Said et al.
(2014) the authors advocate the modelling of the process
in a class and its versions in a separate class. Two specific
relationships are added between these classes: the
is_version_of relationship, which makes the link between a
concept and its versions, and the derived_from relationship,
which makes the link between the versions themselves and
allows building version derivation hierarchies.

3.2.2 Dynamic aspects of BPMN4V
To handle versions of processes modelled as instances of
the BPMN4V meta-model, Ben Said et al. (2018)
recommends the use of operations that allow creating,
deriving, updating, validating and deleting versions.

The UML state chart given in Figure 4 indicates when
operations for versions are available with respect to the
version state. Some of them are available whatever the state
of the version on which they are performed, while others are
available only in some cases. In this state chart, each
operation is described using the notation Event/Operation
whose meaning is ‘if Event appears then Operation is
triggered’.

Figure 4 UML state chart for versions

W

S

Delete_order/
Delete

Validate_order/
Validate

W

S

Create_order/Create

Update_order/
Update

First Version Second version: Derived Version

...

Derive_order/
Derive

Update_order/
Update

Validate_order/
Validate

Delete_order/
Delete

72 M.A. Chaâbane et al.

When the Create_order event appears, the Create operation
is carried out to create both a concept (e.g., a process) and
its corresponding first version. The state of the created
version is Working (W). In this state, a version is not yet a
final one, and it can be updated (Update operation). It can
also be deleted (Delete operation) or validated (Validate
operation). When the Validate operation is performed, the

corresponding version becomes Stable (S). This state
indicates that a version is a final one, on which no
additional updates can be performed. However, a stable
version can serve as basis for the creation of a new version
using the Derive operation. The created version has the
same value as the version from which it is derived, and its
state is Working for which a new cycle begins.

Figure 5 BPMN4V-Modeller overview (see online version for colours)

3.2.3 BPMN4V modeller
BPMN4V-Modeller is a tool dedicated to the modelling of
versions of private processes and collaborations. It allows
creating and handling of versions taking into account the
recommended extensions of BPMN2.0 and the dynamic
aspect of versions. This modeller extends the Eclipse
BPMN-Modeller plug-in by integrating new Eclipse views
to show version details. Figure 5 gives an overview of
BPMN4V Modeller.

The central part of the screenshot (part) is the
drawing canvas which provides multiple tabs, each one
being used to model and display a separate BPMN diagram
(that represents a particular version of private process or
collaboration). The right part of the figure (part)
represents the Tool Palette, which contains tools that can be
dragged onto the drawing canvas to create BPMN elements.
The left parts of the figure (parts ,, and) correspond
to the added Eclipse views. More precisely, we have defined
three Eclipse views which are Version Data view, List of
Activities view and Hierarchy view:

Versions Data view indicates the properties of the active
versionable concept: name, version id, version state and
version details. For example, the Versions Data view
presented in Figure 5 part indicates that the active

version of collaboration, identified by VC1-1, is a working
version and corresponds to the first version of the SPI
collaboration. In addition, this view details each process,
task and event that makes up the considered version. More
precisely, this view shows
1 that this version of collaboration is an interaction

between the first version of the client process (VP10-1)
and the first version SAROST process (VP11-1)

2 that each version of these two processes is composed of
a set of versions of tasks and events and

3 that all these versions are in the Working state.

Hierarchy view aims at providing a hierarchical tree
oriented view representing the derivation hierarchy of the
active versionable concept (e.g., Collaboration or Process)
of the drawing canvas. In Figure 5 part , the Hierarchy
view shows the derivation hierarchy of the SPI
collaboration since the active versionable concept is this
collaboration.

List of Activities view, presented in Figure 5 part ,
displays all the previously modelled tasks and their
corresponding versions. This view allows designers to reuse
previously modelled versions by dragging and dropping
them into the drawing canvas.

 A context-based approach for modelling and querying versions of BPMN processes 73

In addition to Eclipse views, BPMN4V-Modeller
provides the Handle versions contextual menu. This menu
holds for each versionable element in collaboration diagram
(i.e., Task, Event, Process and Collaboration). For instance,
Figure 5 part shows the contextual menu ‘Handle
versions’ available for versions of collaboration, which
implements operations of the state chart (i.e., Update,
Derive and Validate).

4 Modelling context of BPMN4V private
processes and collaborations

We recommend using the version notion to support process
flexibility. Thus several versions can be defined for a
process or a collaboration, also for their tasks, sub-
processes, events, data exchanged between activities (i.e.,
ItemAwareElement and Message) and versions for the
organisational dimension of processes (i.e., Resource and
ResourceRole). Each of the defined versions has to be used
in a specific context, i.e., in a specific situation. Therefore,
it becomes crucial to consider the contextual dimension of
processes to characterise the situation in which these
versions have to be used. Indeed, this contextual dimension
is fundamental since it serves as a support for version
retrieval in BPM. This dimension helps BPM users to
retrieve/select the best version when a given situation
occurs.

We present below the first contribution of the paper,
BPMN4V-Context, which is an extension of BPMN4V
considering the contextual dimension of processes. We first
introduce a Context meta-model for context description in
BPM. Then we present BPMN4V-Context meta-model,
which results from the merging of this Context meta-model
and BPMN4V meta-model, to model contexts for (process
and collaboration) versions. For clarity reasons we separate
the description of private process context from the
description of collaboration context.

4.1 Context meta-model
The Context meta-model given in Figure 6 allows defining a
Context Container as an aggregation of a set of context
elements. A Context Element corresponds to a variable
characterising a situation, and to which a condition has to be
defined. It has a Context Nature, which can be immediate,
internal, external or environmental, according to the
taxonomy given in (Rosemann et al., 2008). This taxonomy
is used to specify the source of each context element. In
addition to this taxonomy, we also consider the type of a
Context Element, which refers to the dimension to which it
belongs to. Thus we consider behavioural Element, i.e.,
elements related to the behavioural dimension of processes
(e.g., activity execution mode, activity duration), Resource
Element, i.e., elements related to the organisational
dimension of processes (e.g., availability of a resource,
experience of a human performer), and Data Element, i.e.,
elements related to the informational dimension of

processes (e.g., data type, data structure). We finally
consider Goal Element, i.e., elements describing objectives
to be achieved (e.g., objectives of quality, cost, quantity);
such type of context elements belong to the intentional
dimension of processes (Saidani et al., 2008; Nurcan and
Edme, 2005).

Figure 6 Context meta-model

4.2 BPMN4V-context meta-model

4.2.1 BPMN4V-context meta-model for private
processes

BPMN4V-Context meta-model results from the merging of
the BPMN4V meta-model and the Context meta-model
introduced in the previous section. It defines the necessary
concepts for modelling contexts of versions of private
processes and their versionable components.

Thus in addition to process versions, contexts can be
defined for versions of tasks, sub processes, events, resource
roles, resources and itemAwareElements. Figure 7
visualises the BPMN4V-Context meta-model showing
BPMN2.0 classes in white, versionable classes in grey,
context meta-model classes in red and goal and assignment
classes in green.

The resulting meta-model links each process to a
context container aggregating a set of context elements,
corresponding to information from the different dimensions
of the considered process: goal elements from the
intentional dimension of the process, behaviour elements
from the behavioural dimension of the process, resource
elements from the organisational dimension of the process,
and data elements from the informational dimension of the
process. Thus each versionable component of a process can
be linked to one or several context elements of its
corresponding context container. In addition we define
conditions for these elements.

More precisely, goal elements specify objectives of
versionable concepts through goal conditions. A Goal
Condition is a Boolean expression defining why a version is
created. Regarding behavioural, data and resource elements,
we specify conditions, called Assignment conditions that
allow assigning versionable components. These conditions,
described as Boolean expressions, define for each process
version the situation in which versions of tasks and events,
versions of resources and resource roles and versions of data
involved in this process have to be used.

74 M.A. Chaâbane et al.

Figure 7 BPMN4V-context meta-model for private process (see online version for colours)

Figure 8 The BPMN4V-context meta-model for versions of collaborations (see online version for colours)

So, Context-BPMN4V meta-model extends BPMN4V
meta-model adding four classes used to define assignment
conditions within relationships between BPMN
components:

• Context Goal, which is related to each versionable
classe and thus allows defining the goal of each
version.

• Context of FlowNode Assignment, which is related to
the class FlowElement and thus allows defining
conditions indicating in which situation a version of
task (or a version of event) has to be used in a process
version or a sub-process version.

• Context of Resource Assignment, which is related to
the class Version of ResourceRole and thus allows
defining conditions indicating in which situation a
version of activity is performed by a version of
ResourceRole. Note that Version of ResourceRole is
related by a composition relationship to Activity that is
a super-class of Version of Task.

• Context of Data Assignment, which is related to the
class InputOutputSpecification, and thus allows
defining conditions indicating in which situation a
version of task consumes or produces versions of
ItemAwareElement. Also, InputOutputSpecification

 A context-based approach for modelling and querying versions of BPMN processes 75

is related by a composition relationship to Activity that
is a super-class of Version of Task.

4.2.2 BPMN4V- context meta-model for
collaboration

Figure 8 illustrates BPMN4V-Context meta-model for
collaboration. This meta-model supports context modelling
for versions of collaborations, processes, messages, events
and tasks. In this figure, BPMN2.0 classes are shown in
white, versionable classes in grey, context meta-model
classes in red and assignment classes in green. Note that the
collaboration goal is implicitly defined through goals of
processes that participate to this collaboration.

BPMN4V-Context meta-model links together
Collaboration and Element Container to allow defining the
set of context elements that will participate in the definition
of the context of each collaboration version. Moreover, this
meta-model supports the specification of the context of each
versionable component of the collaboration using
Assignment conditions. These conditions, described as
expressions, define for each version the situation in which it
has to be used. Therefore, BPMN4V-Context meta-model
specifies four classes for assignment conditions:

Context of Participant Assignment, which is linked to
the class Participant and thus allows defining the condition
indicating in which situation a participant, representing
some process version, is involved in a collaboration version.

Context of Message Assignment, which is linked to the
class Version of Message and thus allows defining the
condition indicating in which situation a version of message
is sent (or received) within a message flow in a
collaboration version.

Context of Send Node Assignment and Context of
Receive Node Assignment; which are each linked to the
class MessageFlow thus allowing the definition of the
condition indicating in which situation an InteractionNode
(representing a version of task or a version of event) is sent
or received within a message flow in a collaboration
version.

4.2.3 BPMN4V-context instantiation
To show how a context model of versions is defined
according to the BPMN4V-Context meta-model, we detail
in this section an instantiation of this meta-model
corresponding to the SPI case study presented in Section 3.
More precisely, we illustrate the instantiation of the SPI
Collaboration and its different components. Figure 9
partially illustrates this instantiation. It includes two
versions of SPI Collaboration (SPI.v1 and SPI.v2), two
versions of Pipeline Installation (PI) Process (PI.v1 and
PI.v2), one version of Request for Installation (RI) Process
(RI.v1), one version of Pipeline Control (PC) Process
(PC.v1) and one version of Request for Certificate (RC)
Message (RC.v1).

Figure 9 A BPMN4V-context meta-model instantiation (see online version for colours)

The contexts of SPI versions are defined using the following
context elements: sea depth, pipeline length, transported
substance, installation technique and externalised certificate.
These context elements are instantiations of Element
Container related to SPI collaboration. In addition, this
figure shows the assignment conditions of participants and
messages involved in the versions of SPI Collaboration. For

instance, the first version of Pipeline Installation (PI)
process holds for the first version of SPI Collaboration in
accordance with the context element Installation Technique
having as value sliding. Regarding the second version of
this process, it holds for the second version of SPI
Collaboration in accordance with the context element
Installation Technique having as value floating.

76 M.A. Chaâbane et al.

5 An ontology to model and enrich the context

5.1 Context-process ontology
Context-process is an upper ontology defining general
concepts for context modelling in BPM. It has mainly been
designed to address semantic interoperability issues for

inter-organisational processes in BPM. This ontology
supports types of context recommended in the taxonomy of
Rosemann, i.e., immediate, internal, external and
environmental contexts (Rosemann et al., 2008). The upper
part of Figure 10 gives an excerpt from the context-process
ontology where context elements are shown in blue.

Figure 10 The context-process ontology (see online version for colours)

First regarding the immediate context, we define context
elements relating to processes and their components, i.e.,
context elements relating to the behavioural, organisational
and informational dimensions of processes. Thus we
represent relevant context elements for processes and
activities, such as Measure, Safety, Time, Product, and
Technique. For instance, Measure includes metrics for
quality measurement (e.g., process quality measurement).
We also define relevant context elements of

1 informational resources such as Structure and Nature,
which specify respectively the structure and the nature
of the information (physical e.g., a handbook or
information e.g., online book)

2 resources such as Experience and Availability, which
specify respectively the experience and the availability
of a resource.

Moreover, the internal context covers information on the
internal environment of an organisation that impacts its
processes. This includes the corporate strategy and related
process goal. In addition, the external context captures
context elements that are beyond the control sphere of an
organisation but still reside within the business network in
which this organisation operates. It includes what is related
to external stakeholders such as Contract and Payment
method. Finally, the environmental context, as the
outermost layer, resides beyond the business network in
which the organisation is embedded but nevertheless poses
a contingency effect on its processes. It includes factors
such as Weather condition (e.g., storm season, rain season)
and Economical environment.

Context-process ontology is abstract; it does not depend
on any domain. To be used, it has to be specialised
according to the considered domain. For the Subsea Pipeline
domain, which is the domain of the case study presented in
Section 3, we have conducted a set of interviews with
domain experts to extend the Context-Process ontology with
context elements relevant from this domain. The result is
the Subsea Pipeline domain ontology presented with yellow
colour in Figure 10. The added context elements are defined
as a specialisation of abstract context elements of the
Context-Process ontology.

In this domain ontology, we provide additional details to
the context elements of the upper ontology using
specialisation, synonymy and additional relations that can
be used for ontological reasoning (e.g., contains relation).
For example, the Measure context element is specialised in
pipeline length for measuring the length of the pipeline, and
sea depth for measuring the depth of the sea in which the
pipeline is laid. In addition, we have also defined synonymy
for some context elements. For instance, pipeline material
and pipeline type are two synonyms for qualifying the
material used for the pipeline.

5.2 Enhancing context of versions
BPMN4V-Context meta-model supports specifications of
contexts of versions through context elements defined by
process designers. However, the jargon used in the
definition of these context elements may differ from one
group of process users to another and/or from one company
to another. This diversity of jargon may cause problems,

 A context-based approach for modelling and querying versions of BPMN processes 77

especially when the designer defines the context of a
particular version using a specific vocabulary and a user
tries to retrieve this version using another vocabulary. For
instance, if the process designer defines the context of the
process version VP1 using the context element ‘deep’, and a
user is looking for VP1’s process versions using the context
element ‘deepness’ (which is a synonym of deep), it is not
possible to retrieve these versions. Thus we have to ensure
semantic interoperability between process designers and
process users to make version retrieval more effective.

To ensure this semantic interoperability, we propose an
enhancing step based on inference mechanisms and
allowing the deduction of new contextual information. The
idea is to enrich the specific domain context ontology,
related to the BPMN4V-Context meta-model, by adding
new context elements for versions. This step takes as input
the considered domain context ontology, and more precisely
the relationships that may exist between the ontology
concepts (e.g., semantic relationship), to infer new context
elements for versions for which a context has already been
modelled as instance of BPMN4V-Context meta-model.

We distinguish two types of context enhancing: a
context enhancing after an insertion of new instantiation and
a context enhancing after an update of Domain Context
ontology. We detail these two types of context enhancing
giving algorithms supporting them.

5.2.1 Context enhancing due to insertion of new
instantiation

The first type of context enhancing is triggered when the
designer stores a new instance of BPMN4V-Context Meta-
model in the Versions and Context repository (a repository
that contains all previously modelled versions). First we
have to interact with the Domain Context ontology to
retrieve synonyms of each context element used in this new
instantiation. Then we enhance the instantiation by adding
new assignment conditions that are defined using the
retrieved synonyms. Figure 11 illustrates the first type of
context enhancing.

Figure 11 Context enhancing after the insertion of a new
instantiation

The algorithm firstTypeofEnhanceInstantiation, presented
below, illustrates the first type of context enhancing. This
algorithm refers to the Domain Context ontology to enhance
the instantiation of a version v having the ElementContainer
e. The idea is (1) to retrieve synonyms of each Context

Element used in the instantiation of v in the BPMN4V-
Context meta-model and (2) update this instantiation by
adding new assignment conditions based on the retrieved
synonyms. This algorithm uses the following functions:

• getSynonyms(e): returns the list of synonyms of the
concept e.

• getAssignmentCondition(e): returns the expression
representing the assigment condition related to the
Context Element e.

• setAssignmentCondition(ce, ex): affects the expression
ex to the Context Element ce.

• getGoalCondition(e): returns the Goal Condition of the
Context Element e.

• setGoalCondition(ce, ex): affects the expression ex to
the Goal Condition ce.

More precisely, the firstTypeofEnhanceInstantiation
algorithm selects for each Context Element elt contained in
the ElementContainer e the list of its synonyms stored in the
Domain Context ontology. Then it inserts a new instance of
the version v accorrding to each retrived synonym.
firstTypeofEnhanceInstantiation (v: Version,

e: ElementContainer, onto:
DomainContextOntology)

ex : Expression
Begin
 For each elt in e
 List L=onto.getSynonyms(elt) /*select all

synonyms of the context element
 elt from

the ontology*/
 For each l in L
 ex=v.getAssignmentCondition(elt)

/* select the defined condition of
 the context
element elt for the version v */

 v.setAssignmentCondition(l,ex) /*
affect the assignment condition ex

 ex=v.getGoalCondition(elt) /*
select the defined goal condition of

 the
context element elt for the version v */

 v.setGoalCondition(l,ex)) /*
affect the goal condition ex to the

version v using the context element l */

 End for
 End for
End

5.2.2 Context enhancing due to an update of domain
context ontology

We also can enhance context of versions when the Domain
Context ontology is updated with a new concept C’ having a
semantic relation with an existing concept C (for instance
C’ is a synonym of C).Thus we have to interact with
Versions and Context repository to select versions whose
context is defined using C concept. Then we perform the

78 M.A. Chaâbane et al.

instantiations of the selected versions according to the new
concept C’. Figure 12 illustrates the second type of context
enhancing.

Figure 12 Context enhancing following an update of domain
context ontology

Sy
no

ny
m

The algorithm implementing this type of enhancing is
triggered when a new concept related to an existing concept
by a relationship (e.g., synonymy) has to be added to the
domain context ontology onto. This algorithm uses the
following functions:

• addNewConcept(c): adds the new concept c to onto.

• addRelationship (nc, ec, r): adds the relationship r
between the new concept nc and the existing concept
ec.

• getVersions(ec): returns the list of versions whose
context is defined using the contextual element ec.

More precisely, the UpdateOntology algorithm checks if the
concept to be added does not exist in the Domain Context
ontology. Then it selects all versions that are instantiated
using the existing concept and enhances the context of these
versions using the new concept.
UpdateOntology(existingC: Concept,newC:

Concept,R: Relationship,onto:
Relationship)

Begin
 if (newC not in onto) then
 onto.addNewConcept(newC) --add newC to

the ontologie onto
 onto.addRelationship(newC, existingC, R)

/* add a new relationship between
 the added new

concept and the existing concept*/

 List<Version> lv=getVersions(existingC)
/* select all versions which

 context is
defined using the existing concept */

 For each v in lv
 secondTypeofEnhanceInstantiation(v,

existingC, newC) /* define a new

instantiation of v using the new concept
*/

 end for
 end if
End

The secondTypeofEnhanceInstantiation algorithm, used in
the UpdateOntology algorithm, aims at inserting a new

instantiation of the version v defined with the new concept
newC in the Versions and Context repository. The idea
is to find out the assignment conditions previously defined
using the existing concept existingC and then to define
new assignment conditions using newC. In addition
to the functions getAssignmentCondition(e),
setAssignmentCondition(ce, ex), setGoalCondition() and
getGoalCondition() previously presented, this algorithm
uses the following functions:

• convertToContextElement(c): converts the ontology
concept c to a context element of BPMN4V-Context
meta-model.

• updateElementContainer(v, e): inserts the context
element e in the ElementContainer of the version v.

secondTypeofEnhanceInstantiation(v:
Version,newC: Concept,existingC: Concept)

e1, e2 :ContextElement
ex : Expression
Begin
 e1=convertToContextElement(existingC)
 e2=convertToContextElement(newC)
 updateElementContainer(v,e2) /*adds the

context element e2 to the element

container of the version v */
 ex=v.getAssignmentCondition(e1)
 v.setAssignmentCondition(e2,ex)
 ex=v.getGoalCondition(e1)
 v.setGoalCondition(e2,ex)et là
End

6 Context based version querying
This section presents the BPMN4V Query Language
(BPMN4VQL) we propose for retrieving versions based on
context information. First it details the grammar of
BPMN4VQL. Then it introduces three different matching
types for retrieving versions.

6.1 The BPMN4V query language
We present in the Appendix the BPMN4VQL grammar
specified using a context-free grammar expressed using
extended Backus-Naur Form. BPMN4VQL is inspired from
PQL (Ter Hofstede et al., 2013). PQL and BPMN4VQL
serve the same overarching purpose, which is information
retrieval. PQL is intended to select process models based on
their functional dimension, i.e., tasks that compose these
models. For instance, it can fetch the list of processes
searching for a particular task. As for BPMN4VQL, it
allows the selection of versions based on contextual
information. Thus in a BPMN4VQL query the user has to
specify a particular situation of context through a set of
propositions (or conditions) and the query returns the
versions that verify these conditions.

A BPMN4VQL query is composed of three main parts:
the SELECT part, the WHERE and the MATCHING part.
We give bellow an example of BPMN4VQL query allowing

 A context-based approach for modelling and querying versions of BPMN processes 79

the selection of versions of processes in accordance with
BPMN4VQL grammar.

Select Version_of_Process(*)

Where (Sea_depth subsume 50 Medium;

Pipeline_length In [10;15] High;

Installation_technique equals “floating” Low;

Transported_substance equals “gas” High;

CONTAINS Version_of_Task Control
WHEN (controlType equals “deep control”))

Matching Subset ;

The SELECT part specifies the name of the versionable
concept to return (e.g., Version_of_Process,
Version_of_Task…) and the name of the concept to return
(e.g., SAROST process, Control task…). The user can
retrieve the versions, whatever the concept name, using the
universal (*).

The WHERE part specifies the predicate defining the
selection conditions. This predicate can be one proposition,
a set of propositions separated with semicolon (;), a
component proposition, a set of component propositions or
a logical test verifying if a proposition is evaluated to true or
false. The definition of a proposition or a component
proposition is specially based on context elements. A
proposition can be a setPredicate, which is a Boolean
expression that has to be evaluated (e.g., WHERE depth
Subsume 50 or WHERE depth In [10;50]). A setPredicate is
composed of the following three parts: contextElement,
situation and pertinenceDegree. The contextElement part is
a string that represents the context element name. The
situation part is composed of an operator that can be
Equal, Subsume or In, and a value which can be a string,
an integer or a number. The pertinenceDegree part
indicates if the condition defined in the setpredicate part
has to be considered with a high, medium or low pertinence
degree. This latter serves to sort the query result (i.e.,
the selected versions) from the most to the less relevant.
In addition to setpredicate, a proposition can also be
the negation of another proposition (e.g., WHERE NOT
(depth equal 20)). Regarding component proposition, it
allows the definition of condition related to version
components. It is composed of the following parts:
CONTAINS versionableConceptName ConceptName
WHEN setPredicate. For example, the following component
proposition CONTAINS Version_of_Resource Controle_
Agent WHEN (availability equals True) allows the
definition of a condition related to availability of the version
of Resource Control_Agent.

Finally, the last part of a BPMN4VQL query specifies
the matching type that can be Exact, Subset or Superset. An
Exact matching type returns versions for which context is
defined with exactly the same context elements and
conditions of the where part of the query. With a Subset
matching type the returned versions are those for which the
query context (i.e., conditions of the where part) represents

a subset of the version context. The Superset matching type
allows the selection of appropriate versions; for each of
these versions the set of query context elements and
conditions must be included in the sets of the version
context elements and conditions. In the next subsections we
detail these matching types and introduce algorithms
implementing them.

6.2 Matching types
In this section we detail the Exact, Subset and Superset
matching types, mainly providing the recommended
algorithms for each type.

6.2.1 Exact matching type
Exact matching allows the selection of all versions of a
versionable concept having the same context than the one
specified in the BPMN4V-QL query. More precisely, exact
matching on a query q is defined as follows: ExactMatching ≡ {v ∈ {versions} | contextv=contextq } contextv=contextq =>i) ∀ccv=(ContextElement,Condition) ∈ Contextv Then ∃ccq=(ContextElement, Condition) ∈ Contextq | ccv.ContextElement=ccq.ContextElement ^ Verify (ccq.condition,ccv.condition) and ii) !∃ ccq(ContextElement, Condition) ∈ Contextq | ccq.ContextElement ∉ {Contextv.ContextElement}
For instance, let us consider a query q that selects versions
of a given process that correspond to the situation defined
using the following context {(A, c1), (B, c2), (C, c3)}. A, B
and C are context elements and c1, c2 and c3 are their
corresponding conditions. An exact matching on q must
return the versions of the considered process defined by
exactly the same context elements A, B and C for which c1,
c2, and c3 conditions are verified. Note that we do not
consider the pertinence degree in exact matching type since
we suppose that all context elements have the same
importance.

Our recommended algorithm, namely ExactMatching,
implementing the Exact matching type, uses the following
set of functions supporting the comparison of both versions
and query context elements and conditions.

• getAllVersions(vc): returns all the versions of the
versionable concept vc.

• getContext(): returns the context of a particuler version,
represented as a set of couples context element (e.g.,
Sea_Depth) and condition (e.g., <50).

• getContextElementNumber(): returns the number of
context elements used in the definition of a particular
context.

• getContextElement(): retunrns the context element used
in the definition of the context of a version or a query.

80 M.A. Chaâbane et al.

• getCondition(): returns the condition associated to a
context element used in the definition of the context of
a version (e.g., <50).

• getSituation(): returns the situation defined in a query
and associated to a context element (e.g., subsume 20).

• verify(condition): returns true if a situation defined in
the query verify the condition specified in the context
of a version, otherwise returns false. For example,
verify returns true if the situation is ‘subsume 20’ and
the condition is “<50”.

• gotoNextVersion(): points to the next version.

• gotoNextQueryContextElement(): points to the next
query context element.

• add(v): adds the version v to the selected versions.
ExactMatching(queryContext[]:contextConditio

ns,c:versionableConcept):Versions[]
Begin
Local candidateVersions[],

selectedVersions [] :Version
 versionContext [] :contextConditions
 find :Boolean
 candidateVersions = getAllVersions(c)
 For each v in candidateVersions
 /*select the context of the candidate

version v which is composed of

context elements and conditions*/
 versionContext = v.getContext()
 /* check if the query and the version

have the same number of context

elements*/
 if

(versionContext.getContextElementNumber()
!= queryContext.getContextElementNumber()
)

 gotoNextVersion()
 end if
 /* compare ContextElements and conditions

of v and the query*/
 For each cq in queryContext
 find=false
 For each vc in versionContext
 if (cq.getContextElement()=

vc.getContextElement() and

 cq.getSituation().verify(vc.getCondi
tion())

 find=true

 gotoNextQueryContextElement()
 end if
 End For
 if (not find)
 gotoNextVersion()
 end if
 end For
 if (find)
 selectedVersions.add(v)
 end if
 End For
 Return selectedVersions
End

6.2.2 Subset matching type
Subset matching allows the selection of all versions
of a versionable concept whose context is lower than
the one specified in the BPMN4V-QL query. More
precisely, subset matching on a query q is defined as
follows:

SubsetMatching≡ {v ∈ {versions} | contextv≤contextq } contextv≤contextq => i) ∃ccv=(ContextElement, Condition) ∈ Contextv ^ ∃ ccq=(ContextElement, Condition) ∈ Contextq | ccv.ContextElement=ccq.ContextElement ^ Verify (ccq.condition,ccv.condition) and ii) !∃ ccv(ContextElement, Condition) ∈ Contextv | ccv.ContextElement ∉ {Contextq.ContextElement}
For instance, let us consider a query q that selects versions
of a given process that correspond to the situation defined
using the following context {(A, c1), (B, c2), (C, c3)}. A, B
and C are context elements and c1, c2 and c3 are their
corresponding conditions. A subset matching on q must
return the versions of the considered process whose context
is defined using the following sets of context elements and
conditions: {(A, c1)}, {(B, c2)}, {(C, c3)}, {(A, c1),
(B, c2)}, {(A, c1), (C, c3)}, {(B, c2), (C, c3)}and {(A, c1),
(B, c2), (C, c3)}.

For this matching type we have to calculate the weight
of the selected version depending on pertinence degrees
defined in the query. This weight allows sorting the selected
versions from the most relevant to the less relevant. We give
below the SubsetMatching algorithm implementing the
Subset matching type using the following functions, in
addition to the ones previously defined:

• gotoNextVersionContextElement(): breaks loop and
points to the next version context element.

• getRelevance(): returns the relevance degree of a
particular context element used in the query.
Particularly, it returns 1 if the relevance degree is equal
to ‘High’, 0.5 if it is equal to ‘Medium’ and 0 if the
relevance degree is equal to ‘Low’.

• add(v, weight): adds the version v to the selected
versions. This version will be inserted in the result
according to its weight.

subsetMatching
(queryContext[]:contextConditions,c:versi
onableConcept):Versions[]

Begin
Local candidateVersions[],

selectedVersions [] :Version
 versionContext [] :contextConditions
 find :Boolean
 weight,n1,n2 :Number
 candidateVersions=getAllVersions(c)
 For each v in candidateVersions

 A context-based approach for modelling and querying versions of BPMN processes 81

 /*select the context of the candidate
version v which is composed of

context elements and conditions*/

 versionContext =v.getContext()
 n1=

versionContext.getContextElementNumber()
 n2=

queryContext.getContextElementNumber()
 /*check if v has more context elements

then the query*/
 if (n1> n2)
 gotoNextVersion()
 end if

/* compare ContextElements and conditions of

the candidate version and the

query*/
 weight=0
 For each vc in versionContext
 find=false
 For each cq in queryContext
 if (cq.getContextElement()=

vc.getContextElement() and

 cq.getSituation().verify(vc.getCondi
tion())

 find=true
 weight=

weight+cq.getRelevance()

gotoNextVersionContextElement()
 end if
 end For
 if (not find)
 gotoNextVersion()
 end if
 End For
 if (find)
 selectedVersions.add(v, weight)
 end if
 end For
 Return selectedVersions
End

6.2.3 Superset matching algorithm
Superset matching allows the selection of all versions
of a versionable concept whose context is greater than
the one specified in the BPMN4V-QL query. More
precisely, superset matching on a query q is defined as
follows:

SupersetMatching≡ {v ∈ {versions} | contextv≥contextq } contextv≥contextq =>∀ ccq=(ContextElement, Condition) ∈ Contextq then ∃ccv=(ContextElement, Condition) ∈ Contextv | ccv.ContextElement=ccq.ContextElement ^ Verify (ccq.condition,ccv.condition)
For instance, let us consider a query q that selects versions
of a given process that correspond to the situation defined
using the following context {(A, c1), (B, c2), (C, c3)}. A, B

and C are context elements and c1, c2 and c3 are their
corresponding conditions.

A superset matching on q must return the versions of the
considered process whose context is defined using sets that
contains more than A, B, C context elements and their
conditions. For example versions with the following sets of
context elements and conditions will be returned: {(A, c1),
(B, c2), (C, c3), (E, c4)} and {(A, c1), (B, c2), (C, c3),
(E, c4), (F, c5)}.

As in the Subset matching type, the Superset matching
type calculates the weight of the selected versions to
produce a sorted result of the selected versions. We give
below the SupersetMatching algorithm implementing the
Superset matching type.
supersetMatching

(queryContext[]:contextConditions,c:versi
onableConcept):Versions[]

Begin
Local condidateVersions[],

selectedVersions [] :Version
 versionContext [] :ContextElement
 find :Boolean
 weight, n1,n2 :Number

 condidateVersions=getAllVersions(c)
 For each v in candidateVersions

 /*select the context of the

candidate version v which is composed of

context elements and conditions*/

versionContextElements =v.getContextEleme
nts()

 versionConditions =v.getConditions()
 n1=

versionContext.getContextElementNumber()
 n2=

queryContext.getContextElementNumber()
 /*check if the query has more

context elements then v*/
 if (n1<n2)
 gotoNextVersion()
 end if

 /*compare ContextElements and

conditions of v and the query*/
 weight=0
 For each cq in queryContext
 find=false
 For each vc in versionContext
 if (cq.getContextElement()=

vc.getContextElement() and

cq.getSituation().verify(vc.getCondition(
))

 find=true
 weight=

weight+cq.getRelevance()

gotoNextQueryContextElement()
 end if
 End For
 if (not find)
 gotoNextVersion();
 end if

82 M.A. Chaâbane et al.

 End For
 if (find)
 selectedVersions.add(v)
 end if
 End For
 Return selectedVersions
End

7 BPMN4V-Modeller for context modelling and
querying

In this section, we introduce the extensions we
have implemented to the BPMN4V-Modeller for
considering versions context modelling and querying.
We remind that BPMN4V-Modeller is a dedicated
tool for modelling and handling versions. We detail
in the following the new functions of this editor for
modelling context of versions and querying versions based
on their context.

7.1 Context modelling using BPMN4V-Modeller
Regarding context modelling, we recommend a new Eclipse
property tab, named “Context Information”, defined for
each versionable concept. Figure 13 gives a screenshot of
the BPMN4V-Modeller that illustrates the context
information property table related to the second version of
the SPI collaboration (VC1-2). The left part of this table
visualises the context of the selected version. It shows the
list of context elements and conditions that define the
context of this version. Particularly, this list contains
the name, value, nature (i.e., immediate, internal, external
or environmental context) and type (i.e., Goal, Behavioural,
Data or Resource) of each context element used
in the definition of the context of the selected version.

Buttons above allow manipulating context elements by
adding, deleting, moving or editing them. In the right part of
this view, the user can either introduce a new context
element and condition by defining its name, value, type and
nature or edit an existing one.

Once the context is defined in the Context Information
tab, the user can save it using the save button. Thus this
context is inserted in the Versions and Context repository
and the first type of context enhancing is applied (cf.,
Section V.1.2).

7.2 Context querying using BPMN4V-Modeller
Context querying BPMN4V-Modeller provides two
different Graphical User Interfaces (GUI) for specifying and
executing BPMN4VQL queries that are available through
the Query context menu. The first one, shown in Figure14,
is intended to be used by practitioners that are not necessary
computer scientists. It allows the definition of non-complex
queries with a limited number of propositions. In this GUI
the user has to

1 specify the versionable concept to retrieve

2 choose the corresponding matching type

3 provide propositions defining the current situation to
select.

When clicking the Execute button, a BPMN4VQL query is
generated and executed. As indicated before, for the
matching types Subset and Superset, the result of the query
is sorted by relevance degree, as shown in the result part of
the GUI of Figure 14. The user can also visualise the
selected versions by clicking on the Visualise version
button.

Figure 13 Modelling context with BPMN4V-Modeller (see online version for colours)

The second type of GUI illustrated in Figure 15 allows
the definition and the execution of queries with respect to
BPMN4VQL grammar. The user has first to introduce his

query in the Query part and then click the Execute Query
button. Then, a parsing step is performed to check if the
query is syntactically correct, and if so, it is executed and

 A context-based approach for modelling and querying versions of BPMN processes 83

the result is shown in the Result part. Again the query result
is sorted according to the relevance degree of the used
context elements when the specified matching type is

Subset or Superset. Note that the user can see a graphical
representation of a resulting version by selecting the version
and clicking on visualise button.

Figure 14 GUI for querying versions (see online version for colours)

Figure 15 GUI for specifying and executing BPMN4VQL queries (see online version for colours)

8 Conclusion
This paper has addressed the modelling and the querying of
context of versions of BPMN processes. Actually, in a
multi-version environment, in which a large number of
versions can co-exist, BPM practitioners have to face the
problem of retrieving, among different versions, the most
appropriate one to a given situation. In this paper, we claim
that the context notion is very helpful for version(s) retrieval
as it helps describe the situation in which versions have to
be used. In fact, the problem of retrieving version may arise

both at run-time, if users have to choose the versions of the
considered process or collaboration to be executed, and at
design-time, if BPM designers have to select a particular
element version (e.g., a version of task) to participate in the
modelling of another version (e.g., version of process).

To address this issue, we recommend a context based
approach that provides support for (1) modelling of both
versions of BPMN private processes and BPMN
collaborations and their corresponding contexts, and (2)
version context-based querying. Regarding context

84 M.A. Chaâbane et al.

modelling, this paper recommends on the one hand (1) the
BPMN4V-Context meta-model, which is an extension of
the BPMN meta model considering versions of private
processes and collaborations and their contexts, and (2) the
Context-Process ontology, which is an upper ontology
introducing abstract concepts for context modelling in
BPM. On the other hand it recommends an enhancing step
that aims to enrich BPMN4V-Context meta-model
instantiation using Context-Process ontology. Regarding
context querying, this paper proposes BPMN4VQL, a
dedicated language for querying versions based on their
context. Finally, the paper reports on the implementation of
both the meta-model and the language in the BPMN4V-
Modeller, which is an extension of the already existing,
eclipse plug-in BPMN-Modeller. BPMN4V-Modeller
allows modelling and handling versions and their context
according to BPMN4V-Context meta-model and querying
versions using BPMN4V-QL.

The key strengths of our contribution are the following.
First, the recommended solution is based on a standard, the
BPMN standard, which is considered as the de facto
standard for process modelling, and thus should be more
easily used. Second, versions querying is described using
BPMN4VQL language that facilitates finding out the
appropriate version. This language allows BPM users to
find versions based on their context instead of their
structure. Thus versions have high chance to be retrieved
thanks to the situation defined by the user based on
contextual information. Finally, BPMN4V-Modeller proves
the feasibility of the proposed solutions since it implements
the recommended BPMN2.0 extensions and provides
GUI for querying versions. This editor facilitates modelling
and handling of versions of processes and collaborations
and allows to interpret BPMN4V-QL expressions
in order to efficiently retrieve versions based on their
context.

Regarding future works, we have planned to revisit our
versioning model to give more semantic to the derivation
relationship, represented as a derivation hierarchy, which
links the versions together. In our model, the derivation
relationship, and thus the derivation hierarchy, has no
semantic. However, when deriving (i.e., creating) a version
from another one, it is possible, considering the context of
the derived version, to indicate whether this version
is an evolution or an alternative (i.e., a variant) of the
version from which it is derived. By doing this, we will
have fully exploited the notion of context for versioning in
BPM.

References
Aalst, W., Weske, M. and Grünbaur, G. (2005) ‘Case handling: a

new paradigm for business process support’, Data Knowledge
Engineering, Vol. 53, No. 2, pp.129–162.

Aenies (2014) https://www.intellior.ag/wp-content/uploads/Aeneis
-Folder_EN.pdf

Alotaibi, Y. and Liu, F. (2017) ‘Survey of business process
management: challenges and solutions’, International
Journal of Enterprise Information Systems, Vol. 11, No. 8,
pp.1119–1153.

Awad, A., Polyvyanyy, A. and Weske, M. (2008) ‘Semantic
querying of business process models’, Proceedings of the
12th International Conference on Enterprise Distributed
Object Computing, München, Germany, September 2014,
pp.85–94.

Beeri, C., Eyal, A., Kamenkovich, S. and Milo, T. (2008)
‘Querying business processes with BP-QL’, Journal of
Information Systems, Vol. 33, No. 6, pp.477–507.

Ben Said, I., Chaâbane, M.A., Bouaziz, R. and Andonoff, E.
(2016) ‘A version-based approach to address flexibility of
BPMN collaborations and choreographies’, Proceedings of
the 16th International Conference on e-Business, Lisbon,
Portugal, pp.31–42.

Ben Said, I., Chaâbane, M.A., Bouaziz, R. and Andonoff, E.
(2017) ‘BPMN4V for modelling and handling versions of
BPMN collaborations and choreographies’, Communications
in Computer and Information Science, Vol. 764, pp.1–25.

Ben Said, I., Chaâbane, M.A., Andonoff, E. and Bouaziz, R.
(2018) ‘BPMN4VC-modeller: easy-handling of versions of
collaborative processes using adaptation patterns’,
International Journal of Information Systems and Change
Management, Vol. 10, No. 2, pp.140–189.

Ben Said, I., Chaabane, M.A., Andonoff, E. and Bouaziz, R.
(2014) ‘Extending BPMN2.0 meta-models for process
version modelling’, International Conference on Enterprise
Information Systems, April, Lisbon, Portugal, pp.384–393.

Ben Said, I., Chaabane, M.A., Bouaziz, R. and Andonoff, E.
(2015) ‘Flexibility of collaborative processes using versions
and adaptation patterns’, International Conference on
Research Challenges in Information Science (RCIS), May,
Greece, pp.400–411.

Brocke, J., Zelt, S. and Schmiedel, T. (2016) ‘On the role of
context in business process management’, International
Journal of Information Management, Vol. 36, No. 3,
pp.486–495.

Chaâbane, M.A., Andonoff, E., Bouaziz, R. and Bouzguenda, L.
(2009) ‘Versions to address business process flexibility
issue’, International Conference on Advances in Databases
and Information Systems, September, Riga, Latvia, pp.2–14.

Dey, A.K., Abowd, G.D. and Salber, D. (2001) ‘A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications’, Journal of Human Computer
Interaction, Vol. 16, No. 2, pp.97–166.

Dumas, M., van der Aalst, W. and ter Hofstede, A. (2005)
Process-Aware Information Systems: Bridging People and
Software Through Process Technology, Wiley & Sons,
Hoboken, New Jersey.

Ekanayake, C., La Rosa, M., Ter Hofstede, A.H. and Fauvet, M.C.
(2011) ‘Fragment-based version management for repositories
of business process models’, International Conferences OTM
Confederated On the Move to Meaningful Internet Systems
Hersonissos, Crete, Greece, pp.20–37.

Ellouze, F., Chaabane, M.A., Bouaziz, R. and Andonoff, E. (2016)
‘Addressing inter-organisational process flexibility using
versions: the VP.2M approach’, International Conference on
Research Challenges in Information Science, June, Grenoble,
France, pp.1–12.

 A context-based approach for modelling and querying versions of BPMN processes 85

Ellouze, F., Chaâbane, M.A., Andonoff, E. and Bouaziz, R. (2017)
‘Onto-vP.2M: a new approach to model and manage
collaborative process versions using contexts and ontologies’,
International Journal of e-Collaboration, Vol. 13, No. 3,
pp.39–62.

Hallerbach, A., Bauer, T. and Reichert, M. (2010) ‘Capturing
variability in business process models: the provop approach’,
Journal of Software Maintenance and Evolution: Research
and Practice, Vol. 22, Nos. 6–7, pp.519–546.

Hoang, H., Jung, J. and Tran, C. (2014) ‘Ontology-based
approaches for cross-enterprise collaboration: a literature
review on semantic business process management’,
International Journal of Enterprise Information Systems,
Vol. 8, No. 6, pp.648–664.

Jin, T., Wang, J., La Rosa, M., Ter Hofstede, A. and Wen, L.
(2013) ‘Efficient querying of large process model
repositories’, Journal of Computers in Industry, Vol. 64,
No. 1, pp.41–49.

Kumar, A. and Yao, W. (2012) ‘Design and management of
flexible process variants using templates and rules’, Journal
of Computers in Industry, Vol. 63, No. 2, pp.112–130.

La Rosa, M. and Dumas, M. (2008) Configurable Process Models:
How To Adopt Standard Practices In Your How Way?.
BPTrends Newsletter.

Lassoued, Y., Bouzguenda, L. and Mahmoud, T. (2016) ‘Context-
aware business process versions management’, International
Journal of e-Collaboration, Vol. 12, No. 3, pp.7–33.

Lu, R., Sadiq, S. and Governatori, G. (2009) ‘On managing
business processes variants’, International Journal of Data
and Knowledge Engineering, Vol. 68, No. 7, pp.642–664.

Natschläger, C., Geist, V., Illibauer, C. and Hutter, R. (2016)
‘Modelling business process variants using graph
transformation rules’, International Conference on Model-
Driven Engineering and Software Development, February,
Rome, Italy, pp.65–74.

Nie, H., Lu, X. and Duan, H. (2014) ‘Supporting BPMN
choreography with system integration artefacts for enterprise
process collaboration’, in International Journal of Enterprise
Information Systems, Vol. 8, No. 4, pp.512–529.

Nurcan, S. (2008) ‘A survey on the flexibility requirements related
to business process and modelling artifacts’, International
Conference on System Sciences, Waikoloa, Big Island
Hawaii, USA, pp.378–387.

Nurcan, S. and Edme, M.H. (2005) ‘Intention driven modelling for
flexible workflow applications’, International Journal on
Software Process: Improvement and Practice, Vol. 10, No. 4,
pp.363–377.

OMG (2014) Business Process Model and Notation (BPMN)
Version 2.0, http://www.omg.org/spec/BPMN/2.0

Polyvyanyy, A., La Rosa, M. and Ter Hofstede, A.H. (2014)
‘Indexing and efficient instance-based retrieval of process
models using untanglings’, International Conference on
Advanced Information Systems Engineering, Thessaloniki,
Greece, pp.439–456.

Polyvyanyy, A., Ouyang, C., Barros, A. and van der Aalst, W.M.
(2017) ‘Process querying: enabling business intelligence
through query-based process analytics’, Journal of Decision
Support Systems, Vol. 100, pp.41–56.

Reichert, M. and weber, B. (2012) Enabling Flexibility in Process-
Aware Information Systems: Challenges, Methods,
Technologies, Springer, Heidelberg, New York Dordrecht
London.

Reijers, H. (2006) ‘Workflow flexibility: the Forlon promise’,
International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Manchester,
UK, pp.271–272.

Rolland, C. (2010) ‘Fitting system functionality to business needs:
alignment issues and challenges’, International Conference
on Software Methodologies, Tools and Techniques,
Yokohama City, Japan, pp.137–147.

Rosemann, M. and Recker, J. (2006) ‘Context-aware process
design exploring the extrinsic drivers for process
flexibility’, The International Conference on Business
Process Modeling, Development and Support, Luxembourg,
pp.149–158.

Rosemann, M., Recker, J. and Flender, C. (2008)
‘Contextualisation of business processes’, International
Journal of Business Process Integration and Management,
Vol. 3, No. 1, pp.47–60.

Saidani, O. and Nurcan, S. (2009) ‘Context-awareness for
adequate business process modelling’, International
Conference on Research Challenges in Information Science,
Fes, Morocco, pp.177–186.

Saidani, O., Rolland, C. and Nurcan, S. (2015) ‘Towards a generic
context model for BPM’, Hawaii Conference on System
Sciences, Kauai, Hawaii, 4120–4129.

Santos, E., Pimentel, J., Castro, J., Sánchez, J. and Pastor, O.
(2010) ‘Configuring the variability of business process
models using non-functional requirements’, Conference on
Business Process Modelling, Development and Support,
Hammamet, Tunisia, pp.274–286.

Scheer (2015) Scheer BPaaS, Retrieved from https://aws-
institut.de/wp-content/uploads/2016/02/AWScheer_
Whitepaper5_Industrie-4_0.pdf

Sheng, Q.Z. and Benatallah, B. (2005) ‘ContextUML: a UML-
based modelling language for model-driven development of
context-aware web services’, International Conference on
Mobile Business, Sydney, Australia, pp.206–212.

Signavio (2015) https://docs.signavio.com/userguide/editor/de/
index.html

Strang, T. and Linnhoff-Popien, C. (2004) ‘A context modelling
survey’, Workshop on Advanced Context Modelling,
Reasoning and Management, Nottingham, UK.

Ter Hofstede, A.H., Chun, O., La Rosa, M., Song, L., Wang, J.
and Polyvyanyy, A. (2013) ‘APQL: a process-model
query language’, Asia Pacific Conference on Business
Process Management (AP-BPM), Beijing, China, pp.23–38.

van der Aalst, W. (2013) ‘Business process management: a
comprehensive survey’, Journal on Software Engineering,
doi: 10.1155/2013/507984, pp.1–37.

Wang, J., Jin, T., Wong, R.K. and Wen, L. (2014) ‘Querying
business process model repositories’, Journal of World Wide
Web, Vol. 17, No. 3, pp.427–454.

Wang, X.H., Zhang, D.Q., Gu, T. and Pung, H.K. (2004)
‘Ontology based context modelling and reasoning using owl’,
Workshop on Pervasive Computing and Communications,
Orlando, FL, USA, pp.18–22.

Weske, M. (2007) ‘Business Process Management: Concepts,
Languages, Architectures, Springer, Potsdam, Germany.

Zhao, X. and Liu, C. (2013) ‘Version management for business
process schema evolution’, International Journal of
Information Systems, Vol. 38, No. 8, pp.1046–1069.

86 M.A. Chaâbane et al.

Appendix: BPMN4V-QL Grammar
BPMN4VQuery : selectQuery ;
selectQuery :SELECT versionableConcept
 WHERE predicate
 MATCHING matchingType EOS;
VersionableConcept :
VersionableConceptName LP UNIVERSE|
ConceptName RP;
versionableConceptName : Version_of_Task’
 |‘version_Of_Process’
 |‘Version_of_Collaboration’
 |‘Version_of_Event’
 |‘Version_of_Resource’
 |‘Version_of_ResourceRole’
 |‘Version_of_ItemAwareElement’
 |‘Version_of_Message’;
matchingType :’Exact’|’Subset’|’Superset’;
predicate :proposition|
 setOfPropositions|
 componentProposition|
 setOfComponentPropositions
 logicalTest;
logicalTest :isTrue||isFalse;
setOfPropositions : (proposition) EOS (proposition)
(EOS proposition)*
proposition : setPredicate | negation;
negation : NOT proposition;
setPredicate : contextElement situation
(pertinenceDegree)?
situation: Equals|Subsume|In;
Equals : ‘equals’ Value
Subsume :’subsume’ Value
In : ‘in’ LSB Value EOS Value RSB
Value :STRING|INT|NUMBER;
pertinenceDegree : ‘High’|’Medium’|’Low’;
componentProposition : CONTAINS
versionableConceptName ConceptName WHEN
setPredicate
setOfComponentPropositions :
(componentProposition) EOS (componentProposition)
(EOS componentProposition)*

isTrue : proposition IS TRUE ;
isFalse : proposition IS FALSE;
contextElement :STRING;
ConceptName :STRING;
UNIVERSAL : '*' ;
STRING : DQ (‘a’..’z’|’_’) (‘a’..’z’|0..9|’_’)* DQ;
INT : (0..9)*;
NUMBER : (0..9)*.(0..9)*;
SELECT : 'SELECT' ;
WHERE : 'WHERE' ;
MATCHING : ‘MATCHING’ ;
CONTAINS: ‘CONTAINS’ ;
WHEN: ‘WHEN’ ;
TRUE :’TRUE’;
FALSE :’FALSE’;
IS :’IS’;
EOS :’;’ ;
LP :’(‘
RP :’)’;
DQ :’”’;
LSB : '[' ;
RSB : ']' ;

