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Abstract

We propose a framework for learning robust Bayesian network models of cell signalling from 

high-throughput proteomic data. We show that model averaging using Bayesian bootstrap 

resampling generates more robust structures than procedures that learn structures using all of the 

data. We also develop an algorithm for ranking the importance of network features using bootstrap 

resample data. We apply our algorithms to derive the T-cell signalling network from the flow 

cytometry data of Sachs et al. (2005). Our learning algorithm has identified, with high confidence, 

several new crosstalk mechanisms in the T-cell signalling network. Many of them have already 

been confirmed experimentally in the recent literature and six new crosstalk mechanisms await 

experimental validation.
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1 Introduction

Cell signalling forms the core of the communication mechanism that coordinates both intra-

cellular and inter-cellular activities. Extracellular stimuli promote the binding of signalling 

molecules to their receptors, initiating a series of intra-cellular reactions that regulate an 

individual cell's behaviour, including metabolism, movement, proliferation, survival and 

differentiation (Cooper, 2000). Signalling molecules that are expressed on the surface of one 

cell and that bind to receptors expressed by other cells, integrate and coordinate the 

functions of cells in a complex organism. Understanding the molecular mechanisms 

responsible for these pathways of cell signalling is a major area of current research. Many 

diseases, particularly cancers, arise as a result of a breakdown in the signalling pathways 
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that control normal cell proliferation and survival. By mapping signalling pathways altered 

by disease, we can generate useful therapeutic targets to restore normal cell functioning. 

Traditional work in biology has focused on studying individual parts of cell signalling 

pathways. These studies (King et al., 1998) experimentally map out interactions between a 

small set of biomolecules in a pathway. Complete pathways are assembled by manually 

aggregating the interaction maps. In contrast, work in systems biology takes a more global 

view, and attempts to infer signalling networks from simultaneous measurements of a 

collection of biomolecules involved in the signalling process. The network view of 

signalling allows consideration of emergent properties, such as crosstalk and bistability, that 

cannot be modelled at the level of pathway components (Bhalla and Iyengar, 1999).

In this paper, we present an approach for computational mapping of cell signalling networks 

from high-throughput proteomic data (Sachs et al., 2005). For many cell signalling systems, 

there is not enough experimental data on the signalling proteins and the reactions in which 

they participate (e.g., rate constants) to construct detailed differential equation-based 

models. For such systems, an intermediate modelling methodology based on the 

probabilistic framework of Bayesian networks, is more appropriate. We use Bayesian 

networks to represent signalling systems, and we learn both the structure and the parameters 

of the networks from data. Bayesian networks represent probabilistic dependence 

relationships between multiple interacting components. Directed edges in a Bayesian 

network represent stochastic dependencies between biomolecules and their parents in the 

network. The network structure also encodes conditional independence between 

biomolecules using the graph-theoretic notion of d-separation (Lauritzen, 1996). Standard 

algorithms (Friedman et al., 1999; Ellis and Wong, 2008; Eaton and Murphy, 2007) that 

infer the structure of Bayesian networks, heuristically maximise a scoring function based on 

the posterior probability of the learned structure with respect to the available data. When 

data is noisy, as is typical of proteomic data, it is not clear that the best models are networks 

that are most likely with respect to all of the available data. Here we demonstrate that model 

averaging using Bayesian bootstrap resampling generates more robust structures than 

procedures that learn structures using all of the data. We also develop an algorithm for 

ranking the importance of network features using bootstrap resample data. This algorithm 

helps us identify key edges in the learned network.

We demonstrate the effectiveness of our algorithm in the context of deriving the T-cell 

signalling network from the flow cytometry data of Sachs et al. (2005). While individual 

pathways in T-cell signalling are relatively well understood, our knowledge of how they 

interact with each other is incomplete. Our learning algorithm has identified, with high 

confidence, several new crosstalk mechanisms in the T-cell signalling network. Many of 

them have already been confirmed experimentally in the recent literature. Six new crosstalk 

mechanisms proposed by our algorithm, await experimental validation. Our algorithm 

allows robust assembly of cell signalling networks from high-throughput data, and also 

serves as an effective hypothesis generator for experimental investigation of crosstalk 

mechanisms in signalling networks.

Our paper is organised as follows. Section 2 describes our structure learning algorithm based 

on Bayesian model averaging, as well as our procedure for ranking edges in the learned 
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network. In Section 3 we present our computational results on the T-cell signalling network, 

as well as results validating our learned model. We conclude in Section 4 with several new 

computationally hypothesised crosstalk mechanisms for the T-cell signalling network.

2 Computational approach

Bayesian networks offer flexible and modular representations of complex multivariate 

distributions. They have been widely used in the literature to model gene regulatory 

networks (Friedman et al., 2000; Yu et al., 2004), metabolic networks (Broom et al., 2006), 

as well as cell signalling networks (Sachs et al., 2005). They can computationally simulate 

the modelled networks, and these simulations can be used to generate experimentally 

testable hypotheses about the functioning of the network. Because of their stochastic nature, 

they are particularly well suited for learning networks from noisy, incomplete data.

2.1 Modeling signalling networks using Bayesian networks

A Bayesian network models a cell signalling network as a joint probability distribution over 

variables denoting the expression levels of all the biomolecules in that network. It is simply 

a compact, graphical representation of that full joint distribution. The graph structure reflects 

conditional independence relationships between the biomolecules. A Bayesian network for a 

set X = {X1, . . . , Xn} of n discrete random variables is a pair  where  is a 

directed acyclic graph whose vertices represent the random variables X1, . . . , Xn, and whose 

edges represent direct dependencies between these variables. Θ represents the set of 

conditional probability distributions of the form ΘXi | Ui = P (Xi | Ui), 1 ≤ i ≤ n, where Ui 

denotes the parents of variable Xi in the graph . The joint probability distribution 

P(X1, . . . , Xn) encoded by  can be reconstructed as the product of the individual 

conditional probability distributions in Θ:

2.2 Learning network structure from data

The problem of learning a network from data is normally posed as an optimisation problem: 

Given a set  of instances from multivariate joint probability 

distribution P(X), drawn a find a network  which maximises the posterior 

probability of the network given the data:

The first term above is the likelihood of the data given the network structure  and its 

parameters Θ. The second and third terms are priors: a discrete probability distribution 

over graph structures , and for each possible graph, a density measure  over 
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possible values of the parameter Θ. The most popular choice for the prior  over graphs 

is the uniform distribution, and for  is the Dirichlet distribution. The parameter 

priors for each variable are considered independent of one another, an assumption called 

global parameter independence in Friedman and Koller (2003),

In addition, we make the parameter modularity assumption (Heckerman et al., 1995). For 

two graph structures  and  such that the parents of node Xi are the same in both graphs, 

we have

The graph structure prior  is assumed to satisfy structural modularity; that is, it can be 

factored as a product of distributions over the possible parent sets of node Xi in the graph. 

The posterior probability of the graph structure with these assumptions reduces to

where qi is the number of values for the parents of node i, ri is the number of values for node 

i itself,  is the Dirichlet distribution order for variable i with value k and parent value j, 

and  is the number of instances in the data set  where variable i with 

value k has parents with value j and . In this paper, we assume that the 

Dirichlet orders for all sets of parameters  is a constant λ ≥ 1 as in Yang and Chang 

(2002). The choice of  is critical, particularly for small data sets. If it is large, the 

values dominate the Nijk values, making the available data have less influence in 

determining the space of structures explored. The posterior probability  together 

with a penalty adjustment to account for the complexity of , is used as a scoring function 

by structure learning algorithms. The scoring function can be viewed as a measure of how 

well the network explains the data.

The inference of network structure from data is the most interesting aspect of Bayesian 

network learning. It allows for the identification of real dependencies between the measured 

biomolecules, as opposed to simple correlations (Needham et al., 2007). The problem of 

learning a network which maximises a given scoring function is a combinatorial 

optimisation problem. The number of model structures is super-exponential in the number of 

variables, making enumeration-based approaches impractical. In fact, the problem of 

learning a network which maximises a scoring function is known to be NP-complete 
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(Chickering, 1996). There are two approaches to finding approximate solutions: direct 

search for the structure guided by a scoring function, and sampling structures from the 

posterior distribution . We use direct search in structure space in this paper. The 

local search algorithm used in our experiments is a greedy hill climber with randomised 

restarts. It starts with a specially generated family of initial networks (detailed below), then 

iteratively adds, deletes or reverses an edge, scores the resulting network at each stage, 

continuing until a local maximum is found. Every network explored by the algorithm during 

the search is recorded, so no network is ever considered twice.

We generate an initial set of networks based on Friedman's sparse candidate algorithm 

(Friedman et al., 1999) with k = 6 (maximum number of parents per node). Initially, the k 

most likely parents for each node, the candidates, are selected by scoring all networks with a 

single edge between that node and another. We denote by K, the set of all networks in which 

the parents of every node belong to the set of k candidate parents for that node. A list of 

starting networks containing all networks in K with up to two edges is then generated. A 

starting network is picked at random from this initial list. From this starting network, all 

neighbouring networks in K that have not been considered before and which differ by an 

additional edge, one less edge, or a reversed edge are evaluated. The highest scoring 

neighbouring network, if its score is higher, replaces the current network. The search is 

continued until no new networks are generated or all generated networks score less than the 

current network. New sets of k candidate parents are then generated following Friedman's 

algorithm, and the search is continued. New candidate parents sets are picked until a 

previously seen set of candidate parents is revisited, or ten different candidate parent sets 

have been considered. Such searches starting from a randomly picked member of the initial 

network list are performed a total of 25 times. Another 25 such searches are performed 

starting from a network chosen randomly from all of those seen during the first 25 searches.

Repeated randomised restarts of the structure space search algorithm yield a collection of 50 

networks which are local maxima with respect to the scoring function. The highest scoring 

networks in this collection are reported. When networks are scored against noisy data, the 

highest scoring networks tend to be overfitted, and it is unclear that they are the best models. 

To insulate ourselves against overfitting, we use bootstrap resampling and learn networks 

using each resampled data set.

2.3 Model averaging with Bayesian bootstrap

Bootstrap aggregating or bagging (Breiman, 1996), which is a model averaging procedure, 

has been used to reduce variance and improve robustness of learned networks (Friedman et 

al., 1999). Suppose we have a data set  where each x(j) is a vector of 

size n drawn from the cross product of the domains of variables X1, . . . , Xn. The basic idea 

of the standard non-parametric bootstrap is to randomly draw datasets with replacement 

from , with each sample the same size as the original set, that is N. This is done B times, 

producing B bootstrap replicates. We learn Bayesian networks from each bootstrap 

resample. We then average the adjacency matrices of the networks generated over the B 

resamples, producing estimates of posterior probabilities  for all edge features. 

Given a threshold 0 ≤ t ≤ 1, we generate a thresholded graph by including only those edges 

Koch et al. Page 5

Int J Bioinform Res Appl. Author manuscript; available in PMC 2015 January 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



whose posterior probabilities exceed . We have experimentally determined 

that it takes 2500 resamples for estimates of these posterior probabilities to stabilise.

Each instance in  is represented between 0 and B times among the bootstrap resamples. 

Thus one can think of the standard bootstrap procedure as assigning each example in  an 

integer weight drawn from a multinomial distribution, representing its number of 

occurrences in the B resamples. The probability of not including a specific instance in a 

resample is about 1/e ≈ 37%. Since an instance contributes to the count Nijk in the scoring 

function; dropping instances biases the counts, as well as the structures that are learned from 

them.

Therefore, we use the Bayesian bootstrap which is a continuous analog of the discrete 

bootstrap (Rubin, 1981). Bayesian bootstrap is a resampling procedure that is operationally 

similar to the standard non-parametric bootstrap. In the Bayesian bootstrap, examples are 

assigned continuously varying weights drawn from a Dirichlet distribution. The Bayesian 

bootstrap procedure has a Bayesian interpretation. Assume that instances are drawn from 

some unknown multivariate distribution P (X), and that we have no specific priors on that 

distribution. The uninformative prior on P combined with the multinomial sample likelihood 

yields, via Bayes Theorem, a Dirichlet posterior distribution on the fraction of the original 

population that each sampled instance represents. The ensemble of Bayesian bootstrap 

resamples, and the distribution of statistics derived from them, can be viewed as samples 

from a Bayesian posterior distribution. The continuously varying weights of the Bayesian 

bootstrap ensure that there is a vanishingly small chance of assigning a zero weight to any 

instance in a resample. Thus, all of the inter-relationships between examples are preserved in 

the resample, but in reweighted form. Statistics derived from these resamples do not embody 

the bias introduced by the discreteness of the standard bootstrap.

2.4 Testing the robustness of the model

The best locally optimal network learned from all of the data may not necessarily be the best 

model for the underlying biological system, especially when the data gathered from the 

system is noisy and sparse. Bayesian bootstrap aggregation alleviates some of the overfitting 

that arises from noise in the data. To further test the robustness of the learned network, we 

delete elements of the network in turn to determine their importance to the model. We focus 

on edge elements because direct edges are suggestive of underlying causal relationships. The 

deletion score of an edge e in a network G is defined as the difference between the score of 

the network G without e, denoted as G−e, and the score of the original network G.

The score differences for an edge are computed with respect to every bootstrap resample, 

and overall mean and variance of the deletion score over all the resampled data sets are 

reported. Important edges have high positive mean and a low variance in the deletion score. 

We thus use the deletion score to rank the importance of edges in the network.
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3 Experimental results

In this paper, we apply our Bayesian network learning strategy to a biological dataset first 

analysed by Sachs et al. (2005). The dataset was gathered using multicolour flow cytometry 

to measure proteins in a portion of the human T-cell signalling network. It contains 5400 

simultaneous measurements of 11 proteins under 9 interventions, including two general 

conditions. Although there is a recognised ground truth network, it is rather sparse, and 

there is no general agreement on the interactions between the proteins beyond that, which 

makes computational analysis a helpful tool for this problem.

Sachs et al. used a Markov Chain Monte Carlo (MCMC) search approach in the space of 

networks, based on multiple-restart simulated annealing, to construct a computational 

model. This computational model closely approximates their selected benchmark, shown in 

Figure 1, which consists of edges from the accepted ground truth model, as well as five 

additional edges selected by Sachs et al. from varying support in the literature, for a total of 

20 edges. We call their benchmark the consensus model, and compare our results against 

this model.

Besides Sachs et al. the flow cytometry data was also previously analysed using Bayesian 

inference methods that sample from the posterior distribution ; specifically, by 

Eaton and Murphy (2007) using structure-MCMC, as well as by Ellis and Wong (2008) 

using order-sampling techniques.

In this section, we report on the results of two experiments. In the first experiment, we apply 

our learning method to the discretised flow cytometry data of Sachs et al. (2005), leaving the 

Bayesian inference method as the only difference between us and Sachs et al. (Eaton and 

Murphy, 2007; Ellis and Wong, 2008). This experiment allows us to directly and fairly 

compare the networks learned by our method against those generated by the other methods. 

From the Bayesian bootstrap averaged networks, we generate two thresholded graphs with 

thresholds 0.6 and 0.99. These networks are shown in Figure 2. The 0.6 threshold is derived 

from our permutation experiments in Broom et al. (2007), while the 0.99 threshold is chosen 

as a high threshold bar. Our result graph thresholded at 0.99 contains 22 edges, while the 

same graph thresholded at 0.6 contains 30 edges. We also compute the deletion scores for all 

edges in our 30 edge network, and order them according to those scores (see Table 2). 

Seventeen of the 20 edges in the consensus model are in the network we obtain using the 

high threshold of 0.99. One edge is reversed from an edge in the consensus model (it is 

actually the same edge that was reversed in Sachs et al.'s own results, Plcγ to PIP3). The 

three edges in the consensus model that are missing from our network are the same three 

edges missing from Sachs et al.'s reconstruction. We find five edges that do not appear in the 

consensus model, and we label them as ‘new’. When we lower the threshold to 0.6, we add 

one additional edge from the consensus model (reversed) and seven additional ‘new’ edges. 

Table 1 summarises these results alongside those of Ellis and Wong (2008), as well as Eaton 

and Murphy's result using the perfect intervention model (Eaton and Murphy, 2007).
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Although our method differs significantly from those of previous analyses, our results are in 

close agreement with those of the structure-MCMC approach used by Eaton and Murphy 

and surpass those of the order-sampling approach used by Ellis and Wong.

In the second experiment, our goal is to confirm that the additional edges learned by our 

algorithm, over and above the 20 edge consensus model are legitimate, and not mere 

artifacts of our computation. We assume that the structure of the consensus model shown in 

Figure 1 is correct, and learn the parameters of that network from the available data. From 

this quantitative network, we generate 60 synthetic data sets each containing 5400 data 

points. For each synthetic data set, we apply the network learning procedure in exactly the 

same way as we did for the original data set. The network models generated in this way each 

contain 17 or 18 edges from the consensus model, and are missing two or three edges. In no 

case are additional edges obtained at threshold values of 0.6 or above. Consequently, we are 

confident that the additional edges have real support in the data from which they were 

learned. In future work, we plan to investigate the robustness of our results with respect to 

perturbations of the discretisation technique.

Table 2 shows the importance of each of the 30 edges in our result graph thresholded at 0.6, 

as measured by their deletion scores. It is interesting to note that eight of the top ten edges in 

the network are already in the consensus model. There are 11 edges in our network that are 

not present in the generally accepted model. We have found confirmation for five of these 

edges in the recent literature. Especially noteworthy are the transitive edges Raf to Akt, Raf 

to Erk, and Mek to Akt, all of which are confirmed in Dougherty et al. (2005) and Kolch 

(2000) as playing critical feedback roles in the well known Raf → Mek → Erk → Akt 

pathway. a negative regulator of the A → B → C process. The confirmed new edges all 

belong to this family. An important transitive triangle that awaits confirmation is the PKA, 

Jnk and P38 triplet. This triangle suggests crosstalk between the Jnk and P38 pathways that 

is independent of the upstream PKA biomolecule. We are presently working with our 

biological collaborators to confirm the existence of this mechanism.

4 Discussion and conclusion

We have demonstrated that our method learns a more complete and robust model of T-cell 

signalling than previous approaches to the problem on the same flow cytometry data. Our 

method identifies additional new edges, that are not present in the consensus network. Five 

of them have experimental support in the literature. Further investigation of these edges is 

likely to refine our understanding of the T-cell signalling network. Using synthetic data 

generated from a model of the consensus network, we showed that it is exceptionally 

unlikely that these additional edges are artifacts of the learning process, and that they all 

have significant support in the flow cytometry data from which they were learned. The 

major goal of our future research, is to investigate these new edges by conducting 

interventional experiments on T-cells in a lab with our biological collaborators.

Our computational results point to incompleteness in our understanding of the theory of T-

cell signalling. Transitive edges (Raf to Akt, Mek to Akt) are new regulatory edges 

discovered by our algorithm which have been confirmed by recent literature. There appears 
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to be significant crosstalk between major cellular signalling pathways, the Jnk to P38 

connection is an especially interesting one to validate. The real value of our methods will be 

established when we are able to experimentally confirm at least one of these predicted links.
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Figure 1. 
Benchmark T-cell signalling network used by Sachs et al. (2005) to assess the validity of 

their results. This Bayesian network has 20 edges. The brown edges form the conventionally 

accepted ground truth model of T-cell signalling with respect to the observed biomolecules. 

The green edges have many references in the literature and are referred to as expected by 

Sachs et al. The blue edges have at least one reference in the literature and are referred to as 

reported by Sachs et al. We refer to this network as the consensus model to which we 

compare our results (see online version for colours)
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Figure 2. 
The network on the left is our result graph thresholded at 0.99, while the network on the 

right is the same graph thresholded at 0.6. The graph on the left has 22 edges, while the 

graph on the right has 30 edges. The edges are annotated to show how they relate to the 20-

edge consensus model of T-cell signalling (see online version for colours)
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Table 1

Edge comparisons of networks learned by different methods from the same flow cytometry data. The edge 

labels (correct, reversed, new, missing) are relative to the consensus model shown in Figure 1. t is the 

threshold for edge features in our bootstrap averaged model

Ellis and Wong Eaton and Murphy Our method t = 0.99 Our method t = 0.6

Correct 8 16 16 16

Reversed 4 2 1 2

New 8 9 5 12

Missing 8 2 3 2
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Table 2

The means and standard deviations of the deletion scores of the 30 edges in the thresholded graph obtained 

from the bootstrapped averaged graph thresholded at 0.6. The means and variances of the deletion scores are 

computed over the bootstrap resamples used in the learning process

From To Δ Score Status

Plcγ PIP2 1143 ± 44 consensus

PKC PKA 885 ± 40 consensus

Erk Akt 858 ± 42 consensus

PKA Raf 660 ± 34 consensus

Mek Plcγ 541 ± 24 unknown

Raf Mek 433 ± 33 consensus

Mek Jnk 373 ± 27 unknown

Mek Erk 350 ± 26 consensus

PKC Jnk 323 ± 32 consensus

PKC Raf 305 ± 24 consensus

PIP3 PIP2 196 ± 19 consensus

PKA Jnk 192 ± 23 consensus

PKA Erk 173 ± 30 consensus

Jnk P38 137 ± 23 unknown

PKA Mek 134 ± 27 consensus

PKA Plcγ 134 ± 20 unknown

PKC Mek 115 ± 23 consensus

Raf Akt 111 ± 20 Kolch (2000) and Jun et al. (1999)

PKA Akt 86 ± 24 consensus

PKA P38 57 ± 24 consensus

PKC P38 57 ± 20 consensus

Plcγ PIP3 47 ± 25 consensus

Mek Akt 44 ± 19 Kolch (2000)

Plcγ PKC 6 ± 15 consensus

Raf Jnk –33 ± 16 Adler et al. (2005)

PKC Erk –67 ± 18 Besson et al. (2001)

Raf Erk –74 ± 18 Dougherty et al. (2005)

PKC PIP3 –93 ± 16 unknown

Jnk PIP3 –111 ± 15 unknown

Akt PIP3 –132 ± 13 consensus
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