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Abstract
Cyclophilins are a family of proteins that possess peptidyl-prolyl isomerase activity. They are present
in both eukaryotes and prokaryotes. They are cellular targets of immunosuppressant drugs and
involved in a wide variety of functions. The Arabidopsis thaliana genome contains the largest number
of cyclophilins. However, the total number of plant cyclophilins available in sequence databases is
small compared to that of other organisms. This implies that many cyclophilins are not yet identified
in plants. In order to identify cyclophilin candidates from available plant sequence data, we examined
alignment-free methods based on partial least squares (PLS) using physico-chemical properties for
the mining of single and multiple-domain cyclophilins. PLS with selected descriptors after auto and
cross-covariance (ACC) transformation had low false positives compared to PLS with all ACC
descriptors. The former PLS classifier also performed better than profile hidden Markov models and
PSI-BLAST in identifying cyclophilins from the Arabidopsis and rice genomes.
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1 Introduction
Cyclophilins possess the peptidyl-prolyl isomerase (PPIase; EC 5.2.1.8) activity and are
involved in diverse cellular processes including cell cycle control, receptor signaling, protein
folding as well as being cellular targets of immunosuppressant drugs (Romano et al., 2004).
In the presence of their drug ligand, cyclosporine A (CsA), cyclophilins gain their
immunosuppressing function by forming a complex with cyclosporine A. This complex blocks
T-cell activation by binding to the T-cells and inhibiting the activity of calcineurin.

In the absence of immunosuppressive drugs, on the other hand, cyclophilins are involved in a
variety of cellular processes. For example, cyclophilins have been shown to play roles in both
plant and animal pathogen recognition. The interaction of Agrobacterium tumefaciens
virulence protein (VirD2) with Arabidopsis cyclophilin AtCYP19 has been reported (Deng et
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al., 1998). Agrobacterium recruits plant cyclophilins for transferring and integrating T-DNA
(transferred DNA) into a plant cell. AtCYP18 has been identified to activate a Pseudomonas
syringae effector protein (AvrRpt2) by its PPIase activity (Coaker et al., 2005). In the case of
the fungus Magnaporthe grisea infection in rice plants, which causes rice blast disease, a fungal
cyclophilin (CYP1) acts as a virulence determinant (Muriel et al., 2002). Cyclophilins have
been purified from seeds of cow pea, mung bean, and chickpea (Ye and Ng, 2000). These
proteins possess antifungal activity against several fungi including Mycosphaerella
arachidichola. The chickpea protein is also known to inhibit the activity of human
immunodeficiency virus-1 reverse transcriptase (Ye and Ng, 2000)

Cyclophilins are classified into single-domain and multiple-domain families. Single-domain
cyclophilins contain only the cyclophilin catalytic domain, and their average length is 172
amino acids (aa). Multiple-domain cyclophilins have other functional domains in addition to
the cyclophilin catalytic domain. Their average length is 550 aa. The other domains are
expected to play roles in determining specific functions. For example, the “tetratricopetide
(TPR) domain” is involved in protein-protein interactions. The TPR domain is a 34-amino-
acid motif. It exists usually as multiple tandem repeats in proteins with many cellular functions,
including mitosis, transcription, protein transport, and development (Lamb et al., 1995).
Proteins that contain TPR motifs include members of the FK506- and rapamycin-binding
proteins, organelle-targeting proteins, TPR multiple-domain cyclophilins that facilitate
assembling of protein complexes and protein phosphatases (Lamb et al., 1995).

While amino acid sequences of single-domain cyclophilins are in general divergent, their
secondary structures remain well conserved (Galat, 2003). The structure of cyclophilin proteins
consists of eight stranded anti-parallel β-sheets capped at both ends by two helices. Numerous
insertions/deletions are observed in the loop regions. However, the amino acid residues crucial
for the PPIase activity and CsA-binding are well conserved even in the long loop regions
(Galat, 2003). Most of the amino acids involved with the PPIase activity are also known to be
important for CsA-binding.

The Arabidopsis thaliana genome, in spite of its relatively small genome size, contains the
largest number of known (experimentally confirmed) cyclophilin proteins, 29 of them in total
(21 single-domain and 8 multiple-domain proteins; Romano et al., 2004). On the contrary,
metazoa are known to have a fewer number of cyclophilins. There are 19 human cyclophilins
and 14 found in Drosophila melanogaster. However, surprisingly, the number of cyclophilin
sequences available from plants found in sequence databases is much smaller compared to
those from animals and other higher eukaryotes. For example, in InterPro (Release 16.0;
Mulder et al., 2005), there are 302 cyclophilin sequences from plants, 595 from animals, 321
from fungi, and 1319 from bacteria. This indicates that currently we do not have sufficient
information on cyclophilin proteins from plants, even though they could provide the largest
amount of information on these protein functions. In order to learn more about these cyclophilin
proteins, more thorough searches are needed from available sequence data.

The most popularly used methods for protein family classification include Basic Local
Alignment Search Tool (BLAST; Altschul et al., 1997), Position Specific Iterative-BLAST
(PSI-BLAST; Altschul et al., 1997), and profile hidden Markov models (profile HMMs; Durbin
et al., 1998). Because these methods require reliable alignments to compare sequences, they
do not perform well on extremely diverged sequences and those with multiple-domains such
as cyclophilin proteins. Another problem with these methods is that the models are built using
only “positive” samples (proteins of interest). Previously we have shown that physico-chemical
properties of amino acids can be used for mining proteins (Opiyo and Moriyama, 2007; Strope
and Moriyama, 2007). This approach does not require aligning sequences and are known to be
more sensitive to remote similarities.
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The objectives of this study are 1) to develop alignment-free protein classification methods
using physico-chemical properties of amino acids that can effectively identify cyclophilin
protein families, and 2) to mine cyclophilins from Arabidopsis and rice genomes.

2 Materials and Methods
2.1 Dataset

Two hundred and eighty single-domain cyclophilin sequences (100 from animals, 60 from
plants, 40 from fungi, and 80 from bacteria), were downloaded from InterPro (Release 13.1;
Mulder et al., 2005), and divided to prepare training and test datasets (Table 1). Although the
TPR multiple-domain cyclophilins are the largest multiple-domain cyclophilins found in
InterPro, only 36 sequences (21 from animals, 5 from plants, and 10 from fungi) were available.
Only one dataset was thus generated for TPR multiple-domain cyclophilins. The entire proteins
of TPR multiple-domain cyclophilins including both of cyclophilin and TPR domains were
used for training classifiers. Negative data (non-cyclophilin proteins) were obtained from
Swiss-prot database.

The entire protein sequence sets for Arabidopsis thaliana (28,952 proteins; release 5, dated
June 2004), and the rice, Oryza sativa (62,877 proteins; release 5, dated December 2006), were
downloaded from The Institute for Genomic Research (TIGR). The two hundred eighty single-
domain cyclophilins and the 36 TPR multiple-domain cyclophilins were used to train the
methods for the mining of the genomes (Table 1). These training datasets are available at:
http://bioinfolab.unl.edu/emlab/cyclophilin/.

2.2 Experimental Design
The following computational experiments were designed to identify the advantage and
disadvantage of each classifier for detecting various types of similarities for cyclophilin
proteins.

Within-family classification—In this experiment, classifiers were trained and tested using
the datasets generated from the same cyclophilin group (e.g., single-domain training and single-
domain test datasets as shown in Table 1). For single-domain cyclophilins, training and testing
were done using two independent datasets. For TPR multiple-domain cyclophilins, the leave-
one-out cross-validation analysis was performed using the single “TPR multiple-domain
training” dataset.

Between-family classification—Classifiers were trained on a dataset generated from one
group of cyclophilins (single-domain or multiple-domain) and tested against a dataset
generated from another group of cyclophilins (multiple-domain or single-domain) as shown
in Table 1. This is to evaluate how classifiers are sensitive to identify cyclophilin-related
sequences even when they are trained on distantly related sequences belonging to other
cyclophilin families. Sensitive classifiers should be able to identify new cyclophilins even if
they were not directly trained on those sequences.

2.3 Selection of Descriptors
Physico-chemical properties of amino acids—Opiyo and Moriyama (2007) developed
five descriptors (PC1 - PC5) using principal component analysis (PCA) from 12 physico-
chemical properties of amino acids (mass, volume, surface area, hydrophilicity,
hydrophobicity, isoelectric point, transfer of energy solvent to water, refractivity, non-polar
surface area, and frequencies of alpha-helix, beta-strand, and reverse turn). We used the same
five descriptors for this study.
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Auto/cross covariance (ACC) transformation—A set of amino acid sequences needs
to be transformed to a uniform matrix before partial least squares can be applied. Auto/cross
covariance (ACC) transformation method discussed in Opiyo and Moriyama (2007) was used
to transform each amino acid sequence using the five descriptor set. Briefly, the ACC describes
the average correlations between residues a certain lag apart. After each amino acid sequence
was transformed to a set of five PC scores, auto-covariances (AC) and cross-covariances (CC)
for each sequence were calculated as follows. The auto-covariance of PC1 at the amino acid
position i with the lag size 1, AC1,i(1), is calculated with PC1i multiplied by PC1i+1, where
PC1i is the PC1 value of the i-th amino acid. The auto-covariance of PC1 for a sequence with
the lag size 1, AC1(1), is the average of these products from the position 1 to the position L-1
(L is the length of the sequence). The cross-covariance of PC1 and PC2 at the amino acid
position i with the lag size 1, CC12,i(1), is calculated by multiplying PC1i with PC2i+1. The
cross-covariance of PC1 and PC2 for a sequence with the lag size 1, CC12(1), is the average
of these products from the position 1 to the position L-1. The following equations summarize
these calculations:

(1)

(2)

where d is the lag size, PCji and PCki are the j and k-th PC value for the i-th amino acid,
 and  are the means of PCji and PCki, respectively (j ≠ k; j, k = 1, 2, 3, 4, or 5), and L

is the length. While the auto-covariances emphasize the interactions between amino acids,
interactions between different amino acid properties are incorporated into the cross-
covariances. ACC transformation with the maximum lag of 30 residues yielded 775 descriptors
for each sequence. The calculation of ACC was performed using the R implementation (version
2.60; http://www.R-project.org).

T-test—The t-test is the most commonly used method to evaluate the differences in means
between two groups (e.g., cyclophilin proteins and non-cyclophilin proteins). The equation for
the statistics is a ratio as shown in the equation (3). The top part of the ratio is simply the
difference between the two means. The bottom part is a measure of the variability or dispersion
of the groups.

(3)

where  and  are the means of the descriptor values (X), VarX1 and VarX2 are their
variances, and n1 and n2 are the number of samples from the groups 1 and 2, respectively. In
this study, the significance level (α) of 0.01 was used to examine if each descriptor can
discriminate two groups of sequences (cyclophilins vs. non-cyclophilins) significantly based
on the t statistics. The t-test was performed using the implementation in R (version 2.60;
http://www.R-project.org).
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Non-parametric Wilcoxon rank-sum test—The t-test is a parametric test assuming
normal distributions of the variables. However, there is no guarantee that the descriptors we
use to classify protein sequences have a normal distribution, and most likely they do not.
Therefore, we also used one of the non-parametric tests, Wilcoxon rank-sum test. Wilcoxon
rank-sum test involves in calculating a statistics called U. In this test, each descriptor is ranked
first by ignoring the group membership. Then the rank values, instead of the descriptor values,
are added up for each group. Finally the U statistics is calculated by the equation (4):

(4)

where n1 and n2 are the number of samples in groups 1 and 2, respectively, and R1 is the sum
of the rank in the group 1. In this study, the significant level (α) of 0.01 was used to examine
if the U statistics shows significant difference in the distribution of each descriptor values
between cyclophilins and non-cyclophilins. R implementation (version 2.60;
http://www.R-project.org) of Wilcoxon rank-sum test was also used for this study.

Selecting of the ACC descriptors—In Opiyo and Moriyama (2007), we observed that
the PLS classifier using descriptors transformed by ACC had high false positive rates. We
hypothesized that the number of false positives by PLS classifiers can be reduced if we select
only descriptors that are important in discriminating cyclophilins from non-cyclophilins. As
mentioned above, after the ACC transformation, each sequence was represented by 775
descriptors. We used the t-test and Wilcoxon rank-sum test to choose descriptors that showed
significant difference between cyclophilins and non-cyclophilins included in training datasets
at the alpha level of 0.01. From the 775 descriptors, 690 and 702 descriptors were selected for
the single-domain cyclophilins by the t-test and by the rank-sum test, respectively. For the TPR
multiple-domain cyclophilins, 647 and 665 descriptors were selected by the t-test and the rank-
sum test, respectively. These reduced numbers of descriptors, as well as all of the 775
descriptors, were used with partial least square methods as described in the next section.

2.4 Classifiers
Partial least squares—Partial least squares (PLS; Geladi and Kowalski, 1986) is a
projection method similar to PCA where the independent variables, represented as the matrix
X, are projected onto a low dimensional space. In PLS, the goal is not only to explain the
maximum amount of variance observed in independent variables X, but also to explain the
correlation with dependent variables Y. PLS using descriptors transformed by ACC (PLS-
ACC) was discussed in Opiyo and Moriyama (2007). In this study, we included PLS with
descriptors selected by the t-test (PLS-T_ACC) and PLS with descriptors selected by the rank-
sum test (PLS-R_ACC). For the single-domain cyclophilin classification, the cut-off points
for PLS-ACC, PLS-T_ACC, and PLS-R_ACC were 0.446, 0.470, and 0.467, respectively,
based on the minimum error point (MEP; Karchin et al., 2002). Similarly, the cut-off points
for the TPR multiple-domain cyclophilin classification were 0.452, 0.477, and 0.482 for PLS-
ACC, PLS-T_ACC, and PLS-R_ACC, respectively. We used an R implementation (version
2.60) with the PLS package (version 1.2-1) developed by Wehrens and Mevik
(http://www.R-project.org; http://mevik.net/work/software/pls.html)

PSI-BLAST—In a general use of PSI-BLAST (Altschul et al., 1997), position-specific scoring
matrices (PSSMs) are built from multiple alignments of significantly similar sequences
obtained by similarity search. In this study, we used pre-aligned positive (cyclophilin)
sequences as the first input. Multiple alignments were generated using Clustal-W version 1.83
(Thompson et al., 1994) with the default parameters. Ten iterations with E-value = 10 as the
threshold for building PSSM were performed against the test dataset. Cut-off E-values of 2.3
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and 2.6 were obtained for single-domain cyclophilins and TPR multiple-domain cyclophilins,
respectively, using MEP.

Profile hidden Markov model—Profile hidden Markov models (HMMs) are the full
probabilistic representation of sequence profiles (Durbin et al., 1998). Profile HMMs are built
using only positive samples. In this study, profile HMMs were built using the w0.5 script of
the Sequence Alignment and Modeling Software System (SAM; Hughey and Krogh, 1996).
Cut-off E-values of 1.02 and 1.23 were obtained for single-domain cyclophilins and TPR
multiple-domain cyclophilins, respectively, using MEP.

2.5 Performance analysis
Predictions were grouped as follows:

• True positives (TP): the number of actual cyclophilins predicted as cyclophilins.
• False positives (FP): the number of actual non-cyclophilins predicted as cyclophilins.
• True negatives (TN): the number of actual non-cyclophilins predicted as non-

cyclophilins.
• False negatives (FN): the number of actual cyclophilins predicted as non-cyclophilins.

Performance statistics were calculated as follows
• Accuracy = (TP + TN)/(TP + TN + FP + FN)
• False positive rate = FP/(FP + TN)
• False negative rate = FN/(FN + TP)
• True positive rate = TP/(TP + FN)

3 Results and Discussion
Within-family classification

Classifiers were trained and tested using the datasets generated from the same family (single
or multi-domain). This is to evaluate how well a method trained on a family can identify
sequences from the same family. As shown in upper half of Table 2, both of PLS-T_ACC and
PLS-R_ACC showed higher accuracy rates than others including the original PLS-ACC,
although the difference was small. The false positive rates were also lower with PLS-T_ACC
and PLS-R_ACC compared to PLS-ACC. While SAM and PSI-BLAST had lower false
positive rates than PLS classifiers, these classifiers showed extremely high false negative rates.
High false negative rates mean that SAM and PSI-BLAST often misidentify positives
(cyclophilins) as negatives, even though they rarely misidentify non-cyclophilins as positives.
Similar results were obtained from cross-validation tests for the TPR multi-domain dataset as
shown in the lower half of Table 2.

Between-family classification
In this experiment, classifiers were trained with sequences from one family and tests were done
on another family. As mentioned before, this is to evaluate how classifiers are sensitive to
identify cyclophilin-related sequences even when they are trained for distantly related
sequences belonging to other cyclophilin families. Sensitive classifiers should be able to
identify new cyclophilins even if they were not directly trained on those sequences. The results
obtained for the between-family analyses were consistent to those we observed for the within-
family analyses with more pronounced difference in performance (Table 3). PLS-T_ACC and
PLS-R_ACC showed the highest accuracy rates and lower false positive rates compared to
PLS-ACC. Similar results were obtained whether the classifiers were trained with single-
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domain cyclophilins and tested on TPR multiple-domain cyclophilins or vice versa. SAM
showed the lowest false positive rates, and again, both of SAM and PSI-BLAST showed very
high false negative rates

Selection of significant and reduced numbers of descriptors appears to have contributed to
lowering the numbers of false positives. On the other hand, it did not affect the sensitivity of
PLS classifiers as shown in low or even lower than PLS-ACC % false negative in classifying
cyclophilins. PLS-T_ACC and PLS-R_ACC can identify both single-domain and multiple-
domain cyclophilins regardless of which cyclophilin sequences are included in the training
dataset. Such classifiers are expected to be useful for identifying new/unknown cyclophilins.
SAM and PSI-BLAST performed poorly because they require alignable sequences to build
their models and to identify new sequences. In Arabidopsis, for example, the similarities
between cyclophilin sequences range from 10 to 90%. Such varied and low sequence
similarities made currently often used profile methods (SAM and PSI-BLAST) misidentify
some cyclophilins.

Arabidopsis and rice genome mining
Table 4 and Figure 1 summarize the results of cyclophilin mining from the Arabidopsis
thaliana and Oryza sativa (rice) genomes. Currently only 21 and 8 experimentally confirmed
sequences are annotated as single-domain and multiple-domain cyclophilins in the A.
thaliana genome, respectively. Not much is known on cyclophilins from the rice genome. Two
separate predictions were performed for each of the A. thaliana and rice genomes. The first
prediction was performed using classifiers trained with the single-domain dataset, and the
second prediction was performed using those trained with the TPR multiple-domain dataset
(Table 1). The final prediction results were obtained by merging the results from the two
predictions. The predicted proteins by PLS-T_ACC and their scores, and the proteins identified
by PSI-BLAST and SAM and their E-values are listed in the Supplementary Tables 1 (from
single-domain trained) and 2 (from TPR-multiple-domain trained) available from
http://bioinfolab.unl.edu/emlab/cyclophilin/.

PLS-T_ACC identified 302 proteins (after excluding alternative transcripts) from the A.
thaliana genome (Table 4). PLS-T_ACC missed one known Arabidopsis single-domain
protein out of 29 when it was trained using the single-domain dataset. All the twenty nine
known Arabidopsis cyclophilin proteins were correctly identified when the PLS-T_ACC was
trained using the TPR multiple-domain cyclophilin dataset (Table 5). Of these 302 proteins,
forty six are multiple-domain cyclophilins including six TPR multiple-domain proteins. Other
proteins include domains such as nucleotide-binding, WD40 repeat, RNA recognition, zinc
finger, and U-box domains. Of the 302 proteins predicted by PLS-T_ACC, 34 proteins were
also predicted by both PSI-BLAST and SAM as positives (Figure 1a). These 34 proteins include
five new (yet to be confirmed) cyclophilin candidates. PSI-BLAST and SAM predicted in total
39 and 126 proteins as cyclophilins, respectively. Both classifiers predicted the same 31
proteins as cyclophilins when trained with single-domain cyclophilins. They included all the
known 29 cyclophilins. When trained with TPR multiple-domain training dataset, they missed
eleven (by PSI-BLAST) and nine (by SAM) of known Arabidopsis cyclophilins (Table 5).
When trained with TPR multiple-domain cyclophilins, PSI-BLAST predicted 484 sequences
as positive. However, 432 of them were identified based on similarities only against TPR
domain sequences (Pfam: PF01535; INTERPRO: IP002885 PPR repeats). Since PSI-BLAST
trained with the single-domain dataset did not identify them as positives, these proteins are
most likely false positives. These 432 proteins were excluded from Table 4 and Figure 1a.
Consequently, as Figure 1a shows, all but one of 39 proteins identified by PSI-BLAST were
also identified by SAM. PLS-T_ACC and SAM predicted none of these 432 proteins as
positives.
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In the Arabidopsis genome project, 30 proteins including the known 29 proteins are annotated
as cyclophilins. This extra one protein (At3g25230.1) was also identified by PLS-T_ACC but
missed by SAM and PSI-BLAST. The InterPro database (release 16.0) contains fifty five
Arabidopsis cyclophilin proteins. Of the fifty five sequences, five are “putative
uncharacterized” fragments. Excluding these five uncharacterized fragments as well as splicing
variants, the number of cyclophilins identified in InterPro is 33 including three more
cyclophilin candidates in addition to the 30 annotated (Table 4). All the 33 proteins were
identified as positives by all the three classifiers. The accession numbers and the descriptions
of the protein sequences predicted by the three classifiers from the Arabidopsis thaliana
genome are presented in Supplementary Table 1 (available at:
http://bioinfolab.unl.edu/emlab/cyclophilin/).

From the rice genome, PLS-T_ACC predicted 1360 sequences (excluding splicing variants)
as cyclophilins (Table 4). Of them, one thousand two hundred and fifty nine proteins were
predicted by the classifier trained using single-domain cyclophilins. PSI-BLAST and SAM
predicted 118 and 165 proteins as cyclophilins, respectively, again much fewer than those
predicted by PLS-T_ACC. Eighty six proteins were positively identified by all the three
classifiers (Figure 1b). The total number of cyclophilins found in InterPro is 52 (32 single-
domain and 20 multiple-domain) after excluding splicing variants (Table 4). Of these 52, 30
proteins are annotated as cyclophilins in the rice genome project. All these 30 proteins were
predicted as positives by all the three classifiers. The other 22 proteins were predicted as
positives by PLS-T_ACC. PSI-BLAST and SAM, however, missed the majority of them. The
accession numbers and the descriptions of the protein sequences predicted from the rice
genome are presented in Supplementary Table 2 (available at:
http://bioinfolab.unl.edu/emlab/cyclophilin/). Figures 2 and 3 show that most of the sequences
that were identified when classifiers were trained by single-domain cyclophilins were also
identified when classifiers were trained using TPR multiple-domain proteins.

4 Conclusion
In this study, we found that selecting only important descriptors after auto and cross covariance
transformation reduces the number of false positives. We also found that alignment-based SAM
and PSI-BLAST are too conservative when used to search highly divergent proteins and those
with multiple-domains such as cyclophilins. PLS-T_ACC classifier can be used to identify
new cyclophilin candidates from plant genomes as they become available. We should note that
these predicted proteins most likely include false positives. Experimental confirmation will be
ultimately required. However, based on our test results, SAM and PSI-BLAST in general
predict fewer false positives. Therefore, 34 Arabidopsis and 86 rice proteins positively
predicted by all three classifiers are more likely to be true positives. These candidate proteins
should be prioritized for further analysis. The secondary list would include 93 (for
Arabidopsis) and 83 (for rice) proteins identified by SAM only or by at least two classifiers
(Figure 1). Finally, considering the high false negative rates by SAM and PSI-BLAST, those
identified by neither of these methods but identified by PLS-T_ACC should be also examined
to achieve thorough cyclophilin mining.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The number of cyclophlin proteins predicted by the three classifiers from the A. thaliana (a)
and rice (b) genomes.
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Figure 2.
The number of cyclophilin proteins identified using the classifier trained on single-domain
[single] and TPR multiple-domain [TPR] cyclophlin proteins from the A. thaliana genome.
The classifiers are PSI-BLAST (a), SAM (b), and PLS-T_ACC (c).
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Figure 3.
The number of cyclophlin proteins identified using the classifier trained on single-domain
[single] and TPR multiple-domain [TPR] cyclophilin proteins from the rice genome. The
classifiers are PSI-BLAST (a), SAM (b), and PLS-T_ACC (c).

Opiyo and Moriyama Page 12

Int J Bioinform Res Appl. Author manuscript; available in PMC 2009 June 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Opiyo and Moriyama Page 13

Table 1
Numbers of samples included in cyclophilin datasets

Datasets Cyclophilin Non-cyclophilin Total

Single-domain training 140 140 280

Single-domain test 140 1000 1140

Single-domain training for mining 280 1140 1420

TPR Multiple-domain training 36 36 72

TPR multiple-domain test 36 200 236

TPR Multiple-domain training for mining 36 236 272
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Table 2
Classifier performance for within-family classification

Classifiers %Accuracy %False positive %False negative

[Single-domain test]

PLS-ACC 97.2 3.0 3.0

PLS-T_ACC 99.1 0.8 1.5

PLS-R_ACC 98.7 1.0 1.5

SAM 97.3 0.2 15.0

PSI-BLAST 95.8 0.3 22.0

[TPR multiple-domain test]

PLS-ACC 91.6 13.8 3.3

PLS-T_ACC 94.4 8.0 2.7

PLS-R_ACC 94.4 8.0 2.7

SAM 91.6 0.5 16.5

PSI-BLAST 83.3 5.0 25.0
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Table 3
Classifier performance for between-family classification

Classifiers %Accuracy %False positive %False negative

[Single-domain test]

PLS-ACC 90.3 10.0 7.1

PLS-T_ACC 93.4 6.5 6.7

PLS-R_ACC 92.5 7.5 7.1

SAM 92.5 3.0 39.0

PSI-BLAST 89.4 6.0 42.9

[TPR multiple-domain test]

PLS-ACC 92.3 6.0 16.7

PLS-T_ACC 94.4 5.0 11.1

PLS-R_ACC 93.2 6.0 11.1

SAM 90.6 2.5 33.0

PSI-BLAST 89.8 6.0 33.0
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