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Abstract

Identification of protein complexes within protein-protein interaction
networks is one of the important objectives in functional genomics. Ozawa
et al. proposed a verification method of protein complexes by introducing
a structural constraint.

In this paper, we propose an improved integer programming-based
method based on the idea that a candidate complex should not be di-
vided into many small complexes, and combination methods with maximal
components and extreme sets. The results of computational experiments
suggest that our methods outperform the method by Ozawa et al. We
prove that the verification problems are NP-hard, which justifies the use
of integer programming.

1 Introduction

With the rapid development of cell biology and systems biology, enormous
amounts of protein-protein interaction (PPI) data are available for researchers
to understand important principles of cellular organization and biological func-
tion. An inevitable consequence of this wealth of data goes to the need for
efficient methods to identify important portions of these data. Protein com-
plexes are known as clusters of multiple proteins linked by non-covalent physical
protein-protein interactions that generally correspond to dense regions within
PPI networks. As PPI data grows rapidly, identifying protein complexes within
PPI networks becomes necessary and important due to limited availability of
known protein complexes.
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Recent approaches enable researchers to detect known and unknown protein
complexes within PPI networks. We give a brief overview of state-of-the-art
methods in identification of protein complexes. These methods often extract
dense subgraphs in PPI networks as protein complexes since proteins in com-
plexes are highly interactive with each other. Most methods for predicting
protein complexes have been developed based on graph theory. The MCL algo-
rithm as a novel graph clustering approach categorizes member proteins within
large databases based on precomputed sequence similarity information (Enright
et al., 2002). Another graph theoretic clustering algorithm, MCODE, detects
densely connected regions as molecular complexes in large PPI networks based
on connectivity data (Bader and Hogue, 2003). SPC (superparamagnetic clus-
tering), MC, and PCP also make use of topological properties that proteins
in each complex are densely connected (Spirin and Mirny, 2003; Chua et al.,
2008). RNSC algorithm efficiently clusters PPI networks by using a cost func-
tion (King et al., 2004). Qi et al. (2008) modeled each complex subgraph by a
probabilistic Bayesian network using topological patterns and biological prop-
erties. Maruyama and Chihara (2011) proposed NWE (Node-Weighted Expan-
sion of clusters of proteins) by introducing a random walk with restarts with a
cluster of proteins. Wu et al. (2011) used tandem affinity purification (TAP)
data that is obtained from an experimental method for detecting multi-protein
interactions.

However, one problem that current methods face is that they detect dense
regions as protein complexes without taking into account of structural con-
straints of proteins. As Singh et al. (2010) proposed a structure-based method
for predicting protein-protein interactions, it is important to consider protein
structures in addition to protein-protein interaction networks. Proteins com-
posed of multiple structural domains, which are in most cases autonomous fold-
ing units, may not adequately be treated by these methods and result in an
incorrect group of proteins in extracted complexes. Another reason that causes
the incorrect proteins perhaps comes from no consideration of topology of PPIs
in the networks. Therefore, methods considering multiple domains of proteins
and topology of PPIs are desired to improve the precision of predicting protein
complexes, where the precision of prediction methods is important for under-
standing biological systems because protein complexes often play crucial roles
in cellular mechanism. So far, several computational methods have been pro-
posed to verify protein complexes. These methods have assessed the validation
of individual interaction based on the topology of PPI networks. Chen et al.
(2005) proposed an algorithm called AlternativePathFinder which considers a
complex candidate to be valid if it is included in a closed loop. A clustering-
based method, CMC, maximizes cliques from the weighted PPI networks to
detect protein complexes. In addition, Habibi et al. (2010) proposed an algo-
rithm that seeks for protein complexes from the PPI networks based on finding
maximal k-connected subgraphs. However, almost all of the existing methods
have paid no attention to the structural constraint of proteins in PPI networks,
which resulted in low precision. The method proposed by Ozawa et al. (2010)
has verified and reconstructed the topology of domain-domain interactions in
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PPI networks. This method makes use of the concept that proteins in candi-
dates each of whose domains participates only in a single interaction can form a
valid protein complex. In terms of this concept, this approach seeks for optimal
combinations of domain-domain interactions (DDIs) in the complex candidates
predicted from other existing methods, by using integer linear programming.
As a result, this optimization problem extracts subgraphs from complex can-
didates that contain more than one proteins connected by more than one DDI
as verified protein complexes. Although this approach has achieved a relatively
high precision, it still outputs a number of false positives.

In this paper, we propose a novel formulation of integer programming based
on the idea that a candidate complex should not be divided into many small
complexes, and improve the method by Ozawa et al. for verifying candidate
complexes predicted by graph clustering methods. In addition, we use maximal
components and extreme sets that are defined based on edge connectivity in
graph theory (Nagamochi, 2004). Since the internal proteins of a maximal
component are connected more strongly with each other than with any other
external proteins as well as an extreme set, they are expected to be useful
to further increase the precision. Furthermore, we prove that the problem of
maximizing the number of protein-protein interactions, considered by Ozawa et
al., is NP-hard, and also prove that our problem of maximizing the size of a
connected component given by verified protein-protein interactions is NP-hard.
We implement this improved IP-based method and the combination methods
with maximal components and extreme sets, and perform several computational
experiments. Comparison with the existing method is also conducted to confirm
the advantage of our methods. Finally, we discuss the results of our proposed
methods.

2 Methods

As mentioned in the previous section, Ozawa et al. (2010) proposed an integer
programming (IP)-based method for verifying candidate complexes by maximiz-
ing the number of protein-protein interactions. In this paper, we propose a novel
formulation of integer programming based on the idea that a candidate complex
should not be divided into many small complexes, and improve their method.
Since the problem of maximizing the size of a connected component as well as
that of maximizing the number of protein-protein interactions will be proved as
NP-hard in the next section, we use integer programming for solving the prob-
lem. However, we use an approximate reduction method because it is difficult
to compactly formulate the problem as an integer program. Furthermore, we
propose combinations of the improved method with maximal components and
extreme sets (Nagamochi, 2004).
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2.1 Improved integer programming IPc

The original IP-based method by Ozawa et al. verifies an interaction between
two proteins depending on the presence of interactions between domains in-
cluded in the proteins. It is assumed that a domain interacts with at most
one other domain. If a domain can interact with multiple domains, only one
domain is selected as the partner. In the original IP-based method, such pairs
of domains are selected by maximizing the number of interacting protein pairs.
However, candidate proteins should be connected as much as possible because
the proteins are selected as a complex by prediction methods such as MCODE,
MCL, and RNSC. Therefore, we consider the problem of finding the largest set
of proteins that are connected to each other under the condition that a domain
interacts with at most one domain.

Let P and D be a set of candidate proteins for constituting a complex,
and a set of domains included in the proteins of P, respectively, where each
domain i.k ∈ D is distinguished by the protein i that the domain k belongs
to. Let IP , ID, and IDi,j be a set of potentially interacting protein pairs, a
set of potentially interacting domain pairs, and a set of potentially interacting
domain pairs between proteins i and j, respectively. Then, we approximate
the problem of maximizing the size of a connected component of proteins into
that of maximizing the number of connected components with size three. This
approximated problem can be simply transformed into the following integer
program.

Maximize
∑

i,j,k∈P xi,j,k,

Subject to ∑
{(i.k,j.l)∈ID|i.k=m.n or j.l=m.n}

di.k,j.l ≤ 1 for all m.n ∈ D, (1)

pi,j ≤
∑

(i.k,j.l)∈IDi,j

di.k,j.l for all (i, j) ∈ IP , (2)

xi,j,k ≤ 1

2
(pi,j + pj,k + pi,k) for all i, j, k ∈ P. (3)

In the above inequalities, each variable of xi,j,k, pi,j , and di.k,j.l takes 0 or 1.
xi,j,k = 1 if and only if proteins i, j, and k are connected. pi,j = 1 if and only if
proteins i and j interact with each other. di.k,j.l = 1 if and only if domains i.k
and j.l interact with each other. It should be noted that for variables xi,j,k, we
do not need to treat all combinations of three proteins, and need only proteins

can be connected. Thus, the number of variables xi,j,k is at most

(
|IP |
2

)
.

The inequalities (1) and (2) are also included in the original IP by Ozawa et al.
The meaning of each inequality is as follows:

(1) The number of domains that interact with domain m.n is at most one.

(2) Proteins i and j interact if and only if there is at least one interacting
domain pair (i.k, j.l).
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(3) Proteins i, j, and k are connected if and only if there are at least two
interacting protein pairs from (i, j), (j, k), and (i, k).

It should be noted that the topology of protein-protein interaction networks is
taken into account in Eq. (2). We call the original IP proposed by Ozawa et al.
and our improved IP, ’IPo’ and ’IPc’, respectively.

Figure 1 shows an example of verification by these IP-based methods. Fig-
ure 1(a) shows an example of a protein interaction network and domain-domain
interactions. There are six proteins P1, . . . , P6 that contain one or two domains,
{D1}, {D2, D3}, {D4, D5}, {D6}, {D7, D8} and {D9, D10}, respectively. There
are seven potentially interacting domain pairs ID = {(D1, D7), (D2, D7), (D2, D9),
(D3, D4), (D5, D10), (D6, D8), (D8, D9)}, and seven potentially interacting pro-
tein pairs IP = {(P1, P5), (P2, P5), (P2, P6), (P2, P3), (P3, P6), (P4, P5), (P5, P6)}.
Then, Figure 1(b) shows the optimal solution by IPo. A candidate complex is
divided into two complexes {P1, P4, P5} and {P2, P3, P6}. The value of the ob-
jective function of IPo, that is, the maximum number of verified interacting
protein pairs is 5. On the other hand, the optimal solution by IPc is shown by
Figure 1(c). A protein complex {P2, P3, P5, P6} is generated. Then, the values
of the objective functions of IPo and IPc are 4 and 4, respectively. Though the
optimal score of IPo is better than that of IPc, we can see from this example that
IPc outputs more reasonable results than IPo because a larger cluster remains
in the solution by IPc.

We assume that each complex consists of at least three proteins as well as
the original IP-based method. If only two proteins are obtained as a complex
from the integer programs, the complex is ignored.

2.2 Maximal components and extreme sets

As mentioned before, we use maximal components and extreme sets in graph
theory to enhance the verification ability of the proposed IP-based method.
Maximal components and extreme sets are defined by using edge connectivity.
Let G(V,E) be an undirected edge-weighted graph with a set of vertices V and
a set of edges E, where each edge e has a non-negative real weight wG(e). The
local edge-connectivity λG(u, v) between two nodes u and v is defined as follows
(Nagamochi, 2004).

λG(u, v) = min
{X⊂V |u∈X,v∈V−X}

dG(X),

where dG(X) denotes the cut size of {X,V −X}, that is,
∑

u∈X,v∈V−X wG(u, v).
Figure 2 illustrates a cut {X,V−X} that determines the local edge-connectivity

λG(g, h) between vertices g and h, where the graph G contains the set of 19 ver-
tices V = {a, b, . . . , s} and the set of edges E, each number in this figure denotes
the weight wG of the edge, and the edges without a number are weighted by
1. For the set X = {a, b, e, f, g, l,m, k, q},

∑
u∈X,v∈V−X wG(u, v) = 6. Then,

X gives one of the minimum (g, h)-cuts, and λG(g, h) = 6 (All the minimum
(g, h)-cuts of G are shown in Figure 3). For two vertices u and v, if the local
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edge-connectivity λG(u, v) between u and v is large, it is considered that the
relationship between them is also strong.

A subset X of V is called a maximal component of a graph G if it satisfies
the following conditions,

λG(u, v) ≥ l for ∀u, v ∈ X,

λG(u, v) < l for ∀u ∈ X, ∀v ∈ V −X,

where l = minu,v∈X λG(u, v). It means that the internal vertices of a maximal
component are connected more strongly with each other than with any other
external vertices.

Furthermore, a nonempty proper subset X of V is called an extreme set of
a graph G if it satisfies the following condition,

dG(X) < dG(Y ) for ∀ Y ⊂ X.

It is known that every extreme set is a maximal component, and there exists an
O(mn+ n2 log n) time algorithm for a graph with n vertices and m edges that
computes maximal components and extreme sets (Nagamochi, 2004).

Figure 4 shows the maximal components and the extreme sets for the graph
of Figure 2. Each dashed (solid) curve corresponds to a maximal component
(an extreme set and a maximal component).

For verifying protein complexes, we let wG(u, v) = 1 for each protein-protein
interaction, and calculate maximal components and extreme sets.

3 Hardness results

In this section, we prove that the problem formulated as an integer program
by Ozawa et al. is NP-hard. It maximizes the number of protein-protein in-
teractions under the condition that a domain interacts with at most one other
domain. In addition, we prove that the problem of maximizing the size of a
connected component in a protein complex is NP-hard.

Problem 1 Protein Complex Verification Problem (PCVP)
Given a set of proteins P as a candidate complex, a set of domains D in-

cluded in the proteins, a set of potential protein-protein interactions IP , and a
set of potential domain-domain interactions ID, maximize the number of verified
protein-protein interactions, where a domain can interact with at most one do-
main, and a protein-protein interaction is said to be verified if the corresponding
pair of proteins contains at least one interacting domain pair.

Then, we have the following theorem.

Theorem 3.1 The protein complex verification problem (PCVP) is NP-hard.

Proof. We show a polynomial-time reduction from 3-dimensional matching.
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Problem 2 3-dimensional matching (3DM)
Given S ⊆ X × Y × Z, where X ,Y, and Z are finite mutually disjoint sets

with |X | = |Y| = |Z| = n, find M ⊆ S such that |M| = n and {X,Y, Z |
(X,Y, Z) ∈ M} = X ∪ Y ∪ Z.

Suppose that an instance of 3DM is given as S ⊆ X × Y × Z, where X =
{X1, X2, . . . , Xn}, Y = {Y1, Y2, . . . , Yn} and Z = {Z1, Z2, . . . , Zn} are three
mutually disjoint sets with n elements, respectively.

We transform the instance of 3DM to an instance of PCVP as follows (see
Figure 5).

P = {PX } ∪
n∪

j=1

{PYj} ∪
n∪

k=1

n−1∪
l=1

{P(l)
Zk

},

D =

n∪
i=1

{Xi} ∪
n∪

j=1

n∪
k=1

{DZk

Yj
} ∪

n∪
k=1

n−1∪
l=1

{Z(l)
k },

ID = {(Xi, D
Zk

Yj
) | (Xi, Yj , Zk) ∈ S} ∪

n∪
j=1

n∪
k=1

n−1∪
l=1

{(DZk

Yj
, Z

(l)
k )}

where PX contains domains X1, X2, . . ., and Xn (∈ X ), PYj (Yj ∈ Y) contains

domains DZ1

Yj
, DZ2

Yj
, . . ., and DZn

Yj
, P(l)

Zk
(Zk ∈ Z, l ∈ {1, . . . , n − 1}) contains a

domain Z
(l)
k . If (α, β) ∈ ID and α and β are respectively included in proteins γ

and δ, then we let (γ, δ) ∈ IP .
Then, we can see in the following way that there exists a 3-dimensional

matching if and only if the maximum number of verified protein-protein inter-
actions is exactly (n+n ·(n−1)) = n2, and (Xi, Yj , Zk) ∈ M holds if and only if

(Xi, D
Zk

Yj
) is selected. For each protein pair (PX ,PYj ), exactly one domain pair

is selected because protein PX contains n domains, and a domain interacts with
at most one domain. If more than one domain pair are selected for a protein
pair, the number of proteins that interact with PX is less than n, that is, the
maximum cannot achieve n2. Furthermore, among n domains DZk

Yj
for each Zk

(∈ Z), exactly one domain DZk

Yj
is selected for the interaction with PX , and the

other domains interact with (n − 1) domains of Z
(l)
k (l = 1, . . . , n − 1), respec-

tively. If more than one domain are selected for the interaction with PX , there

exists the protein P(l)
Zk

for some l ∈ {1, . . . , n − 1} that is not able to interact
with any protein.

Furthermore, we can derive a solution for an instance of 3DM in polynomial
time from a solution for the transformed instance of PCVP. An instance of
3DM can also be transformed in polynomial time to the corresponding instance
of PCVP. Therefore, the protein complex verification problem (PCVP) is NP-
hard. 2

From Theorem 3.1, we can also prove that the problem of maximizing the
size of a connected component consisting of proteins is NP-hard.
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Problem 3 Connected Protein Complex Verification Problem (CPCVP)
Given a set of proteins P as a candidate complex, a set of domains D included

in the proteins, a set of potential protein-protein interactions IP , and a set
of potential domain-domain interactions ID, maximize the size of a connected
component given by verified protein-protein interactions, where a domain can
interact with at most one domain.

Theorem 3.2 The connected protein complex verification problem (CPCVP)
is NP-hard.

Proof. We use the same reduction as in the proof of Theorem 1. Then, we can
see that there exists a 3-dimensional matching if and only if all the proteins in P
are connected, and (Xi, Yj , Zk) ∈ M holds if and only if (Xi, D

Zk

Yj
) is selected.

Furthermore, the derivation of a solution of 3DM and the transformation of an
instance of 3DM can be done in polynomial time. Therefore, the connected
protein complex verification problem (CPCVP) is NP-hard. 2

These results justify the use of integer programming both in our method and
in the method by Ozawa et al. (2010). It is to be noted that maximizing the
number of domain-domain interactions (instead of protein-protein interactions)
can be done in polynomial time by using maximum matching.

4 Computational experiments

For evaluating our proposed IP-based method and the combination methods
with maximal components and extreme sets, we performed several computa-
tional experiments, and compared with the original IP-based method that is con-
sidered to be the best existing method for verifying protein complexes (Brohée
and van Helden, 2006).

4.1 Data and implementation

We used WI-PHI (Kiemer et al., 2007) and BioGRID (Stark et al., 2006) as data
of protein-protein interactions, which includes 5,907 and 4,603 yeast proteins
identified by UniProt database (Release 2011 03) (The UniProt Consortium,
2011), and 49,847 and 30,853 interacting protein pairs, respectively. For each
protein, we extracted Pfam domains (Bateman et al., 2004) included in the pro-
tein using the UniProt database. We used iPfam database (version 21.0) (Finn
et al., 2005) as data of potential domain-domain interactions, which includes
2,837 Pfam domains and 4,030 interacting Pfam domain pairs. For obtain-
ing candidate protein complexes, we applied MCL (Enright et al., 2002) with
several parameters of ’inflation’ and MCODE (Bader and Hogue, 2003) with
several parameters of ’node score cutoff’, respectively, to both of the WI-PHI
and BioGRID protein-protein interaction data.

To evaluate the performances of verification methods, we used a known com-
prehensive catalog of yeast protein complexes CYC2008 (Pu et al., 2009), which
includes 408 curated complexes. The precision and the recall of each method,
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also used in (Ozawa et al., 2010; Chua et al., 2008), for a set of verified protein
complexes C and a set of known protein complexes K were calculated as follows:

precision =
|{c ∈ C|∃k ∈ K concordance(c, k) ≥ 0.5}|

|C|
,

recall =
|{k ∈ K|∃c ∈ C concordance(c, k) ≥ 0.5}|

|K|
,

where concordance(c, k) denotes the concordance rate between sets of proteins

c and k, which is defined as |c ∩ k|√
|c|·|k|

. From the definition, multiple predicted

complexes may correspond to the same known complex. The accuracy is defined
as the geometrical mean of the precision and the recall, that is, accuracy =√
precision · recall.
We used IBM ILOG CPLEX (version 12.1) to solve the integer programs.

All of the computational experiments were conducted on a PC with a Xeon
CPU 3.33 GHz and 10 GB memory under the linux OS (version 2.6.16).

4.2 Results

For comparing verification performances of the original IP-based method and
our proposed methods, we performed computational experiments using results
by MCL (Enright et al., 2002) as candidate protein complexes because MCL was
reported to outperform other prediction methods for protein complexes (Brohée
and van Helden, 2006) and has often been used for that purpose. In addition
to results by MCL, we used those by MCODE (Bader and Hogue, 2003).

Figures 6 and 7 show the results of the precision by the original IP-based
method (IPo), our improved IP-based method (IPc), maximal components, ex-
treme sets, and the combination methods of IPc with maximal components
(maximal+IPc) and extreme sets (extreme+IPc) for candidate protein com-
plexes obtained from the WI-PHI and BioGRID protein-protein interaction
data, respectively, by MCL with varying the inflation parameter from 1.5 to
2.5. In the combination methods, IPc is applied after the calculation of max-
imal components and extreme sets, respectively. Each method was applied to
candidate protein complexes obtained by MCL. For the WI-PHI data, the pre-
cision of IPc was better than that of IPo except for inflation=2.3, and in almost
all methods, the precision was the best for inflation=2.1. For the BioGRID
data, the precision of IPc was better than or comparable to that of IPo, and
among all methods, the precision of IPc for inflation=1.8 was the best.

Figures 8 and 9 show the results of the precision by the original IP-based
method (IPo), our improved method (IPc), maximal components, extreme sets,
maximal+IPc, and extreme+IPc for candidate protein complexes obtained from
the WI-PHI and BioGRID protein-protein interaction data, respectively, by
MCODE with varying the inflation parameter from 0.0 to 0.3. For both protein-
protein interaction data, the precision of IPc was better than or comparable to
that of IPo, and among all methods, the precision of IPc was the best except
for the BioGRID data with cutoff=0.0.
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Table 1: Results of the precision, the recall, and the accuracy by the original
IP-based method (IPo), our improved IP-based method (IPc), maximal com-
ponents, extreme sets, maximal+IPc, and extreme+IPc for candidate protein
complexes obtained from the WI-PHI data by MCL with inflation 1.9.
method precision recall accuracy

IPo 0.526316 0.036765 0.139104

IPc 0.526316 0.036765 0.139104

maximal 0.483516 0.098039 0.217724

extreme 0.459459 0.090686 0.204124

maximal+IPc 0.555556 0.039216 0.147602

extreme+IPc 0.538462 0.036765 0.140700

Table 2: Results of the precision, the recall, and the accuracy by the original
IP-based method (IPo), our improved IP-based method (IPc), maximal com-
ponents, extreme sets, maximal+IPc, and extreme+IPc for candidate protein
complexes obtained from the WI-PHI data by MCL with inflation 2.0.
method precision recall accuracy

IPo 0.571429 0.031863 0.134934

IPc 0.600000 0.034314 0.143486

maximal 0.486842 0.093137 0.212939

extreme 0.476190 0.085784 0.202113

maximal+IPc 0.555556 0.036765 0.142915

extreme+IPc 0.578947 0.034314 0.140946

Table 3: Results of the precision, the recall, and the accuracy by the original
IP-based method (IPo), our improved IP-based method (IPc), maximal com-
ponents, extreme sets, maximal+IPc, and extreme+IPc for candidate protein
complexes obtained from the WI-PHI data by MCL with inflation 2.1.
method precision recall accuracy

IPo 0.615385 0.031863 0.140028

IPc 0.642857 0.034314 0.148522

maximal 0.492754 0.088235 0.208514

extreme 0.482143 0.085784 0.203372

maximal+IPc 0.600000 0.036765 0.148522

extreme+IPc 0.647059 0.034314 0.149007

Tables 1,2, and 3 show the results of the precision, recall, and accuracy by
the original IP-based method (IPo), our improved IP-based method (IPc), max-
imal components, extreme sets, maximal+IPc, and extreme+IPc for candidate
protein complexes obtained from the WI-PHI protein-protein interaction data
by MCL with inflation 1.9, 2.0, and 2.1, respectively. For inflation=1.9, the
precision of IPo was equal to that of IPc and less than that of maximal+IPc
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and extreme+IPc, the precision of maximal+IPc was the best, and IPc out-
put the same solution as IPo. For inflation=2.0, 2.1, the precisions of IPc and
extreme+IPc were better than that of IPo. The recalls and accuracies of our
methods were better than those of IPo, and the precision of extreme+IPc for
inflation=2.1 was the best. Though the recalls of IPo and IPc were low, Ozawa
et al. also reported that the recall of their method that used domain-domain
interaction data of iPfam database (version 21.0) and MCL was low. How-
ever, it is important to enhance the precision in order to avoid generation of
too many erroneous predictions. These results suggest that our proposed IP-
based methods, especially extreme+IPc, considerably outperform the original
IP-based method both in recall and precision. The maximum execution times
of IPo and IPc for a candidate protein complex by MCL with inflation 2.1 were
about 0.04 and 0.84 seconds, respectively, where both methods took less than
0.01 second per complex in most cases. Though IPc took longer CPU time than
IPo did, it is still acceptable. Since it is more important to achieve a better
precision than to have shorter CPU time, we can conclude that IPc is better
than IPo.

5 Conclusions

We have addressed the problem of verification of candidate protein complexes,
and proposed an improved integer programming (IP)-based method by intro-
ducing the size of a connected component. In addition to the IP-based method,
we proposed the combination methods with maximal components and extreme
sets, which partition vertices based on the connectivity between two vertices
graph-theoretically. The results of several computational experiments suggest
that our proposed methods outperform the existing IP-based method.

Furthermore, we proved that the problem of maximizing the number of
protein-protein interactions under the condition that a domain interacts with at
most one other domain, considered by Ozawa et al., is NP-hard, and also proved
that the problem of maximizing the size of a connected component given by ver-
ified protein-protein interactions under the same condition is NP-hard. These
results justify the use of integer programming both in our method and in the
method by Ozawa et al. (2010).

As a future work, it remains to find a compact formulation of the problem of
maximizing the size of a connected component because we solved this problem
approximately. Other future work includes developing a method with a better
recall while keeping the precision, and improving the efficiency factor to a higher
range.
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Figure 1: Example of verification by two IP-based methods, IPo and IPc. (a) Ex-
ample of a protein interaction network and domain-domain interactions. There
are six proteins that contain one or two domains, seven potentially interact-
ing domain pairs, and seven potentially interacting protein pairs, where these
protein-protein interactions are not shown. (b) The optimal solution by the IP
of Ozawa et al. (2010), IPo. Each solid line denotes a protein-protein interac-
tion. Two protein complexes are generated. (c) The optimal solution by our
proposed IP, IPc. A larger protein complex is generated.
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Figure 2: Illustration of a cut {X,V − X} that determines the local edge-
connectivity λG(g, h) between vertices g and h, where the graph G contains the
set of 19 vertices V = {a, b, . . . , s} and the set of edges E, each number in this
figure denotes the weight wG of the edge, and the edges without a number are
weighted by 1. For the set X = {a, b, e, f, g, l,m, k, q},

∑
u∈X,v∈V−X wG(u, v) =

6. Then, X gives one of the minimum (g, h)-cuts, and λG(g, h) = 6.

3

2

4

4

2

3
3

33

3

2

2
22

3

X V-Xa cb d

k

i

o

n
m

e f g

h

j

l

q

p

r s

Figure 3: Minimum (g, h)-cuts of the graph G in Figure 2. There are four
cuts given by the sets including the vertex h, X1 = {h}, X2 = {h, n}, X3 =
{h, n, o, p, r, s}, and X4 = {c, d, h, i, j, n, o, p, r, s}.
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Figure 4: Illustration of maximal components and extreme sets. The maximal
components and the extreme sets of the graphG in Figure 2. Each dashed (solid)
curve corresponds to a maximal component (an extreme set and a maximal
component).
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Figure 5: Illustration of the reduction from 3-dimensional matching (3DM)
to the protein complex verification problem (PCVP) in the case of n = 26,
where X = {A,B, . . . , Z}, Y = {1, 2, . . . , 26}, and Z = {a, b, . . . , z}. The large
and small circles denote proteins and domains, respectively. The solid and
dotted lines denote potential domain-domain interactions, and the solid lines
are selected.
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Figure 6: Results of the precision by IPo, IPc, maximal, extreme, maximal+IPc,
and extreme+IPc for candidates obtained from WI-PHI by MCL with varying
the inflation parameter from 1.5 to 2.5. ’maximal+IPc’ and ’extreme+IPc’
denote that IPc is applied after the calculation of maximal components and
extreme sets, respectively. Each method was applied to candidate protein com-
plexes.
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Figure 7: Results of the precision by IPo, IPc, maximal, extreme, maximal+IPc,
and extreme+IPc for candidates obtained from BioGRID by MCL with varying
the inflation parameter from 1.5 to 2.5.
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Figure 8: Results of the precision by IPo, IPc, maximal, extreme, maximal+IPc,
and extreme+IPc for candidates obtained from WI-PHI by MCODE with vary-
ing the node score cutoff parameter from 0.0 to 0.3.

 0.4

 0.6

 0.8

0.0 0.1 0.2 0.3

p
re

ci
si

o
n

Node Score Cutoff of MCODE

IPo
IPc

maximal
extreme

maximal+IPc
extreme+IPc

Figure 9: Results of the precision by IPo, IPc, maximal, extreme, maximal+IPc,
and extreme+IPc for candidates obtained from BioGRID by MCODE with vary-
ing the node score cutoff parameter from 0.0 to 0.3.
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