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Abstract
We develop novel single-GPU parallelizations of the Smith-Waterman algorithm for pairwise
sequence alignment. Our algorithms, which are suitable for the alignment of a single pair of very
long sequences, can be used to determine the alignment score as well as the actual alignment.
Experimental results demonstrate an order of magnitude reduction in run time relative to
competing GPU algorithms.
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I. Introduction
Sequence alignment is a fundamental problem in bioinformatics. In its most elementary
form, known as pairwise sequence alignment, we are given two sequences A and B and are
to find their best alignment (either global or local). For DNA sequences, the alphabet for A
and B is the four letter set {A, C, G, T} and for protein sequences, the alphabet is the 20
letter set {A, C–I, K–N, P–T, VWY}. The best global and local alignments of the sequences A
and B can be found in O(|A| * |B|) time using the Needleman-Wunsch [1] and Smith-
Waterman [2] dynamic programming algorithms. In this paper, we consider only the local
alignment problem though our methods are readily extendable to the global alignment
problem.

When the sequences A and B are long or when the number of sequences in the database D is
large, computational efficiency is often achieved by replacing the Smith-Waterman
algorithm with a heuristic that trades accuracy for computational time. This is done, for
example in the sequence alignment systems BLAST [3], FASTA [4] and Sim2 [5].
However, with the advent of low-cost parallel computers, there is renewed interest in
developing computationally practical systems that do not sacrifice accuracy.

Toward this end, several researchers have developed parallel versions of the Smith-
Waterman algorithm that are suitable for Graphics Processing Units (GPUs) [6], [7], [8], [9],
[10], [11]. Many of these implementations solve a variant of the pairwise sequence
alignment problem that asks for the best k, k > 0, alignments. In the database alignment
problem, we are to find the best k alignments of a sequence A with the sequences in a
database D. The database alignment problem may be solved by solving |D| pairwise
alignment problems with each pair comprised of A and a distinct sequence from D. This
requires |D| applications of the Smith-Waterman algorithm. When sequences are small
enough to fit the memory of the streaming processor (SM) of the GPU, each of these
alignments can be computed independently on different SMs and can generate high
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performance. However, for large sequences, this cannot be easily achieved as only a portion
of the computations can be stored in the SM memory. For example, our experiments indicate
that CUDASW + +2.0 [8] cannot handle strings whose length is more than 70000 on
NVIDIA Tesla C2050.

The work of Khajej-Saeed, Poole, and Perot [9] and Sriwardena and Ranasinghe [10] is of
particular relevance to us as this work specifically targets the alignment of two very long
sequences. As noted by [9], biological applications often have |A| in the range 104 to 105 and
|B| in the range 107 to 1010. We refer to instances of this size as very large. Khajej-Saeed et
al. [9] modify the Smith-Waterman dynamic programming equations to obtain a set of
equations that are more amenable to parallel implementation. However, this modification
introduces computational overhead. Despite this overhead, their algorithm is able to achieve
a computational rate of up to 0.7 GCUPS (billion cell updates per second) using a single
NVIDIA Tesla C2050. The instance sizes they experimented with had |A| * |B| up to 1011.
Although Sriwardena and Ranasinghe [10] develop their GPU algorithms for pairwise
sequence alignment specifically for the global alignment version, their algorithms are easily
adapted to the case of local alignment. While their adaptations do not have the overheads of
[9] that result from modifying the recurrence equations so as to increase parallelism, their
algorithm is slower than that of [9].

In this paper, we develop single-GPU parallelizations of the unmodified Smith-Waterman
algorithm and obtain a speedup of up to 17 relative to the single-GPU algorithm of [9] and a
computational rate of 7.1 GCUPS. Our high-level parallelization strategy is similar to that
used by Melo et al. [12] and Futamura et al. [13] to arrive at parallel algorithms for local
alignment and syntenic alignment on a cluster of workstations, respectively. Both divide the
scoring matrix into as many strips as there are processors and each processor computes the
scoring matrix for its strip row wise. Melo et al. [12] do the traceback needed to determine
the actual alignment serially using a single processor while Futamura et al.’s [13] do the
traceback in parallel using a strategy similar to the one used by us. The essential differences
between our work and that of [12] and [13] are:

1. Our algorithms are optimized for a GPU rather than for a cluster.

2. We divide the scoring matrix into many more strips than the number of streaming
multiprocessors in a GPU.

3. The computation of a strip is done in parallel using many threads and the CUDA
cores of a streaming multiprocessor rather than serially.

The rest of the paper is organized as follows. In section II, we review the NVIDIA GPU
architecture used by us and in Section III, we describe the Smith-Waterman algorithm for
pairwise sequence alignment. In section IV, we describe our GPU adaptation of the Smith-
Waterman algorithm for the case when we want to report only the score of the best
alignment and in Section V, we describe our adaptation for the case when the best alignment
as well as its score are to be reported. Experimental results comparing the performance of
our GPU adaptations with those of [9] and [10] are presented in Section VI and we conclude
in section VII.

II. GPU Architecture
Our work targets the NVIDIA C2050 GPU. The C2050 comprises 448 processor cores
grouped into 14 streaming multiprocessors (SM) with 32 cores per SM. Each SM has 64KB
of shared memory/L1 cache that may be set up as either 48KB of shared memory and 16KB
of L1 cache or 16KB of shared memory and 48KB of L1 cache. In addition, each SM has
32K registers. The 14 SMs access a common 3GB of DRAM memory, called device or
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global memory, via a 768KB L2 cache. A C2050 is capable of performing up to 1.288
TFLOPS of single-precision operations and 515 GFLOPS of double precision operations. A
C2050 connects to the host processor via a PCIexpress bus. The master-slave programming
model in which one writes a program for the host or master computer and this program
invokes kernels that execute on the GPU is supported. The programming language is
CUDA, which is an extension of C to include GPU support. The key challenge in deriving
high performance on this machine is to be able to effectively minimize the memory traffic
between the SMs and the global memory of the GPU. This effectively requires design of
novel algorithmic and implementation approaches and is the main focus of this paper.

III. Smith-Waterman Algorithm
Let A = a1a2…am and B = b1b2…bn be the two sequences that are to be locally aligned. Let
c(ai, bj) be the score for matching or aligning ai and bj and let α be the gap opening penalty,
and β the gap extension penalty. So, the penalty for a gap of length k is α + kβ. Gotoh’s [14]
variant of the Smith-Waterman dynamic programming algorithm with an affine penalty
function uses the following three recurrences.

Where the score matrices H, E, and F have the following meaning:

1. H(i, j) is the score of the best local alignment for (a1…ai) and (b1…bj).

2. E(i, j) is the score of the best local alignment for (a1…ai) and (b1…bj) under the
constraint that ai is aligned to a gap.

3. F(i, j) is the score of the best local alignment for (a1…ai) and (b1…bj) under the
constraint that bj is aligned to a gap.

The initial conditions are: H(0, 0) = H(i, 0) = H(0, j) = 0; E(0, 0) = −∞; E(i, 0) = −α−iβ;
E(0, j) = −∞; F (0, 0) = −∞; F (i, 0) = −∞; F(0, j) = −α−jβ; 1 ≤ i ≤ m, 1 ≤ j ≤ n.

As mentioned in the introduction, the GPU adaptations of Khajej-Saeed, Poole, and Perot
[9] and Sriwardena and Ranasinghe [10] are most suited for the pairwise alignment of very
long sequences. Khajej-Saeed, Poole, and Perot [9] enhance parallelism by rewriting the
recurrence equations. This rewrite eliminates the E terms and so their algorithm initially
computes H values that differ from those computed by the original set of equations. Let H′
be the computed H values. In a follow up step, modified E values, E′, are computed. The
correct H values are then computed in a final step from H and E′. Although the resulting 3-
step computation increases parallelism, it also increases I/O traffic between device memory
and the SMs.

Sriwardena and Ranasinghe [10] propose two GPU algorithms for global alignment using
the Needleman-Wunsch dynamic programming algorithm [1]. These strategies can be
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readily deployed for local alignment using Gotoh’s variant of the Smith-Waterman
algorithm. Both of the strategies of Sriwardena and Ranasinghe [10] are based on the
observation that for any (i, j), the H, E, and F values depend only on values in the positions
immediately to the north, northwest, and west of (i, j) (see Figure 1(a)). Consequently, it is
possible to compute all H, E, and F values on the same antidiagonal, in parallel, once these
values have been computed for the preceding two antidiagonals. The first algorithm,
Antidiagonal, of Sriwardena and Ranasinghe [10] does precisely this. The GPU kernel
computes H, E, and F values on a single antidiagonal using values stored in device/global
memory for the preceding two antidiagonals. The host program sends the two strings A and
B to device memory and then invokes the GPU kernel once for each of the m + n − 1
antidiagonals. Additional (but minor) speedup can be attained by recognizing that the
computation for the first and last few antidiagonals can be done faster on the host CPU and
invoking the GPU kernel only for sufficiently large antidiagonals. When we desire to
determine only the score of the best alignment, the device memory needed by Antidiagonal
is O(min{m, n}). However, when the best alignment also is to be reported, O(mn) memory is
required to save the information needed to reconstruct the best alignment. Following the
computation of the H, E, and F values a serial traceback is done to determine the best
alignment.

The second GPU algorithm, BlockedAntidiagonal, of Sriwardena and Ranasinghe [10]
partitions the H, E, and F values into s × s square blocks (see Figure 1(b)) and employs a
GPU kernel to compute the values for a block. The host program allocates blocks to SMs
and each SM computes the H, E, and F values for its assigned block using values computed
earlier and stored in device memory for the blocks immediately to its north, northwest, and
west. Hence, BlockedAntidiagonal attempts to enhance performance by utilizing both block-
level parallelism and parallelism within an antidiagonal of a block. Experimental results
reported in [10] demonstrate that BlockedAntidiagonal is roughly two times faster than
Antidiagonal. The BlockedAntidiagonal strategy of Figure 1(b) may be enhanced for the
case when we are interested only in the score of the best alignemnt. In this enhancement, we
write to global memory only the computed values for the bottom and right boundaries of
each block. This reduces the global memory I/O traffic to O(mn/s).

IV. Computing the Score of the Best Local Alignment
In our GPU adaptation, StripedScore, of the Smith-Waterman algorithm, we assume that m
≤ n (in case this is not so, simply swap the roles of A and B) and partition the scoring
matrices H, E, and F into ⌈n/s⌉ m×s strips (Figure 2). Here, s is the strip width. Let sm be
the number of SMs in the GPU (for the C2050, sm = 14). The GPU kernel is written so that
SM i computes the H, E, and F values for all strips j such that j mod sm = i, 0 ≤ j < ⌈n/s⌉, 0
≤ i < sm. Each SM works on its assigned strips serially from left to right. That is, if SM 0 is
assigned strips 0, 14, 28, and 42 (this is the case, for example when sm = 14, s = 8, and n =
440), SM 0 first computes all H, E, and F values for strip 0, then for strip 14, then for strip
28, and finally for strip 42. When computing the values for a strip, the SM computes by
antidiagonals confined to the strip with values along the same antidiagonal computed in
parallel. The computed values for each antidiagonal are stored in shared memory. Each SM
uses three one-dimensional arrays (preceding two antidiagonals and current antidiagonal)
residing in shared memory and one for each of E and F and one for swapping purpose. The
size of each of these arrays is O(min{m, s}). Additionally, each strip needs to communicate
m H values and m F values to the strip immediately to its right. This communication is done
via global memory. First each strip accumulates, in a buffer, a threshold number, T, of H and
F values needed by its right adjacent strip in shared memory. When this threshold is
reached, the accumulated H and F values are written to global memory. Each SM polls
global memory to determine whether the next batch of H and F values it needs from its left
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adjacent strip are ready in global memory. If so, it reads this batch and computes the next T
antidiagonals for its strip. If not, it waits in an idle state.

Our striped algorithm therefore requires O(min{m, s}) shared memory per SM and O(mn/s)
global memory. The I/O traffic between global memory and the SMs is O(mn/s). To derive
the computational time requirements (exclusive of the time taken by the global memory I/O
traffic), we assume that the threshold value T is O(1). We note that the computation for the
kth strip cannot begin until the top right value of strip k − 1 has been computed. An SM with
c processors takes Ta = O(s2/c) to compute the top right value of the strip assigned to it and
O(ms/c) time to complete the computation for the entire strip. So, SM p − 1 cannot start
working on the first strip assigned to it until time (p−1)Ta. When an SM can go from the
computation of one strip to the computation of the next strip with no delay, the completion
time of SM p−1, and hence the time taken by the GPU to do all its assigned work (exclusive

of the time taken by global memory I/O traffic), is .
When an SM takes less time to complete the computation for a strip than it takes to compute
the data needed to commence on the next strip assigned to the SM (approximately, ),
an SM must wait  time between the computation of successive strips assigned to

it. So, the time at which SM p finishes is . We see that while
computation time exclusive of global I/O time increases as s increases, global I/O time
decreases as s increases. Our experiments of Section VI show that for large m and n, the
reduction in global I/O memory traffic that comes from increasing the strip size s more than
compensates for the increase in time spent on computational tasks. Although using a larger
strip size s reduces overall time, the size of the available shared memory per SM limits the
value of s that may be used in practice.

In our GPU implementation of StripedScore, the substitution matrix is stored in the shared
memory of each SM using 23 × 23 × sizeof(int) bytes. Additionally, each SM has an output
buffer of length 32 for writing values on the boundary of each strip to global memory. This
buffer takes 32 × sizeof(int) bytes. We also use six arrays of length min{s, m} + 2 each to
hold the H values on three adjacent antidiagonals, E values and F values, and new E or F
values to be swapped with old values. Another 1200 bytes are reserved by the CUDA
compiler to store built-in variables and pass function parameters. The shared memory cache
was configured as 48KB shared memory and 16KB L1 cache. So, min(s, m) should be less
than 1902. Since we are aligning very large sequences, we assume s < m. Hence, s < 1902
for our implementation.

The followings are important differences between BlockedAntidiagonal and StripedScore:

1. BlockedAntidiagonal requires many kernel invocations from the host while
StripedScore requires just one kernel invocation. In other words, the
synchronization of BlockedAntidiagonal is done on the host side while in
StripedScore, the synchronization is done on the device side, which significantly
reduces the overhead.

2. In BlockedAntidiagonal the assignment of blocks that are ready for computation to
SMs is done by the GPU block scheduler while in StripedScore the assignment of
strips to SMs is programmed into the kernel code.

3. The I/O traffic of StripedScore is O(mn/s) while that of BlockedAntidiagonal is
O(mn).

4. While for BlockedAntidiagonal near-optimal performance is achieved when s = 8,
we envision much larger s values for StripedScore which can be up to 1900.
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Consequently, there is greater opportunity for parallelism within a strip than within
a block.

The above steps can lead to significant improvement in the overall performance.

V. Computing the Best Local Alignment
In this section, we describe two GPU algorithms for the case when we wish to determine
both the best alignment and its score.

A. StripedAlignment
With each position (u, v) of H, E, and F, we associate a start state, which is a triple (i, j, X),
where (i, j) are the coordinates of the local start point of the optimal path to (u, v). This local
start point is either a position in the current strip or a position on the right boundary of the
strip immediately to the left of the current strip. X is one of H, F, and E and identifies
whether the optimal path to (say) H(u, v) begins at H(i, j), F (i, j), or E(i, j).
StripedAlignment is a 3-phase algorithm. The first phase is an extension of StripedScore in
which each strip stores, in global memory, not only the H and F values needed by the strip
to its right but also of the local start states of the optimal path to each boundary cell. For
each boundary cell (u, v), three start states (one for each of H(u, v), F (u, v) and E(u, v)) are
stored. So, for the 4 strips of Figure 3, the boundary cells store, in global memory, the local
start states of subpaths that end at the boundary cells (*, 4), (*, 8), (*, 12), and (*, 16),
Additionally, we need to store the local start state and the end point for the overall best
alignment. Since the highest H score is to (8, 9) and the local start state for H(8, 9) is (7, 8,
H), (7, 8, H) is initially stored in registers and finally written along with (8, 9, H) to global
memory. In phase 1, the local start states for the optimal paths to all boundary cells (not just
the boundary cells through which the overall alignment path traverses) are written to global
memory.

In phase 2, we serially determine, for each strip, the start state and end state point of the
optimal alignment subpath that goes through this strip. Suppose for our example of Figure 3,
we determine that the optimal alignment path is comprised of a subpath from (7, 8, H) to (8,
9, H), another subpath from (3, 4, F) to (7, 8, H) and one from (2, 3, H) to (3, 4, F).

Finally, in phase 3, the optimal subpath for each strip the optimal path goes through is
computed by recomputing the H, E, and F values for the strips the optimal alignment path
traverses. Using the saved boundary H and F values, it is possible to compute the subpaths
for all strips in parallel.

B. ChunkedAlignment
ChunkedAlignment, like StripedAlignment, is a 3-phase algorithm. In ChunkedAlignment,
each strip is partitioned into chunks of height h (Figure 4). For each h×s chunk we store, in
global memory, the H, F, and local start states for positions on right vertical chunk
boundaries (i.e., vertical buffers, which are the same as boundary buffers in
StripedAlignment) and the H and E values for horizontal buffers. The assignment of strips to
SMs is the same as in StripedScore (and StripedAlignment).

In phase 2, we use the data stored in global memory by the phase 1 computation to
determine the start and end points of the subpaths of the optimal alignment path within each
strip. Finally, in phase 3, the optimal subpaths are constructed by a computation within each
strip through which the optimal alignment traverses. However, the computation with a strip
can be limited to essential chunks as shown by the shaded chunks in Figure 4. The
computation for these (sub)-strips can be done in parallel.
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There are two major differences between StripedAlignment and ChunkedAlignment:

1. ChunkedAlignment generates more I/O traffic than does StripedAlignment and also
requires more global memory on account of storing horizontal buffer data.
Assuming that the height and width of the chunk are nearly equal, the I/O traffic
and the global memory requirement are roughly twice the amount for
StripedAlignment for the same strip size as the width of the chunk.

2. Unlike StripedAlignment, the computation begins at the start point of a chunk rather
than at the first row of the strip. In practice, this should reduce the amount of
computation significantly.

VI. Experimental Results
We evaluated the running time of StripedScore as a function of strip width s (Figure 5).
lenQuery is the length of the query sequence and lenDB is the length of the subject
sequence. As predicted by the analysis of Section IV, for sufficiently large sequences, the
running time decreases as s increases. However if sequences are relatively small, when s
increases, the running time decreases first and then increases.

Next, we compared the relative performance of StripedScore with s = 1900,
PerotRecurrence (the code of [9] modified to report the best score rather than the best 200
scores), BlockedAntidiagonal [10], EnhancedBA (our enhancement of BlockedAntidiagonal
in which only the values on the right and bottom boundaries of each block are stored in
global memory thus reducing global memory usage significantly), and CUDASW++2.0 [8].
Figure 6 gives the run time for these algorithms. As can be seen, PerotRecurrence takes 13
to 17 times the time taken by StripedScore. The speedup ranges of StripedScore relative to
BlockedAntidiagonal, EnhancedBA, and CUDASW + +2.0 are, respectively, 20 to 33, 2.8 to
9.3, and 7.7 to 22.8. BlockedAntidiagonal and CUDASW ++2.0 were unable to solve large
instances because of the excessive memory required by them.

VII. Conclusion
In this paper, we have developed single-GPU parallelizations of the unmodified Smith-
Waterman algorithm for sequence alignment. Our scoring algorithm StripedScore achieves a
speedup of 13 to 17 relative to the single-GPU algorithm of [9]. The speedup ranges relative
to BlockedAntidiagonal [10] and CUDASW ++2.0 [8] are, respectively, 20 to 33 and 7.7 to
22.8. Our algorithm for computing the alignment score achieves a computational rate of 7.1
GCUPS on a single GPU.
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Figure 1.
(a) Data dependency of Smith-Waterman algorithm; (b) Illustration of BlockedAntidiagonal
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Figure 2.
Striped Smith-Waterman algorithm
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Figure 3.
Example for StripedAlignment
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Figure 4.
Example for ChunkedAlignment
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Figure 5.
Running time (ms) of StripedScore for different s values
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Figure 6.
Running time (ms) of scoring algorithms
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