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 
Abstract— Prostate cancer is among the most common cancer in 
males and its heterogeneity is well known. Its early detection 
helps making therapeutic decision. There is no standard 
technique or procedure yet which is full-proof in predicting 
cancer class. The genomic level changes can be detected in gene 
expression data and those changes may serve as standard model 
for any random cancer data for class prediction. Various 
techniques were implied on prostate cancer data set in order to 
accurately predict cancer class including machine learning 
techniques. Huge number of attributes and few number of 
sample in microarray data leads to poor machine learning, 
therefore the most challenging part is attribute reduction or non 
significant gene reduction.  In this work we have compared 
several machine learning techniques for their accuracy in 
predicting the cancer class i.e., Tumor or Normal. Machine 
learning is effectively good when the number of attributes (genes) 
are larger than the number of samples which is rarely possible 
with gene expression data. Attribute reduction or gene filtering is 
absolutely required in order to make the data more meaningful 
as most of the genes do not participate in tumor development and 
are irrelevant for cancer prediction. Here we have applied 
combination of statistical techniques such as inter-quartile range 
and t-test, which has been effective in filtering significant genes 
and minimizing noise from data. Further we have done a 
comprehensive evaluation of ten state-of-the-art machine 
learning techniques for their accuracy in class prediction of 
prostate cancer. The prostate cancer training data set consists of 
12600 genes and 102 samples (instances) and test data set has the 
same number of genes and 34 different samples and has an 
overall ten-fold difference from the training data set. After 
applying inter-quartile range followed by a t-test statistics for 
attribute reduction we got 856 most significant genes. All the 
used machine learning techniques were trained with these 
significant genes. Out of these techniques, Bayes Network out 
performed with an accuracy of 94.11% followed by Navie Bayes 
with an accuracy of 91.17%. To cross validate our results, we 
modified our training dataset in six different way and found that 
average sensitivity, specificity, precision and accuracy of Bayes 
Network is highest among all other machine learning techniques 
used. We also compared our results with the others work on the 
same kind of dataset and found that our results are better than 
others. 
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I. INTRODUCTION 
UMOR STATE of prostate cancer is difficult to detect, as 
prostate cancer is heterogenic in nature [1]. The 
conventional diagnostic techniques are not always 

effective as they rely on the physical and morphological 
appearance of the tumor. Early stage prediction and diagnosis 
is difficult with those conventional techniques. Moreover, 
these techniques are also costly, time consuming, requires 
large laboratory setup and highly skilled persons. It is well 
known that cancers are involved in genome level changes [2]. 
Thus, it implies that for a specific type of cancer there could 
be pattern of genomic change. If those patterns are known, 
then it can serve as a model for the detection of that cancer [3] 
and will help in making better therapeutic decisions.  
 Due to recent advancements in high-throughput techniques 
for measuring gene expression, it is now possible to monitor 
the expression levels of tens of thousands of gene at a time. 
Several researchers have done significant researches, using 
microarray gene expression data to classify cancers [4] but 
still predicting cancer class with high accuracy remains a 
challenge. Here we have done a comparative evaluation of 
several machine learning techniques for their accuracy in 
predicting the cancer sample class i.e., Tumor or Normal. 
 The main difficulty with any machine learning technique is 
to get trained with large number of genes and comparatively 
very few samples [5]. This is known as "curse of 
dimensionality" problem. Machine learning is effectively good 
when the samples are more and attributes are less but this is 
rarely possible with gene expression data. Thousands of genes 
in gene expression data makes the data huge and tough for any 
machine learning technique to get trained on it. Attribute 
reduction or gene filtering is absolutely required in order to 
make the data more meaningful [6] as most of the genes do 
not participate in tumor development which means that they 
are irrelevant for cancer prediction. Many researchers have 
used various techniques for attribute reduction or gene 
filtering. Here we have applied combination of statistical 
techniques such as Quartile Range and t-test, which has been 
effective in filtering significant genes and minimizing noise 
and irrelevant attributes from data. 
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 We have used ten different machine learning techniques 
such as Bayes Network (BN), Naive Bayes (NB), Logistic 
Model Tree (LMT), C4.5, Decision Table (DT), Sequential 
Minimal Optimization Support Vector Machine (SMO-SVM), 
Logit Boost (LB), Random Forest (RF), Neural Network (NN) 
and Genetic Algorithm (GA).  

II. PREVIOUS RELATED WORKS 
Several machine learning techniques [7] such as, Support 
Vector Machines (SVM) [8], k-Nearest Neighbours (kNN) [9], 
Artificial Neural Networks [10], Genetic Programming [11], 
Genetic Algorithms [12], Bayesian Network [13], Naive 
Bayes [14], Decision Trees [15], Rough Sets [16], Emerging 
Patterns [17], Self Organising Maps [18], have been used for 
feature selection, attribute reduction, class prediction  and 
classification using gene expression data. SVM has been used 
for knowledge based gene expression analysis, recognition of 
functional classes of genes [15], gene selection [19]. A 
statistical based method has been used in [43] for 
identification and filtration of most significant genes that can 
act as a best drug target. kNN was successfully used for 
making a model which was capable of predicting the identity 
of unknown cancer samples [3]. The problem of gene 
reduction from huge microarray data set was solved by neural 
network [20], moreover, it was able to identify the genes 
responsible for particular type of cancer occurrence. Genetic 
Algorithm was used for building selectors where the state of 
allele denotes whether it (gene) is selected or not [21]. Genetic 
Programming has been shown to work excellent in case for 
recognition of structures for large data sets [22]. It was also 
applied to microarray data to generate programs that predict 
the malignant states of cancerous tissue, as well as classify 
different types of tissues [23]. Bayesian Network were well 
applied for identification of gene regulatory network from 
time course microarray data [24]. Self Organising Maps shows 
good result for gene clustering [25]. Naive Bayes has been 
used by several researchers for gene selection and 
classification [26] [27]. Emerging Pattern is markedly good 
for microarray data analysis. Moreover it has an advantage of 
designing interaction among genes which enhances 
classification accuracy [28]. In our recent work, we 
constructed a prostate cancer-specific gene regulatory network 
from gene expression profiles and identified some highly 
connected hub genes using Pearson's correlation coefficient 
[34]. We also applied information theoretic approach for 
reconstruction and analysis of gene regulatory network of 
colon cancer in one of our recent work [42]. But still which 
method one should apply for the classification and prediction 
of a particular cancer with high accuracy remains a challenge. 

III. MATERIALS AND METHODS 
The prostate cancer data set was taken from Kent Ridge 
Biomedical Data Repository. The Training data set has 12600 
genes (attributes) and 102 samples (instances), while the test 
data set has the same number of gens and 34 different samples 
and has an overall ten-fold difference from the training data 
set. The methodologies used in this study are discussed as 
follows. 

Data Normalization and Attribute Reduction: As the available 
dataset has large number of genes compared to samples, 
before training machine learning we have done data 
normalization using inter-quartile range and attribute 
reduction using t-test. Normalization is a data preprocessing 
technique used to rescale attribute values to fit in a specific 
range. Normalizing data is important when dealing with 
attributes of different units and scales. The inter-quartile range 
(IQR) is a measure of dispersion which is defined as the 
difference between the upper and lower quartiles, i.e., IQR = 
Q3 −  Q1, where the first quartile Q1 represents a quarter and 
the third quartile Q3 three quarters of the list of all the data. 
The IQR is essentially the range of the middle 50% of the data 
and hence it is not affected by outliers or extreme values. 
 After normalizing data we used a two tailed t-test for 
extracting differentially expressed genes among two types of 
sample, i.e., Normal and Tumor, at a significant level α=0.001. 
General formula of t-Test of unequal sample size is, 
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x1 and x2 are two unequal samples and 21 xx  is the 
difference between the sample mean. 21xxS   is the standard 
error of the difference, n1 and n2 are the size of the samples. In 
this case we have n1 and  n2 as 52 and 50 for Tumor and 
Normal samples, respectively. After applying t-test, out of 
12600 genes, 856 genes were extracted out. These genes are 
the differentially expressed genes. From the test data set, we 
extracted out the same genes as in remained in the training 
data set after normalization and attribute reduction. 
 
1. Naive Bayes: It is a simple probability based techniques 
mainly based on Bayes theorem with high independence 
assumption [30]. The presence or absence of any attribute is 
not dependent on other.  It requires small amount of training 
data in order to estimate the parameters required for 
classification [31][32]. The probability of posterior (p) which 
depends over a class variable C conditional on variable 
features F1,…Fn , where n is the number of features, is given 
by: 
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2. Bayes Net: Bayes Net was developed for improving the 
performance of Naive Bayes. These are the directed acyclic 
graphs (DAG) which allow an effective representation of joint 
probability distribution for a set of random variables [30]. A 
finite set U = {X1,…,Xn}, of discrete random variables Xi , then 
the joint probability distribution PB over the variables of set U 
is given by: 
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A training set D = {t1,…,tn} of instances of T, finds a network 
B which best matches the training set D. 

3. LogitBoost: Boosting was well describe by  “Freund and 
Schapire”  that it is a classification which works by sequential 
implementation of  a classification algorithm to reweighted 
training data and then taking the sequence classifiers produced 
by the weighted majority vote [33]. For two class problem 
boosting can be taken as an approximation to additive 
modeling on the logistic scale based on Bernoulli likelihood as 
a criterion. When cost function of logistic regression is applied 
on generalized model of AdaBoost, LogitBoost is derived. 

4. C4.5: It is an extension of ID3 algorithm proposed by  Ross 
Quinlan [35] which is used to generate a decision tree for 
classification. C4.5 is also known as statistical classifier. The 
C4.5 constructs decision tree from a set of training dataset 
using information entropy concepts. If we have training 
dataset S={s1, s2, s3,...} which are already classified samples, 
each sample si consists of a p-dimensional vector (x1i, x2i, ..., 
xpi), where xj stands for attributes of the sample and the class 
in which sample si falls. At every node of the tree, C4.5 
chooses the attribute that most effectively divides its set of 
samples into subsets. The division condition is based on 
normalized information gain, i.e., difference in entropy. The 
attribute having highest normalized information gain is 
selected to take decision. The C4.5 algorithm then recursively 
works on the smaller sub-lists. C4.5 avoids over-fitting of 
data, determines how deeply a decision tree would grow, 
reduces error pruning, rule post-pruning, handles continuous 
attributes, choosing a suitable attribute selection measure, 
handles training data with missing values and improves 
computational efficiency. 

5. Logistic Model Trees: This is the combined version of 
linear logistic regression and tree induction. The former 
produces low variance high bias and the later produces high 
variance low bias. These two techniques were combined into 
learner which depends upon simple regression models if only 
little and/or noisy data is present. It adds more complex tree 
structures if enough data is available to such structures. Thus 
logistic model trees are the decision trees having linear 
regression model at leaves [36].  

6. Random Forest: It is type of ensemble learning 
classification method. During training it constructs many 
decision trees. Mode class is extracted which is the mode of 
the classes output by individual trees [37]. Random vectors are 
generated which leads to the growth of individual trees in the 
ensemble. As the definition given by L. Breiman, 2001, 
“Random forest is a classifier consisting of a collection of 
tree-structured classifiers {h(x, θk), k = 1,...} where the {θk} 
are independent identically distributed random vectors and 
each tree casts a unit vote for the most popular class at input 
x”. 
7. Decision Table: It is an easy  way to model complicated 
logics. These are flowcharts based on if, then, else, switch 

cases statements and associate conditions with actions to 
perform. Each decision is related to a variable, relation, 
condition alternatives dependencies. Operations to be 
performed are actions which correspond to specific entry. 
Each entry specify whether or in what order the action is to be 
performed for the given set of condition alternatives the entry 
corresponds to [38]. 

8. SMO-SVM: Sequential minimal optimization (SMO) is an 
efficient algorithm which solves the optimization problem of 
Support Vector Machine (SVM) which arises during training. 
It breaks the optimization problem into several sub-problems, 
which are then solved analytically. The larger multiplier α1 of 
the problem has linear equality constraint and therefore the 
smallest possible problem has two such multipliers. Then for 
any two multiplier (α1 and α2), the constraints are reduced to 
0 ≤ α1, α2  ≤ C, y1 α1 + y2 α2 and solved analytically [39]. 

9. Neural Network: It is similar to the biological neurons. The 
artificial neurons or nodes makes it artificial/simulated neural 
network. The group of interconnected nodes processes 
information using computational and mathematical model. 
Based on the information (external or internal) flowing 
through the network the adaptive system of artificial neural 
network changes its structure. Neural network are nonlinear 
statistical data modeling tools [40].   

10. Genetic Algorithm: In the field of artificial intelligence, 
genetic algorithm is heuristic search algorithm that mimics the 
natural process of evolution. It works well for optimization 
and search problem using techniques such as inheritance, 
mutation, selection, crossover, which are inspired by natural 
evolution [41]. Genetic representation and fitness function is 
set and the process proceeds for initialization, where for a 
given population several solutions are randomly generated. 
For each successive generation, a portion from existing 
population is selected to breed a new generation. This 
constitutes the selection process, which is based on fitness 
selection process. With the help of operators like crossover 
and mutation new generation is generated. This process 
repeated until a termination condition is achieved [41].  

IV. RESULTS AND DISCUSSIONS 
The experiment was carried on prostate cancer data set taken 
from Kent Ridge Biomedical Data Repository 
(http://datam.i2r.a-star.edu.sg/datasets/krbd/). Data was 
collected from the pioneer publication of Dinesh Singh. et al. 
[3]. In his experiment 235 radical prostatectomy specimens 
were analyzed from different patients. From that, 65 samples 
specimen were identified for having tumor on opposing side of 
the tissue. Gene expression profile was successfully carried for 
52 prostate tumor and 50 non-tumor prostate samples 
containing expression profile of 12600 genes. This makes the 
training data set for our experiment. Whereas the test data set 
was having nearly ten-fold difference in over all microarray 
intensity form the training data set and was taken from 
independent experiment. It has 25 tumor samples and 9 non 
tumor/normal samples. We have used independent data set for 
measuring the accuracy of different techniques because 
training on one data and testing on other independent data is 
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more reliable. Our work is different from others because they 
have used the same data for training and a percent split of it 
for testing.     
The non reduced or non filtered data was full of noise and 
irrelevant data. The maximum and minimum values within the 
data prior to attribute reduction were 17530 and -1807 
respectively, therefore the range was 19337. After attribute 
reduction   maximum and minimum values were 18.06729562 
and -13.4414901 respectively, and therefore the range reduced 
to 31.508785. Thus the range after attribute reduction is far 
less prior to attribute reduction and shows that reduced data is 
less scattered. This satisfies the basic requirement for machine 
learning techniques. Table 1 shows a part of training set before 
attribute reduction, whereas Table 2 shows a part training data 
set after attribute reduction.  
 

Table 1 
    TRAINING DATA SET BEFORE ATTRIBUTE REDUCTION  

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 

-9 1 1 15 -2 -3 

-2 1 1 4 -2 -5 

-6 17 6 29 4 -11 

0 9 4 19 -10 -18 

-1 0 1 5 0 -4 

0 17 1 20 -20 -18 

-5 5 -1 9 -10 -17 

-3 1 1 5 -2 -6 

-8 -2 -1 -32 -20 -41 

-12 11 -3 21 -10 -9 

The table shows the first six genes in columns and their corresponding gene 
expression values in first ten samples. The values of genes are largely 
scattered throughout the matrix. This expression matrix is raw, non reduced 
and non filtered.  
 

Table 2 
TRAINING DATA SET AFTER ATTRIBUTE REDUCTION 

Gene 1 Gene 2 Gene 3 Gene 4 Gene 5 Gene 6 

-0.14 0.30 0.89 -1.11 0.19 0.56 

-0.14 0.39 0.66 -1.79 -0.41 0.31 

0.05 -0.36 -1.13 -0.59 -0.56 -0.99 

-0.43 -1.04 -0.65 -0.20 1.54 -0.92 

-0.34 0.04 -0.03 0.07 -0.41 -0.03 

0.53 0.62 -0.99 -0.38 -0.56 -0.60 

0.34 -0.62 -0.08 -0.64 0.12 -0.77 

-0.92 0.87 -0.37 -1.20 -0.71 0.32 

1.98 -1.51 -1.37 2.25 1.69 0.12 

0.24 -0.97 -1.05 -0.51 0.19 0.06 

The table shows the first six genes in columns after attribute reduction and 
their corresponding gene expression values in first ten samples. Difference 
between the highest and the lowest values of genes are far less as compared to 
non reduced values.  
 

Following are the description of the results of various 
techniques used for training and testing. The training data set 

has 102 samples where as the test data set has 34 samples. 
Total number of Tumor sample and Normal sample in test 
data set are 25 and 9 respectively (Here after  correctly 
classified samples and incorrectly classified samples will be 
denoted as CCS and ICS, respectively.) Table 3 shows a brief 
performance comparison of different techniques used with 
different statistical measures. It is clearly depicted that Bayes 
Network outperforms as compared to other techniques. Figure 
1 shows the comparison of different techniques used for their 
accuracy in classifying samples correctly and incorrectly, 
whereas Figure 2 shows accuracy level of different techniques 
used. 
 

Fig. 1.  Correctly Classified samples (CCS) versus Incorrectly Classified 
Samples (ICS). While testing, total number of samples were 34. Bayes net 
was found to be the best technique for classifying cancer class. Out of 34 
samples Bayes net classified 32 samples correctly. 
 
 

 
Fig. 2.  Accuracy level of various techniques on test data set. BN (Bayes 
Net ), NB (Naive Bayes), LB (Logit Boost), C4.5, LMT (Logistic Model 
Tree), RF (Random Forest), DT (Decision Table), SMO-SVM (Sequential 
Minimal Optimization- Support Vector Machine), NN (Neural Network), GA 
(Genetic Algorithm). Bayes Net outperforms the other techniques with an 
accuracy level of 94.11% followed by Naive Bayes with an accuracy level of 
91.17%. Instance Based and Logistic Model Tree have same accuracy level of 
85.29%, Random Forest and Genetic Algorithm have the same accuracy level 
of 82.35%, Decision Tree and SMO-SVM have same accuracy level of 
79.41%. C4.5 has the lowest accuracy level of 70.58%.    
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OUTCOMES OF THE TECHNIQUES USED 

1. Bayes Net: While training CCS was 93 and ICS was 9. 
Percent accuracy was 91.17%. During testing CCS was 32 and  
ICS was 2. Out of 25 Tumor samples 23 were detected as 
Tumor and out of 9 Normal samples, all 9 were detected as 
Normal. Percent accuracy was 94.11%. 

2. Naive Bayes: While training CCS was 89 and ICS was 13. 
Percent accuracy was 87.25%. During testing CCS was 31 and  
ICS was 3. Out of 25 Tumor samples 22 were detected as 
Tumor and out of 9 Normal samples, all 9 were detected as 
Normal. Percent accuracy was 91.17%. 

3. Logit Boost: While training CCS was 102 and ICS was 0 
Percent accuracy was 100.0%. During testing CCS was 30 and  
ICS was 4. Out of 25 Tumor samples 21 were detected as 
Tumor and out of 9 Normal samples 9 were detected as  
Normal. Percent accuracy was 88.23%.  

4. C4.5: While training CCS was 101 and ICS was 1 . Percent 
accuracy was 99.01%. During testing CCS was 24 and ICS  
was 10. Out of 25 Tumor samples 19 were detected as Tumor 
and out of 9 Normal samples 5 were detected as Normal. 
Percent accuracy was 70.58 %. 

5.Logistic Model Trees: While training CCS was 102 and ICS 
was 0. Percent accuracy was 100.0%. During testing CCS was 
29 and ICS 5 was. Out of 25 Tumor samples 20 were detected 
as Tumor and out of 9 Normal samples 9 were detected as 
Normal. Percent accuracy was 85.29 %.  

6. Random Forest: While training CCS was 101 and ICS was 
1.0. Percent accuracy was 99.01%. During testing CCS was 28 
and ICS was 6. Out of 25 Tumor samples 19 were detected as 
Tumor and out of 9 Normal samples 9 were detected as 
Normal. Percent accuracy was 82.35%.  
 
7. Decision Table: While training CCS was 99 and ICS was 3. 
Percent accuracy was 97.05.  During testing CCS was 27 and 
ICS was 7. Out of 25 Tumor samples 19 were detected as 
Tumor and out of 9 Normal samples 8 were detected as 
Normal. Percent accuracy was 79.41%.  

8.SMO-SVM: While training CCS was 102 and ICS was 0 
Percent accuracy was 100.0%. During testing CCS was 27 and  
ICS was 7. Out of 25 Tumor samples 18 were detected as 
Tumor and out of 9 Normal samples 9 were detected as 
Normal. Percent accuracy was 79.41%.  

9. Neural Network: While training the minimum and final 
Root Mean Squared Error (RMSE) was 0.1277. while testing 
RMSE was 0.2536. During testing CCS was 27 and ICS was 
7. Out of 25 Tumor samples 18 were detected as Tumor and 
out of 9 Normal samples 9 were detected as Normal. Percent 
accuracy was 79.41%.  

10. Genetic Algorithm: While training the minimum  Mean 
Squared Error (MSE) for Best Fitness and Average Fitness 

was 2.91173E-05 and 0.006661297 respectively. The final 
MSE for Best Fitness and Average Fitness was 2.91173E-05 
and 0.038575474 respectively. During testing the Average 
root mean squared error was 0.339.3 where as CCS was 28 
and ICS 6 was. Out of 25 Tumor samples 19 were detected as 
Tumor and out of 9 Normal samples 9 were detected as 
Normal. Percent accuracy was 82.35. Figure 3 shows the 
Average fitness versus generation graph while testing. The 
best fitness was for the 7th and 8th generation with mean square 
error (MSE) less than 0.05. 
 

 
 

Fig. 3.  Average fitness versus generation graph. Among the ten generation 
the best fitness was for the 4th generation with mean square error (MSE) less 
than 0.05. The average MSE is 0.164830. 

 
 

Table 3 
PERFORMANCE COMPAIRISION OF TECHNIQUE 

 
CCS (correctly classified samples), ICS (incorrectly classified samples), 
RMSE (root mean squared error), TPR (true positive rate), FPR (false 
positive rate). Bayes Net gives the most accurate prediction of prostate cancer 
class with an accuracy of 94.11%. Total number of sample was 34 out of 
which it predicted 32 samples correctly. 
 
CROSS VALIDATION BY MODIFYING TEST DATA 
SETS 
As the test data set was taken from independent experiments 
and was having a overall tenfold difference from the training 
data set, we have modified the test data set in six different 

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10
M

SE
Generation

Average 
Fitness

Techniques CCS ICS RMSE TPR (Tumor) TPR 
(Normal) FPR (Tumor) FPR 

(Normal)

Bayes Net 32 
(94.11%) 2 (8.82%) 0.2189 0.92 1 0 0.8

Naive 
Bayes

31 
(91.17%)

3 (8.82%) 0.297 0.88 1 0 0.12

Logit Boost 30 
(88.23%) 4 (11.76%) 0.3736 0.84 1 0 0.16

C4.5 24 
(70.58%)

10 
(29.41%) 0.4918 0.76 0.55 0.44 0.24

Logistic 
Model Tree

29 
(85.29%) 5 (14.70%) 0.3429 0.8 1 0 0.2

Random 
Forest

28 
(82.35%) 6 (17.64%) 0.3523 0.76 1 0 0.24

Decision 
Table

27 
(79.41%) 7 (20.58%) 0.3523 0.76 0.889 0.111 0.24

SMO-SVM 27 
(79.41%) 7 (20.58%) 0.4537 0.72 1 0 0.28

Neural 
Network

27 
(79.41%) 7 (20.58%) 0.253693 0.88 1 0 0.12

Genetic 
Algorithm

24 
(76.44%)

10 
(29.41%) 0.3747 0.94 0.47 0.52 0.058
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ways to cross validate our results. The test data set was 
divided by 2 (Div 2), 10 (Div 10), 20 (Div 20) and multiplied 
by 2 (Mul 2), 10 (Mul 10), 20 (Mul 20), making six different 
data sets. Table 4 shows the accuracy level of different 
techniques for all the six modified test data as well as the 
average accuracy level. It is clear from the table that the 
average accuracy level of Bayes Net is more than other 
techniques.     
 
Sensitivity and specificity analysis 

Sensitivity is one of the statistical methods for measuring the 
performance of binary classification [29]. It measures the True 
Positive rate. True Positives (TP) are the positives which are 
correctly identified as positive. A high sensitivity corresponds 
to higher accuracy.  Whereas, specificity describes the ability 
(of any technique used) to identify negatives as negative or 
true negatives (TN) as true negative. Thus, a high specificity 
indicates that any technique used has a high ability to identify 
true negatives. General formula for sensitivity and specificity 
are, 
 

FNTP
TPySensitivit


  (5)

 
FPTN

TNySpecificit


  (6) 

Table 4 shows sensitivity and specificity of all the techniques 
used for all the six modified data. Sensitivity and specificity of 
all the techniques was calculated for all the six modified data. 
Then the actual (mean) sensitivity and specificity of a 
technique was calculated by averaging the sensitivity and 
specificity obtained for individual modified data sets. Table 5 
shows the actual (mean) sensitivity and specificity of all the 
techniques. The outcome shows Bayes Net has the sensitivity 
and specificity of 0.89 and 1 respectively, which is higher than 
the others. 
 
Precision and accuracy analysis 

Precision is also known as reproducibility or repeatability. It 
shows how a measurement under repeating condition remains 
unchanged. Precision is the degree of measurement of true 
positive against true positive and false positive. Whereas 
accuracy is the degree of closeness of obtained value to the 
actual value. A high accuracy and high precision signifies that 
testing process is working well with a valid theory. General 
formula for precision and accuracy is,  

݊݋݅ݏ݅ܿ݁ݎܲ														 =
ܶܲ

ܶܲ + ܲܨ
																																(7) 

                         
ݕܿܽݎݑܿܿܣ = 	

ܶܲ + ܶܰ
ܶܲ + ܶܰ + ܲܨ + ܰܨ

															(8) 
 
Precision and accuracy of all the techniques were calculated 
for all the six modified data set. Then the actual precision and 
accuracy of a technique was calculated by taking the mean of 
precisions and accuracies obtained for all the modified data 
sets. Table 6 shows the actual (mean) precision and accuracy 
of all the techniques for modified datasets. It shows clearly 

that Bayes Net has the highest precision and accuracy of 1 and 
0.92, respectively. 
 

Table 4 
SENSITIVITY AND SPECIFICITY  

Techniques Sn/Sp Div 2 Mul 2 Div 
10 

Mul 
10 

Div 
20 

Mul 
20 

BN 
Sn 0.96 0.92 0.88 0.8 1 0.8 

Sp 1 1 1 1 1 1 

NB 
Sn 1 0.52 1 0.2 1 0.12 

Sp 0.88 1 0 1 0 0.88 

LB 
Sn 0.92 0.76 0.92 0.68 1 0.68 

Sp 1 1 0.44 1 0.11 1 

C4.5 
Sn 0.64 0.76 0.68 0.84 0.68 0.84 

Sp 1 0.55 0.66 0.55 0.66 1 

LMT 
Sn 0.84 0.76 1 0.64 1 0.64 

Sp 1 1 0 1 0 1 

RF 
Sn 0.92 0.72 0.92 0.48 1 0.44 

Sp 1 1 0.66 0.77 0.44 0.77 

DT 
Sn 0.76 0.72 0.68 0.72 0.68 0.72 

Sp 0.88 0.88 0.66 0.88 0.55 0.88 

SMO 
Sn 0.8 0.64 1 0.64 1 0.64 

Sp 1 1 0 1 0 1 

NN 
Sn 0.8 0.76 1 0.72 0 0.84 

Sp 1 1 0 1 1 1 

GA 
Sn 0.68 0.72 0.68 0.76 1 0.72 

Sp 0.88 1 1 0 0.88 1 
Sn = Sensitivity and Sp = Specificity. Table shows sensitivity and specificity 
of different techniques for all the six modified data sets.  

 
Table 5 

MEAN SENSITIVITY AND SPECIFICITY COMPARISION  
Techniques BN NB LB C4.5 LMT RF DT SMO NN GA 

Sensitivity 0.89 0.64 0.82 0.74 0.81 0.74 0.71 0.78 0.68 0.76 

Specificity 1 0.62 0.75 0.73 0.66 0.77 0.78 0.66 0.83 0.79 

Table shows the mean sensitivity and means specificity of all the techniques. 
The means were calculated by averaging the sensitivity and specificity of all 
the techniques for all the six modified data sets. Bayes Net has the highest 
sensitivity and specificity of 0.89 and 1, respectively. 
 

Table 6 
PRECISION AND ACCURACY COMPARISION 

Techniques BN  NB LB C4.5 LMT RF DT SMO NN GA 

Precision 1 0.86 0.92 0.77 0.71 0.71 0.71 0.76 0.7 0.7 

Accuracy 0.92 0.63 0.8 0.74 0.77 0.75 0.73 0.75 0.7 0.7 

Table shows the comparison of precision and accuracy. Bayes Net has the 
highest precision and accuracy. 
 
In the following section Table 7 shows a comparison of 
classification accuracy of our work with the works of other 
researchers on the same kind of dataset (prostate cancer). Our 
Bayesian network and Naive Bayes based techniques shows 
the highest accuracy over the others, i.e., an accuracy of 94.11 
and 92.17, respectively. The kNN based method of D. Singh et 
al [3] shows the next highest accuracy between 86-92. 
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Table 7 
COMPARISION OF ACCURACY WITH THE WORK OF OTHERS 

Author(s) Techniques Accuracy (%) 

Our method 
Bayesian network 94.11 
Naive Bayes 92.17 

B. Zupan et al [44] 

Naive Bayes 70.8 - 78.4 

Decision Tree 68.8 -77 

Cox 69.7 -79 

M. Wagner et al [45] 

kNN 87.4 - 89.9 

Fisher Linear 87.9 - 89.1 

Linear SVM 89.5 - 91.9 

Tan & Gilbert [46] 

Single C4.5 52.38 

Bagging C4.5 85.71 
AdaBoost 76.19 

D. Singh et al [3] kNN 86 - 92 
Table shows the comparison of classification accuracy with the works of 
others on prostate cancer dataset. Our Bayesian network and Naive Bayes 
based classification method outperforms over the others. 

V. CONCLUSIONS & FUTURE CHALLENGES 
In this paper we have comparatively evaluated various 
machine learning techniques for their accuracy in class 
prediction of prostate cancer data set. As per our evaluation, 
Bayes Net gave the best accuracy for prostate cancer class 
prediction with an accuracy of 94.11% which is higher than 
any previously published work on the same data set. Bayes 
Net is followed by Navie Bayes with an accuracy of 91.17%. 
We tested our data set on different techniques and selected 
those techniques which gave best results. Our aim was to 
identify the best technique in terms of accuracy which can 
classify prostate cancer date set and to reveal a good 
procedure for meaningful attribute reduction, which we have 
acquired by using a combination of t-test and inter-quartile 
range. Similar process can be applied and checked for their 
accuracy in classification of other types of cancers. One of the 
biggest challenges is to develop a single classifier which is 
best suitable for classifying all types of cancer gene expression 
data into meaningful number of classes. Nature inspired 
optimization techniques such as Ant Colony Optimization 
(ACO), Artificial Be Colony optimization (ABC), Particle 
Swarm Optimization (PSO) are successfully being used in 
many challenging problems. In the future work, we are willing 
to hybridized these nature inspired optimization techniques 
with different classifiers for better classification accuracy. 
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