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Abstract: Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs 
which play a significant role in several biological processes. Accurate 
identification and sub-classification of lncRNAs is crucial for exploring their 
characteristic functions in the genome as most coding potential computation 
(CPC) tools fail to accurately identify, classify and predict their biological 
functions in plant species. In this study, a novel computational framework 
called LncRNA identification and function prediction tool (LIFT) has been 
developed, which implements least absolute shrinkage and selection operator 
(LASSO) optimisation and iterative random forests classification for selection 
of optimal features, a novel position-based classification (PBC) method for 
sub-classifying lncRNAs into different classes and Bayesian-based function 
prediction approach for annotating lncRNA transcripts. Using LASSO, LIFT 
selected 31 optimal features and achieved 15–30% improvement in the 
prediction accuracy on plant species when evaluated against state-of-the-art 
CPC tools. Using PBC, LIFT successfully identified the intergenic and 
antisense transcripts with greater accuracy in A. thaliana and Z. mays datasets. 
The predicted functions were verified with published experimental results. The 
source code is publicly available together with relevant data on GitHub: 
https://github.com/deshpan4/LIFT. 

Keywords: lncRNA; long non-coding RNAs; LASSO; least absolute shrinkage 
and selection operator; iterative random forests; PBC; position-based 
classification; BMRF; Bayesian Markov random fields; function prediction. 
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1 Background 

Recent advances in genome sequencing have led to the discovery of thousands of non-

coding RNA transcripts. Using RNA sequencing (RNA-seq) and epigenome sequencing, 

a new class of RNA transcripts i.e., long non-coding RNAs (lncRNAs) is defined as those 

having transcript length > 200 nucleotides. Although this class of RNA lacks protein-

coding ability, they have been found involved in the regulation of biological processes 

such as enzymatic activity regulation, genomic loci imprinting, transcription, translation, 

cellular differentiation (Liu et al., 2015). Several lncRNA databases such as GENCODE 

and NONCODE have been developed for storage of lncRNAs (Harrow et al., 2012;  

Zhao et al., 2016). These databases provide valuable resources for further identification 

of novel lncRNAs from genomic sequences. Even though NGS techniques such as  

RNA-seq are actively used for identification and discovery of novel lncRNAs, 

identification of lncRNAs and functions of lncRNAs in non-model plant organisms need 

to be discovered. 

Computational prediction of lncRNAs has been viable for the past few years. These 

methods generally use machine learning approaches to classify RNAs into different 

classes. Several tools have been developed including: coding potential calculator (CPC) 

(Kong et al., 2007), coding-non-coding index (CNCI) (Sun et al., 2013), coding potential 

assessment tool (CPAT) (Wang et al., 2013), predictor of lncRNAs and messenger RNAs 

based on improved k-mer scheme (PLEK) (Li et al., 2014) for computational prediction 

of lncRNAs. The CPC is based on a support vector machine (SVM). Some tools such as 

CPAT and lncScore (Zhao et al., 2016) classified protein-coding and non-coding 

transcripts using sequence-based features such as open-reading frame (ORF) size, ORF 

length, ORF coverage, GC content, Fickett score and Hexamer score whereas others such 

as CNCI and LncRNA-MFDL (Fan and Zhang, 2015) classified lncRNAs using 

adjoining nucleotide triplets (ANT) features to identify most-like CDS (MLCDS) regions 

in each transcript. 

Currently developed sequence alignment-based approaches often require significant 

computational resources due to which the usage of such tools becomes computationally 

impractical. In contrast, alignment-free methods compute the coding potential scores 

(CPS) depending on the intrinsic features of the input RNA transcript sequences such as 

relative oligonucleotide frequencies or k-mer. However, CPS tools relying on 

computation of k-mer frequencies require longer computation times and computational 

resources similar to alignment-based approaches. While, most CPS tools perform well on 

reference datasets such as GENCODE and NONCODE, they often fail to perform 

reasonably on the sequences derived from RNA-seq datasets. Identification of lncRNA 
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sub-class (i.e., intergenic, antisense, etc.) provides valuable details about functional 

mechanisms and regulatory functions. Currently developed machine-learning based 

methods for sub-classification of lncRNA genes utilises annotated lncRNA transcripts for 

constructing learning set. Prediction on the lncRNA sequences derived from the plant 

species often fluctuates due to limited availability of the confirmed lncRNA transcripts 

from model and non-model plant datasets. Additionally, recent advances in lncRNA 

function prediction primarily focus on mammalian datasets where genome annotation and 

co-expression data are easily available (Jiang et al., 2015; Xiao et al., 2015; Perron et al., 

2017). Therefore, less attention has been paid on lncRNA identification and functional 

prediction on model and non-model plant transcriptome datasets. 

In recent years, several experiments have shown regulatory roles of lncRNAs in 

various fundamental and biological processes including cell differentiation, proliferation, 

apoptosis, epigenetic regulation, transcription, translation, genomic splicing and more 

(Guttman et al., 2009; Khalil et al., 2009; Mercer et al., 2009). Based on the assumption 

that similar lncRNA functions are associated with similar diseases, several computational 

methods have been reported for computing functional similarity or determining lncRNA-

disease association (Chen, 2015; Chen et al., 2016a, 2016b). Chen (2015) proposed a 

lncRNA functional similarity calculation tool based on information of miRNA (LFSCM) 

which integrates disease semantic similarity, known lncRNA-miRNA interactions and 

miRNA-disease association. For prediction of disease association, a hypergeometric 

distribution test was implemented which calculates a P-value indicating significance of 

commonly shared miRNAs between lncRNA and a disease. Using a similar method, 

Chen et al. later implemented Improved Random Walk with Restart (IRWR)  

for predicting lncRNA-disease association (Chen et al., 2016a). Another similar 

computational tool called FMLNCSIM proposed by Chen et al. (2016b) was developed 

for determining function similarities of lncRNAs by combining fuzzy measure with the 

concepts of information content. These were used for calculating similarities among the 

diseases. The aforementioned methods need prior information of known experimentally 

verified lncRNA-miRNA interactions and are primarily developed for humans thereby 

limiting there usage on plant species. Based on co-expression of lncRNAs, Guo et al. 

(2013) proposed bi-coloured network-based global function predictor for function 

prediction of lncRNAs (lnc-GFP). Based on re-annotated microarray data (Affymetrix 

Mouse Genome 430 2.0 Array), coding-noncoding co-expression network was 

constructed. 

In this work, we have developed the LncRNA identification and function prediction 

tool (LIFT) for lncRNA identification, genomic sub-classification and functional 

prediction of lncRNAs (Figure 1) in plant RNA-seq datasets. For lncRNA identification, 

LIFT implements 73 sequence and codon-bias based features. The framework 

implements an optimisation module called LASSO iterative random forest-feature 

selection (LiRFFS) (Tibshirani, 1996; Basu et al., 2018) which selects an optimal feature 

set from training and validation set features. The selected feature set can be applied on 

the test dataset for sequence prediction using an iRF classifier. For sub-classification of 

lncRNAs, LIFT implements a position-based classification (PBC) algorithm which 

classifies the sequences on direction, type and position categories by mapping the exonic 

(E) and intronic (I) lncRNA sequence coordinates to mRNA E and I coordinates. Inspired 

by the work undertaken by Kourmpetis et al. (2010) for function prediction of  

protein-coding genes, the function prediction module of LIFT utilises the lncRNA-

mRNA co-expression data from transcriptomic datasets. Based on the co-expression and 
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protein-protein interaction data, molecular and regulatory functions of lncRNAs can be 

inferred based on Bayesian Markov random fields (BMRF) approach (Kourmpetis et al., 

2010). We benchmarked the accuracy of LIFT with existing tools and demonstrated its 

applicability on lncRNA sequences with diverse lengths. We also assessed the  

sub-classification performance of PBC and function prediction results with published 

lncRNA annotations. The transcript sequences classified and annotated by the 

computational methods will provide an extensive catalogue of molecular regulatory 

mechanisms. 

Figure 1 Workflow of LIFT framework for identification and functional prediction of lncRNAs . 
The first component (coloured red) identifies lncRNAs by feature matrix construction 
and classification by iRF from RNA-seq GTF file produced from Cufflinks (Trapnell  
et al., 2012). The prediction lncRNA sequences can be sub-classified using PBC 
algorithm. The second component of LIFT (coloured blue) predicts functions of the 
lncRNAs using co-expression regulatory network and BMRF method (Kourmpetis  
et al., 2010) (see online version for colours) 

 

2 Methods 

2.1 Reference sequence datasets 

Since a reliable dataset is important for model training and prediction, a random selection 

of protein-coding and lncRNA transcripts from plant species were obtained from Refseq 

database (O’Leary et al., 2016). Transcript sequences for Arabidopsis thaliana (ATH), 

Brassica rapa (BRA), Brassica napus (BNA), Brassica oleracea (BOL), Zea mays (ZM), 

Oryza sativa (OS), Solanum tuberosum (ST) and Solanum lycopersicum (SL) were 

downloaded from RefSeq database. lncRNA sequences were filtered by applying a 

threshold cutoff of 200bp on non-coding RNA (ncRNA) FASTA files. 

2.2 RNA-seq datasets 

Two RNA-seq datasets were used for identification, genomic annotation, and functional 

prediction of lncRNAs. The first dataset consists of 10 samples derived from the apical 

shoot meristem time-series dataset from the A. thaliana genome obtained from the NCBI 

SRA database (Project ID: PRJNA268115) (Klepikova et al., 2015). 7–16 days old plants 

were harvested to obtain a synchronised and representative sample at different 

developmental stages, denoted by S7 to S16 respectively. The dataset consists of 10 
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samples from Day-7 to 16 with two replicates from 9-14 days. 9 sample pairs were 

constructed by comparing samples from Day 8-16 against Day-7. The second dataset 

consisted of 11 time-series samples (from 0 to 20 days with interval of two days between 

sample obtained) from whole seed of Z. mays inbred line B73 which was obtained from 

the SRA database (Project ID: SRP037559) (Chen et al., 2014). The whole dataset 

consists of 53 samples from embryo, endosperm and whole seed stages. However, for this 

study, only 11 samples were selected. 10 sample pairs were constructed by comparing 

samples against Day-0. 

2.3 RNA-seq data analysis 

The first 15 base pairs of the sequence reads are trimmed using Cutadapt to remove 

adapter and low-quality sequences with Q-score greater than or equal to 30. For A. 
thaliana reads, trimmed reads are aligned to Arabidopsis genome (TAIR10) using 

Tophat2 mapper (Kim et al., 2013) with custom parameter values (minimum intron 

length = 40, maximum intron length = 5000, segment length = 20, segment 

mismatches = 2, max multi-hits = 1, minimum normalised depth = 0, minimum anchor 

length = 10) for optimal read alignment of ATH sequence reads. For Z. mays sequence 

reads, the sequence reads were aligned to Maize genome (AGPv4) with max intron length 

set to 60,000 and min intron length set to 5. Remaining parameters were kept to default. 

Once the reads are aligned, assembly of exonic and splice junction reads was performed 

for individual sample pairs using Cufflinks for generating gene transfer format (GTF) file 

(Figure 1). 

2.4 Feature extraction for lncRNA classification 

For extraction of features from the RNA-seq derived genomic sequences, the transcript 

sequences were first extracted from the binary alignment map (BAM) file produced by 

Tophat2 mapper (Kim et al., 2013). Based on reference alignment of sample reads,  

a consensus FASTA sequence for each transcript coordinate was constructed by a  

two-step process:  

 SNP and INDEL calling of BAM file using SAMtools mpileup (Li and Durbin, 

2009) that generated a variant call format (VCF) file 

 sequence extraction from the genome and consensus sequence generation using 

variants from VCF by the SAMtools faidx tool (Li and Durbin, 2009).  

The mpileup function collects the information from the BAM file and computes the 

likelihood. This is stored in a Binary VCF (BCF) format. The Bcftools consensus 

function creates a consensus FASTA transcript sequence based on reference genome by 

applying the VCF variants. The sequence obtained can be used for extraction of features 

for lncRNA classification. 

Features extracted from FASTA sequences can be categorised into either ORF-based 

features or codon bias features. These features constitute a feature set F = {f1, f2,…., fn}, 

where fn denotes the nth feature. The features were selected based on the published 

results of sequence measures and codon bias measures (Fickett and Tung, 1992;  

Roth et al., 2012). 
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2.4.1 ORF and sequence based features 
Three ORF-based features were extracted: maximum ORF length (f1), ORF coverage (f2) 

and mean ORF coverage (f3) and four sequence-based features: transcript length (f4), GC 

content (f5), Fickett score (f6) and Hexamer score (f7). f1 is one of the most fundamental 

feature used to distinguish lncRNA from mRNA as the majority of protein-coding genes 

have ORFs greater than 100 amino acids (Frith et al., 2006). f2 is the ORF coverage 

defined as length of the longest ORF divided by transcript length. This feature has also 

shown to produce good classification performance when compared to ORF length  

(Wang et al., 2013; Zhao et al., 2016). f3 is the overall ORF coverage defined as average 

of total ORF lengths divided by transcript length for sequence. f5 is the GC content, 

which is also a common measure to differentiate lncRNA from protein-coding transcripts 

as coding sequences have been reported to have higher GC content in exons over introns 

(Amit et al., 2012). f5 is simply calculated as absolute total number of GC motifs in a 

sequence. f6 is the Fickett score (Fickett, 1982) obtained by calculating four base pair 

position values in transcript sequence. f7 is the Hexamer score which is computed by 

making a Hexamer table of 4096 (64  64 hexamers) k-mers using reference set of coding 

and non-coding sequences. f7 is calculated by first measuring frequencies of hexamers in 

the test set sequences. Logarithmic ratio of coding and non-coding sequences were then 

computed for each hexamer having non-zero frequency in the test set. Positive f7 

indicates higher probability of protein-coding sequence whereas negative score indicates 

higher probability of non-coding RNA sequence. 

2.4.2 Codon bias features 
In protein-coding genes, the translational mapping process of codons (or nucleotide 

triplets) to amino acids involve usage of synonymous codons which codes same amino 

acids that is non-distinguishable at protein level. However, it has been reported that there 

exists a non-uniform codon usage in most genes i.e., codon bias (Clarke, 1970; Ikemura, 

1982). Many indices have been proposed for measuring codon bias, among which we 

carefully selected six codon-bias measures which are important in distinguishing 

lncRNAs from mRNAs. These includes frequency of optimal codons (f8) (Fickett, 1982; 

Amit et al., 2012), codon usage bias (f9) (Karlin and Mrázek, 1996), relative codon bias 

(f10) (Roymondal et al., 2009), weighted sum of relative entropy (f11) (Suzuki et al., 

2004), synonymous codon usage order (f12) (Wan et al., 2004) and relative synonymous 

codon usage (RSCU) (f13) (Sharp et al., 1986). 

f8 is the frequency of optimal codons (Fop) which is calculated as ratio of total 

number of optimal codons to the total number of synonymous codons. Fop was also one 

of the measures proposed by Ikemura (1982). The number of optimal codons is calculated 

as: 

 
opt

opt c
c C

O O


   (1) 

where optC  is defined as subset of optimal codons from all codons C and totO  is the total 

number of codons in the sequence. Therefore, f8 is calculated as: 

8
  opt

tot

O
f

O
  (2) 
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f9 is the Codon Usage Bias (CUB) which assesses codon bias in test set sequence relative 

to reference set of sequences based on weighted sum of distances of relative codon usage 

frequencies between the reference set and test set sequences (Karlin and Mrázek, 1996). 

The reference set is used as standard to which other sequences can be compared. f9 is 

defined as: 

 9

A

  ,  ref
a a a

a

f F d f f


  (3) 

where fa is frequency of amino acid a in the test set sequence whereas  and  ref
a af f  are 

codon frequencies for amino acid a in test and reference sets, respectively and d is the L1 

norm or manhattan distance for the codon frequency  and   ref
a af f  vectors which is 

calculated as: 

 ,    | , |
a

ref ref
a a ac a

c C

d f f f f


  (4) 

where acf  is the frequency of codon c encoding amino acid a in test set sequences and 

ref
af  is the frequency of amino acid a in reference set sequences. 

10f  is relative codon bias (RCB) (Roymondal et al., 2009) which is a measure that 

defines contribution of codons as: 

 
 

  c cRCB
c

c

O E O
w

E O


  (5) 

where  cE O  is the expected number of codon occurrences in three codon positions. 

Once RCB
cw  is determined 10f  is calculated by the following method for each sequence: 

10

C

1exp log  1RCB
c

ctot

f w
O 

 
  

 
  (6) 

f11 feature used is the weighted sum of relative entropy (Ew) which measures the degree 

of deviation from equal codon usage (Suzuki et al., 2004). Therefore, f11 is defined as 

sum of relative entropy of each amino acid weighted by its relative frequency in the test 

sequence which is given by: 

11

A

  a a
a

f F E


  (7) 

where aF  is the relative frequency of amino acid a in the test sequence and aE  is 

computed as: 

2

 
log

a
a

a

H
E

k
  (8) 

where ak  is number of synonymous codons observed in the test sequence and aH  is the 

entropy which measures uncertainty of codon usage in the test sequence for amino acid a 

and is computed as: 
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2
    log

a

a ac ac
c C

H f f


  (9) 

f12 is the Synonymous Codon Usage Order (SCUO) is also an entropy-based codon bias 

measure and is similar to Ew which differs only by the way entropy is calculated for each 

amino acid (Wan et al., 2004). Instead of calculating the relative entropy, normalised 

difference between maximum and observed entropy is computed: 

2

2

log  
 

log

a a
a

a

k H
E

k


  (10) 

and the f12 is computed as: 

12

A

    a a
a

f F E


  (11) 

13f  is the RSCU score which defined the relationship between observed codon 

frequencies and number of times codon observed when synonymous codon usage is 

random with no codon bias (Sharp et al., 1986). This is calculated as: 

 
1

a

ac
ac

acc C
a

O
RSCU

O
k 




 (12) 

where acO  is the frequency of codon c for amino acid a. acRSCU  is the RSCU score 

( 13f ) for each codon c encoding amino acid a and is computed for 61 codons individually 

by the above equation. Methionine (M), Tryptophan (W) and stop codons were excluded 

from the analysis as M and W do not have any synonymous codons and stop codons do 

not contribute any information. Therefore, in total 13f  provided 61 features for the 

classification. 

2.5 Feature selection using LASSO and iRF classifier 

Selection of optimal features is an important optimisation approach for classification. 

Wrapper-based feature selection (FS) methods such as sequential forward selection (SFS) 

(Pudil et al., 1994) or SVM-recursive feature elimination (SVM-RFE) (Huang et al., 

2014) are computationally inefficient and fail to identify optimal feature subsets. 

Whereas filter-based FS methods such as mRMR (Peng et al., 2005), Chi-square (Chen 

and Chen, 2011), Information Gain (Lee and Lee, 2006) assigns relevance score or rank 

to each feature by considering each feature separately and ignoring dependencies 

between features which leads to worse classification performance. Regression based 

approaches such as least-squares estimate method often produces larger variance during 

model fitting which leads to overfitting and poor generalisation. Least absolute shrinkage 

and selection operator (LASSO) is a feature selection method which combines least-

square loss with 1  norm constraint and produces sparse features by shrinking 

coefficients to zero. Other approaches such as ridge regression (Marquardt, 1970;  
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Tibshirani, 1996) uses 2  norm due to which it produces non-zero coefficients and 
therefore becomes inefficient for feature selection. Usage of q  norm (with q < 1 or 

q > 1) approaches for optimisation are generally non-convex and makes the minimisation 

computationally challenging. 

The LIFT framework implements LASSO and iterative Random Forest for FS 

(LiRFFS) for identifying principal set of collective features yielding the highest accuracy 
which works by iterative selection of features based on varying lambda ( ) values. As 

  changes, non-zero beta coefficients are generated which corresponds to the selection 

of features using 1 -regularised optimisation of LASSO (Tibshirani, 1996). Using 
training and test sets obtained from feature normalisation, coefficients (  ) for each 

feature are calculated by the following formula: 

1( )T TX X X Y   (13) 

For estimating lasso  coefficients in each iteration, coordinate-descent minimisation is 

performed (Wu and Lange, 2008) and the coefficients are obtained by the following 

objective function: 

2

2 1

1    | λ |
2

lasso argmin X y
n      (14) 

where 0  , 2

2
 y X   is the loss function (i.e., sum of squares), 

1
  is the penalty 

term and   is the tuning parameter which controls the strength of the penalty. Features 

extracted from the coding and noncoding sequences are divided into training and 
validation sets.   coefficients are calculated on each   value. The selected features for 

each   are iteratively applied on the validation set to obtain the accuracy vector. The 

optimal feature set is obtained by selecting the feature set that produces the prediction 

accuracy between the tolerance accuracy value and the maximum prediction accuracy 

value. The optimal feature set can be used for building the model for classification of test 

set transcript sequences. Detailed implementation of the LiRFFS algorithm has been 

provided in Supplementary Material (Section S1). 

2.6 Position-based classification (PBC) of lncRNA sequences 

Genomic annotation of lncRNAs is essential for classification based on their position in 

the genome. For sub-classification of lncRNAs, a PBC algorithm was implemented 

(Figure 2) for finding the optimal overlaps of lncRNA exonic and intronic sequences. The 

algorithm extracts the ORFs for each transcript sequence. Using the ORF sequence, the 

algorithm extracts the exonic (E) and intronic (I) sequences based on exon-intron 

boundaries (GT-AG). Position-based mapping is performed by overlapping the 

coordinates of the lncRNA E and I sequences with the genomic coordinates of the 

protein-coding E and I sequences. Using this strategy, LIFT annotates lncRNAs into 

various sub-classes which involves direction of overlap (sense or antisense), type of 

overlap (exonic or intronic) and position of lncRNA sequence (bidirectional or 

intergenic). The classification was implemented on the A. thaliana and Z. mays lncRNA 

transcript sequences. 
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Figure 2 Position-based classification description Sub-classification of lncRNA sequences is 
performed based on positional coordinates. Sense and antisense-overlapping is 
performed based on GT-AG exonic and intronic sequences from the ORFs. Intergenic 
classification is performed by scanning lncRNA sequences between protein-coding 
genes. Bidirectional lncRNA sequences are classified by finding lncRNA exonic 
sequences less than 1000 bp from the protein coding exonic sequences (see online 
version for colours)  

 

2.7 Function prediction of lncRNA sequences using BMRF method 

Relative expression values from the Fragments Per Kilobase of transcript per Million 

mapped reads (FPKM) individual sample pairs were computed by dividing the sample 

pair read count by the maximum read count value from all other sample pairs to obtain a 

relative expression value between 0 and 1. A co-expression similarity matrix of lncRNA 

and protein sequences was constructed. An expression similarity matrix was constructed 

between FPKM values of each pair of lncRNA and mRNA using Pearson’s correlation 

coefficient (PCC) ≥0.9 and ≤–0.9. This is named as the lncRNA-protein co-expression 

similarity (LPCS) matrix. lncRNAs and protein-coding sequences with zero FPKM 

values in ≥70% of samples pairs were excluded from the analysis. 

A protein-protein interaction (PPI) network was constructed using protein-protein 

interaction data obtained from the STRING database (Szklarczyk et al., 2015) for 

proteins having higher expression profile correlation with predicted lncRNAs. This 

resulted in protein-protein interaction pairs with interacting proteins represented by nodes 

and interactions represented by edges. Resulting lncRNA-protein and protein-protein 

interacting pairs were concatenated for functional association of lncRNAs. 

To predict functional association of lncRNAs, a Bayesian Markov Random Fields 

(BMRF) method was used which has been previously used for predicting protein 

functions of unannotated proteins (Kourmpetis et al., 2010). BMRF is originally based on 

the Markov Random Fields (MRF) approach (Deng et al., 2002) where the nodes are 

coloured and encoded in the binary vector with 1iX   if ith protein performs a particular 

function, and 0iX   if ith protein protein does not possess any function. We substituted 
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lncRNAs where 0iX   if ith protein not having functions in the network. The 

conditional probability across all the unannotated lncRNA nodes in the network is 

computed by a Pseudo-Likelihood Function (PLF). It is a function which possesses 

properties similar to a likelihood function and therefore helps in determining the 

conditional probability of the state of the lncRNA. The conditional probability of an 

unannotated lncRNA i  is given by a logistic function    1

1 exp iv


  . Each state of the 

unannotated lncRNA is sampled using this logistic function. Once the PLF is computed, 

Gibbs-Sampling (GS) is performed by iterating over all the states of the unannotated 

lncRNA sequences. In each iteration, nodes connected to the lncRNAs are updated 

conditionally with parameter values corresponding to ( 0 1, ,   ). The Differential 

Evolution Markov Chain method implemented in the BMRF updates the conditional 

probabilities. This process is repeated until convergence is reached. For input to BMRF, 

LPCS matrix, PPI matrix and protein-coding Gene Ontology (GO) annotations are 

required. 

Functions of significantly expressed lncRNAs were obtained by applying false 

discovery rate (FDR) cutoff of 0.05 and log2 Fold Change (FC) ≥1 or ≤–1 on A. thaliana 

and Z. mays sample pairs. 

2.8 K-fold cross-validation benchmarking 

For evaluating the prediction accuracy of LIFT against CPAT, CPC2, lncScore and 

PLEK tools, a 10-fold Cross Validation (CV) benchmarking was performed on the 

lncRNA sequences. Test set sequences annotated in the TAIR10 dataset and expressed 

sequence tags (EST) derived sequences for A. thaliana were obtained from the PLncDB 

database (Jin et al., 2013) whereas sequences for Z. mays were obtained from the 

Ensembl Genomes 38 AGPv4 annotation file. 10% test set sequences and 90% training 

set sequences were selected in each fold consisting of balanced lncRNA and protein-

coding sequences. The TAIR10-annotated and EST-derived sequences were shuffled to 

perform fair comparison of prediction accuracy. The datasets were labelled as D1 

(TAIR10-based), D2 (EST-derived) and D3 (ZM Ensembl 38 AGPv4) for further 

analysis. 

2.9 Performance evaluation criteria 

To assess classification performance of lncRNAs and mRNA transcripts, Accuracy, 

Sensitivity, Specificity, Precision, F1-Score, NPV and MCC metrics were used which 

were defined as: 

Accuracy (ACC) = 
TP TN

TP FP FN TN


  
, 

Sensitivity or Recall (SENS) = 
TP

TP FN
, 

Specificity (SPEC) = 
TN

FP TN
, 
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Precision (PRES) = 
TP

TP FP
, 

F1-Score (F1) = 
 2* *Precision Recall

Precision Recall
, 

NPV = 
TN

TN FN
, 

MCC = 
   

       
*     *

* * *

TP TN FP FN

TP FP FN TN FP TN TP FN



   
 

with TP = true positive, TN = true negative, FP = false positive and FN = false negative. 

2.10 data availability 

The source code is publicly available together with relevant data on GitHub: 

https://github.com/deshpan4/LIFT. 

3 Results 

3.1 Performance of LIFT feature groups on reference datasets 

To evaluate performance of LIFT using 73 features on different species, prediction 

accuracies of LIFT on reference datasets were tested. An area under receiver operating 

characteristic (AUC) curve gives better insight about the ability of a classifier to separate 

two classes. From the reference datasets, an average AUC of 99.23% for plants was 

observed using an iRF classifier. Table 1 shows prediction accuracies of LIFT on plant 

species. The prediction accuracies ranged from 94.51% to 97.25% whereas specificity 

values ranged from 94.12% to 97.76%. An average MCC of 0.91 was observed for the 8 

plant species. The higher accuracy exhibited with these datasets demonstrated that LIFT 

can predict the lncRNA sequences in plants with reasonable accuracy without overfitting 

the training data. 

Table 1 Performance of LIFT on identification of lncRNA test set transcript sequences in 
multiple plant species 

Species ACC SENS SPEC F1 MCC AUC 
A. thaliana 94.34 93.19 95.57 94.45 0.887 98.90 

Z. mays 94.62 95.20 94.08 94.45 0.892 98.84 

B. napus 96.47 97.29 95.68 96.41 0.929 99.54 

B. rapa 95.76 96.58 94.93 95.82 0.915 99.21 

B. oleracea 96.27 96.008 96.53 96.28 0.925 99.20 

O. sativa 96.91 95.80 98.003 96.83 0.938 99.62 

S. lycopersicum 96.37 96.17 96.57 96.32 0.927 99.46 

S. tuberosum 96.15 97.25 95.11 96.07 0.923 99.27 

https://github.com/deshpan4/LIFT.
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To evaluate the predictive power of LIFT, its performance was benchmarked against four 

other popular coding-potential alignment-free tools: CPAT (Wang et al., 2013), PLEK 

(Li et al., 2014), lncScore (Zhao et al., 2016) and CPC2 (Kang et al., 2017). Prediction on 

test set data in individual species shows that in general, LIFT achieves higher accuracy 

and presents better performance than other tools. Specifically, LIFT performed 

exceptionally accurately on Z. mays and O. sativa datasets with prediction accuracies of 

94.71% and 96.95%, respectively (Table 2). Prediction accuracies of CPAT and lncScore 

produced similar accuracies, however, the specificity was comparatively lower. 

Table 2 Performance (percentage accuracy) comparison of LIFT against other CPC tools on 
multiple plant species obtained from refseq dataset 

Species LIFT PLEK CPAT CPC2 lncScore 
A. thaliana 94.51 80.82 97.28 95.99 97.04 

Z. mays 94.71 65.8 94.71 91.82 94.36 

B. napus 96.73 56.77 96.86 94.64 96.35 

B. rapa 95.77 61.29 96.9 94.73 96.34 

B. oleracea 96.35 54.98 96.78 92.45 96.43 

O. sativa 96.95 24.61 93.7 49.78 19.63 

S. lycopersicum 97.25 67.94 97.98 95.85 97.92 

S. tuberosum 95.69 62.29 95.36 93.73 95.43 

Source: O’Leary et al. (2016) 

LIFT exhibited highest accuracy values in 5 plant species when compared with PLEK 

and CPAT. When compared with CPC2, the LIFT displayed superior performance in all 

the species except ATH where higher metrics were observed for CPC2. An average 

prediction accuracy difference of 1–4% between the LIFT and CPC2 was detected in ZM, 

BNA, BRA, BOL, SL and ST species. OS displayed an accuracy difference of 47.17% 

between the LIFT and CPC2. Accuracy difference between the LIFT and PLEK showed 

an average difference of 30–40% in BNA, BRA, BOL and ZM datasets, 7–15% in 

ATH, whereas a significant difference of 72.34% was observed in OS species. 

3.2 Selection of optimal features using LiRFFS 

The selection of optimal features was performed on a unified dataset of 6 plant species A. 
thaliana, Z. mays, O. sativa, B. napus, B. rapa and B. oleracea). The dataset consisted of 

22,468 (lncRNA and mRNA) transcript sequences selected as training set and 7,532 
sequences selected as validation set. An optimal feature set was selected based on   

values ranging from 0.1 to 5
1 10

 . Based on tolerance  cutoff value of 0.5, two feature 

sets, namely, the 7 feature set (7F) and the 31 feature set (31F) were selected having 

minimal and maximal optimal features. 7F is selected based on least number of features 

producing higher prediction accuracy having accuracy within the tolerance  threshold 

value from the maximum prediction accuracy   value. Whereas 31F is selected based on 

the maximum number of features having prediction accuracy within the tolerance  

threshold value from the maximum prediction accuracy   value. Prediction of test set 
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sequences was performed based on the optimal feature sets obtained from LiRFFS 

computation. 

3.3 K-fold cross validation benchmarking on plant RNA-seq datasets 

To assess the performance of LIFT in the A. thaliana and Z. mays RNA-seq datasets, a 

10-fold CV performance benchmarking was performed. The prediction accuracy of LIFT 

against CPAT, PLEK, CPC2 and lncScore was tested on each fold. A total of 994 and 

1,878 transcripts test set transcripts in Arabidopsis and Maize, respectively. To evaluate 

the classification performance of LIFT, 31F was used for comparing the prediction 

accuracies of test sets. 

Transcript length distribution of TAIR10-annotated and EST-derived lncRNA 

transcripts demonstrates the degree of sequence length variation in lncRNA transcripts 

(Figure 3). Sequences derived from the TAIR10 annotation data ranges between 200 bp 

and 8000 bp whereas sequences derived from EST analysis ranges widely between 200 

bp and 5
7.8 10  bp. Additionally, ORF count of EST-lncRNA sequences reveals counts 

greater than 700 ORFs per frame. Such extremely long lncRNA sequences are generally 

misclassified as protein-coding transcripts, due to which the overall prediction accuracy 

decreases. 

Figure 3 Density distribution of transcript lengths of lncRNA sequences in ATH TAIR10-
annotated and EST-predicted results. X-axis is log of transcript lengths and y-axis is 
density (see online version for colours) 

 

Results from the CV benchmarking on A. thaliana and Z. mays indicates that LIFT 

outperformed other tools with greater precision in identifying the lncRNA transcripts 

(Figure 4). LIFT identified the lncRNA transcripts with an average accuracy of 78.22% 

and 76.2% for A. thaliana D1 and D2, whereas 96.24% for Z. mays D3 data along with 

higher sensitivity, specificity, NPV and MCC values. lncScore produced an accuracy of 

68.98% on D1 and 62.75% on D2. CPAT, on the other hand, identified the mRNA and 

lncRNA test set sequences with an average of 55.51% on D1 and 53.57% on D2 in A. 
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thaliana test set data. PLEK identified lncRNA transcripts with an average of 63.6% on 

D1 and 61.72% on D2. In Z. mays dataset, prediction accuracies of CPAT show 2.79% 

difference on the first fold. On the second fold, this difference increases to 3.05%. 

Whereas prediction accuracy difference between LIFT and PLEK is comparatively much 

higher with an average difference of 11.58% against LIFT from Folds-1 to 7. 

Figure 4 Plots illustrating performance of LIF against other existing tools based on k-fold cross 
validation benchmarking analysis for: (a) A. Thaliana; (b) A. Thaliana-EST derived 
lncRNA sequences and (c) Z. Mays. X-axis represents folds whereas y-axis represents 
percentage accuracy (see online version for colours) 
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Figure 4 Plots illustrating performance of LIF against other existing tools based on k-fold cross 
validation benchmarking analysis for: (a) A. Thaliana; (b) A. Thaliana-EST derived 
lncRNA sequences and (c) Z. Mays. X-axis represents folds whereas y-axis represents 
percentage accuracy (see online version for colours) (continued) 
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CPC2, on the other hand, exhibited lowest prediction accuracies in folds-1 to 7 with a 

mean value of 47.1%. The accuracies increased to 68.63% and 70.64% in folds 9 and 10 

with accuracy differences of 51.14%, 37.06% and 22.42% against LIFT. Interestingly, we 

noted that LIFT had higher accuracy, specificity, F1 and MCC as compared to other 

tools, thus indicating good quality of classification. CPAT produced higher sensitivity 

and NPV but performed poorly on accuracy, specificity, F1 and MCC. Contrastingly, 

lncScore exhibited comparable specificity performance but generated lower sensitivity, 

NPV and MCC values. PLEK showed lower NPV and MCC but produced higher 

accuracy, specificity, F1 and MCC than CPAT. On D3, LIFT displayed much better 

prediction accuracy, specificity, sensitivity and MCC than other tools. CPAT produced 

higher specificity and NPV but generated lower prediction accuracy than LIFT. PLEK 

showed similar sensitivity as LIFT, however, produced much lower specificity, NPV, F1 

and MCC. 

3.4 LIFT PBC module for genomic annotation of lncRNA transcripts 

Based on coordinate mapping, 478 A. thaliana and 2511 Z. mays lncRNAs were 

classified into sense-overlapping exonic, sense-overlapping intronic, antisense-

overlapping exonic, antisense-overlapping intronic, intergenic and bidirectional sub-

classes. 478 lncRNAs in A. thaliana were classified based on 35,343 protein-coding 

transcripts into 3 sense-overlap exonic, 3 sense-overlap intronic, 70 antisense-overlap 

exonic, 69 antisense-overlap intronic, 252 antisense lncRNA, 5 intergenic and 306 
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bidirectional promoter lncRNA. In Z. mays, 2511 lncRNAs were classified based on 

39,646 protein-coding transcripts out of which 119 sense-overlap exonic, 118 sense-

overlap intronic, 13 antisense-overlap exonic and intronic, 909 antisense lncRNA, 1682 

intergenic and 166 bidirectional promoter lncRNA were classified, respectively. 

Classification results from the PBC annotation were compared against the 

experimentally annotated lncRNA transcripts from the TAIR9 and Ensembl Genomes 38 

AGPv4 databases. Classification performance across the chromosomes measured an 

average accuracy of 72.55% for A. thaliana Natural Antisense Transcripts (NATs) and 

90.86% for Z. mays with long intergenic lncRNAs (lincRNAs) sequences. The 

computational time required to classify the lncRNA transcripts took 2 h 52 min for A. 
thaliana and 12 h for Z. mays. The computation was performed on an Intel(R) Xeon(R) 

CPU X5650 @ 2.67 GHz Linux station running on a single compute node. 

3.5 Function prediction of lncRNA genes based on lncRNA-mRNA  
co-expression patterns 

To predict the functions of lncRNA sequences from A. thaliana and Z. mays data, BMRF 

was implemented in LIFT for predicting the functions of Differentially Expressed (DE) 

lncRNA genes. Based on co-expression of lncRNA and mRNA FPKM values, 5,923 

correlations for 18 lncRNA sequences in A. thaliana and 97,443 correlations for 93 

lncRNA sequences were obtained in Z. mays. By applying probability ≥ 0.8, 18 lncRNAs 
were associated with 545 GOTerms in A. thaliana whereas 93 lncRNAs displayed a high 

association probability with 10 GOTerms in Z. mays (Table 3). Results from the BMRF 

analysis were validated against experimental data to detect similar lncRNA-functional 

association. A summary of experimentally reported lncRNA-function association data in 

plants (Liu et al., 2015) was used for validation of the results. 

Function annotation results were filtered based on a dictionary of keywords extracted 

from the experimentally-derived lncRNA regulatory functions. From the analysis, 17 

lncRNA genes were found to have association with 44 regulatory functions in A. 
thaliana, some of which included histone modification, regulation of transcription from 

RNA polymerase II promoter, DNA-templated transcription initiation, single-stranded 

DNA binding and alternative RNA splicing. DE lncRNA sequences in Z. mays were 

mainly annotated with biosynthetic process, cellular amino acid metabolic process, 

dopamine neurotransmitter receptor activity, intracellular functions, oxidation-reduction 

process, pyridoxal phosphate binding, ribosomal functions, ribosome biogenesis, 

structural constituent of ribosome and translation. Therefore, keyword filtering analysis 

did not generate any match in the Z. mays DE geneset. 

Experimental studies reveal that Alternative Splicing Competitor lncRNA (ASCO-

lncRNA) found in A. thaliana forms an alternative splicing regulatory module with 

nuclear speckle RNA-binding protein (NSR). The AtNSR is primarily expressed in the 

lateral root meristem development (Bardou et al., 2014). BMRF function prediction on 

the complete lncRNA geneset in A. thaliana (i.e., DE and non-DE geneset) confirms the 

presence of ASCO-lncRNA (AT1G67105) involved in the regulation of alternative mRNA 

splicing with a probability of 0.99. Certain lncRNAs found in A. thaliana, O. sativa and 

S. lycopersicum such as IPS1, Cis-NATPHO1;2, OsPI1 and TPS11 have been found to be 

involved in phosphate homeostasis as translational enhancers (Liu et al., 1997; Wasaki et 

al., 2003; Franco-Zorrilla et al., 2007; Jabnoune et al., 2013). Annotation results from the 

BMRF analysis demonstrated 89 lncRNA genes predicted to be involved in cellular 
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phosphate ion homeostasis with an average probability of 0.943. The Heat Stress 
transcription Factor (HSF) lncRNA expressed in A. thaliana are principal regulators of 

heat stress response. The antisense HSF B2a (asHSFB2a) lncRNA has been found to be 

involved in the regulation of vegetative and gametophytic development (Wunderlich  

et al., 2014). Prediction results indicate that 15 DE lncRNA genes regulate transcriptional 

activity through positive and negative regulatory mechanisms. 

Table 3 List of specific lncRNAs identified in A. Thaliana and Z. Mays associated with intra-
nuclear functions using LIFT 

lncRNA ID Biological function 
AT1G76892 Functions in poly(U) RNA binding 

AT5G34871 Involved in regulation of response to DNA damage stimulus 

AT1G78265 Involved in post-replication repair 

AT1G76892 Functions in core promoter proximal region sequence-specific DNA 
binding 

Zm00001d000474 Involved in DNA-directed RNA polymerase III complex 

Zm00001d000738 Involved in mismatch repair 

Zm00001d000972 Involved in nucleotide binding 

4 Discussion 

In this study, we developed a new tool, called LIFT for accurate identification, 

classification and function prediction of lncRNA genes. LIFT implements a set of 

sequence and codon-bias features and provides a feature selection-based approach for 

identifying the set of optimal features using LASSO and iRF classifier. For sub-

classification of lncRNA sequences, a position-based strategy has been applied which 

classifies the lncRNA transcripts based on their relative genomic coordinates with the 

protein-coding transcript sequences. Inspired from the work undertaken by Kourmpetis et 

al. (2010) and Guo et al. (2013), LIFT integrates co-expression data derived from RNA-

seq datasets. The co-expression data is generated by computing similarities in the 

expression profiles of lncRNA and mRNA transcripts. Based on the co-expression of 

lncRNA and mRNA sequences, a network of closely connected nodes is constructed. 

Implementation of BMRF in LIFT provides identification of the unannotated states of 

lncRNAs in the network with associated conditional probability values. The Gene 

Ontology term and probability-associated lncRNA genes can be filtered from the 

prediction set based on the dictionary of keywords extracted from the experimentally-

verified lncRNA regulatory functions. Benchmarking results from K-fold CV analysis 

demonstrated that LIFT performed much better than existing CPC tools, including, 

CPAT, CPC2, lncScore and PLEK. Moreover, LIFT identified exceptionally longer 

lncRNA sequences with higher accuracy, specificity, F1 and MCC on all test datasets. 

Performance of existing tools on EST lncRNA data (A. thaliana) produced much lower 

prediction accuracy as compared to LIFT generating a difference of 15–20%. 
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The selection of optimal features determines the classification performance of 

machine learning classifier. Implementation of LiRFFS in LIFT selected 24 codon-bias 

and 7 sequence features. These results provide insights into the preferential selection of 

synonymous codons in the classification process. LiRFFS produces a minimal and 

maximal set of optimal feature sets from the training and validation datasets. Application 

of the optimal feature sets on A. thaliana and Z. mays test set data demonstrated 

comparatively higher performance of 31 features when compared with 7 features using 

K-fold CV. LncRNA sub-classification using PBC achieved an accuracy of 90.86% in Z. 
mays and 72.55% in A. thaliana with published lncRNA annotated datasets. Function 

prediction results of the DE A. thaliana lncRNA sequences confirms the regulatory 

mechanisms of certain lncRNAs. The keyword-based search strategy implemented in 

LIFT provides filtering of genes based on experimentally published regulatory functions. 

Several genes were found to positively and negatively regulate the transcriptional activity 

as well as modification of histones. This approach provides a comprehensive list of 

associated molecular functions, which can serve as a useful resource for annotating 

lncRNA genes in non-model plants. 

Compared with other tools, LIFT provides unique set of features for accurate 

identification of lncRNAs transcripts. For lncRNA classification, LIFT employs a 

coordinate-based classification approach which annotates the transcript sequences based 

on overlaps of the exonic and intronic lncRNA sequences. Many research studies 

undertaken for classification of lncRNAs rely on machine-learning approaches which 

often fail due to limitation of data. Present novel approach removes the dependency of 

training set which not only enhances the classification accuracy but also annotates wide 

range of lncRNA classes. LIFT also integrated a novel function prediction approach for 

annotating lncRNAs predicted with iRF classifier and network-based probabilistic 

approach in LIFT which implemented LPCS and PPI data from STRING database. The 

method employs ‘guild-by-association’ strategy which says that if non-functional 

lncRNA is significantly co-expressed with a protein associated with some function and 

the protein is physically connected to another protein with known function, then the 

lncRNA can possibly be connected to its nearest neighbours and involved in similar 

function with associated probability. In summary, LIFT outperformed other tools on 

testing datasets as well as RNA-seq datasets with full-length transcript sequences. 

Moreover, LIFT showed better performance specifically on accuracy, sensitivity,  

F1-score, NPV and MCC metrics which shows that LIFT can predict more precisely 

when applied on other species. 

LIFT has several advantages over other tools. First, apart from commonly known 

distinguishing sequence-based features such as ORF length, GC content and Fickett 

score, it takes advantage of codon-biased features to increase discriminative power. 

Second, LIFT implements a powerful semi-supervised optimisation approach for 

selection of principal features which can be applied to any species. Third, integrative 

approach of LiRFFS and codon-biased features by LIFT provides insights into 

preferential selection of species-specific synonymous codons in the classification process. 

Fourth, it implements novel position-based mapping algorithm for sub-classification 

which can provide valuable insights into different features of lncRNAs and their 

underlying functional mechanisms in non-model species. Fifth, it provides functional 

annotation for the predicted lncRNAs using BMRF which takes advantage of PPI and 

LPCS networks. Sixth, LIFT can work with less user-provided a priori information 

which does not require any score cutoff values or customised parameterisation of the 
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classifier for lncRNA identification. Compared with existing tools such as CPAT, PLEK, 

CPC2 and lncScore, LIFT not only performed better on reference datasets but also 

provided higher prediction accuracy with selection of relevant features on A. thaliana and 

Z. mays datasets. Altogether, LIFT is stable, accurate and robust tool for identifying, 

classifying and functionally annotating lncRNAs in multiple species. 

5 Conclusions 

In this work, we developed a novel tool, LIFT for accurate identification, classification 

and function prediction of lncRNA transcripts that is suitable for plant species. LIFT 

exceeds the prediction performance over other tools on various parameters. The ability to 

identify and differentiate various lncRNA transcripts was demonstrated with cross-

validation tests on Arabidopsis and Maize datasets. Using LiRFFS, optimal features were 

identified generating higher prediction accuracy of tremely longer lncRNA sequences in 

A. thaliana datasets. Implementation of iRF classifier in LIFT additionally helps in 

determining prevalent feature interactions. Additionally, the PBC module of LIFT 

provides accurate classification of lncRNAs and identified several other classes not yet 

recognised in published datasets. Considering the complexity of various features 

implemented in the framework, LIFT requires a considerable amount of time for  

PBC-based classification. However, the amount of time required to classify can be 

reduced by the implementation of multi-threading which can bring down the computation 

time from 12 h to 2 h. Altogether, LIFT is stable, accurate and robust tool for 

identifying, classifying and functionally annotating lncRNAs in plant species. 
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