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Abstract: Cellular Automata are used for modelling and simulation of many
systems. In some applications, the system is formed by a set of subsystems that can
be modelled separately, but, in such cases, the existence of interactions between
these subsystems requires additional modelling and computer programming.
In this paper we propose a modelling methodology for the simulation of a
set of Cellular Automata models that interact with each other. The modelling
methodology is described, together with an insight on implementation details.
Also, it is applied to a particular Cellular Automata model, the Sanpile Model, to
illustrate its use and to obtain some example simulations.
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Figure 1 An example in which two subsystems exchange matter. This situation can be found in
many applications of the Cellular Automata methodology.
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1 Introduction

Modelling and simulation of spatially distributed physical phenomena is one of the most
common applications of Cellular Automata [CDO5]. In such cases, the evolution of the
automata is usually related to the exchange of some kind of material, information or energy
between adjacent cells. The simulation of this kind of systems using a Cellular Automaton
requires the representation of the system domain using the Cellular Automaton grid. This
can be done by means of the definition of different types of cells in order to simulate
boundary conditions. However, there are situations in which the use of a unique Cellular
Automaton to represent the whole domain is not straightforward.

Consider, as an example, the system of Figure 1: It is composed by two flat surfaces,
one atop the other, and a fluid that is spread on the upper one. As soon as the fluid reaches
the edge of the upper subdomain, it will start falling onto the lower one, thus exchanging
matter from one subsystem to the other.

Situations equivalent to this example can be found in different applications. Problems
such as crowd dynamics in evacuation simulation [Zho09, PMOS], traffic simulation
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[AMO6], lava and fire spread [VAN'07, AVSBO08] or tumour propagation [RAM™06] may
involve the simulation of several interconnected levels and sub-regions. If the simulation
domain can be easily decomposed in several subdomains, then a set of independent
Cellular Automata models can be used. But, in this case, the interaction between the
different subdomains has to be defined and simulated. Although some authors have
used the simulation of more than one domain, the issue of connecting the subdomains
is solved by modelling the interactions in a custom manner adequate to the particular
problem [RAM ™06, PM08]. However, a general methodology for this problem has not been
addressed.

In this work a modelling formalism is proposed that makes it possible to handle such
situations in a very straightforward and general way. The paper is structured as follows.
In what remains of this section, some definitions and notations that will be used later in
this work are presented. Then, the modelling methodology for several interacting automata
is presented. Next, several implementation details are given in the form of data structures
and general procedures. Finally, the methodology proposed is used to simulate a particular
example, the Sandpile Model, showing several applications.

1.1 Cellular Automata Formalization

In order to present the proposed scheme, first we state the basic notation that is used
within this work. A classical two dimensional Cellular Automata based on a regular grid is
considered. Every cell of the grid has a set of variables that describe the state of every cell
during the simulation.

The evolution of every cell is governed by a local rule that, without loss of generality,
will be considered the same for every cell. In order to determine the state change of a cell,
the local rule takes the current state of the cell itself and of a group of cells of the grid,
which are called its neighbourhood.

A Cellular Automata can be formally described as

CA=(M,V,S, p) ey

where

* M = {(i,j) € [1,N] x [1, M] C N x N} is the set of cells that form the Cellular
Automata.

* V is the neighbourhood of a cell.

* S is the set of possible states for a cell.

« ¢ : SIVI*1 s S is the local rule or the transition rule of the Automata.

The neighbourhood V of cell (7, j) will be considered as a subset of its adjacent cells
VCAdj:={(+k,j+1):kl=-1,01}\{(7)}

This definition of neighbourhood includes the Moore neighbourhood, which
corresponds to the complete set V00 = Adj, and the Von Neumann neighbourhood,
Vo ={G—-1,7),(+19),,j—1),(,7+ 1)} C Adj (see Figure 2). Von Neumann
and Moore neighbourhoods are the most common ones in the Cellular Automata literature
[CDOs].
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Figure 2 The figure shows the Moore neighbourhood (left) and the Von Neumann neighbourhood
(right), which are used in many Cellular Automata models. The cells that belong to the
neighbourhood are coloured in red.
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The set of possible states of a cell, S, is the Cartesian product of the sets that host the
state variables of a cell. In the classical definition of Cellular Automata, such spaces are
usually formed by a finite set of elements [CDO05], although many applications consider
more general sets, including real values [Tof84, CDO5].

The local rule ¢ : SIVI+1 — S is a function that obtains the evolution of cell (i, j) using
its state and the state of the cells that belong to its neighbourhood. This function, together
with the cell’s state variables, is what actually defines the dynamic model of the system.

1.2 Open Cellular Automata and interactions

The previous definition of Cellular Automata considers a single spatial domain for the
model, that takes the form of the set of cells M. However, there are systems in which the
domain can be naturally decomposed into several subdomains.

Let’s consider a Cellular Automata model to simulate the movement of a crowd of
people in a building. The Cellular Automata grid represents a room and the state of each
cell is related to its occupancy. A transition rule can be defined to simulate the behaviour
of a crowd during an evacuation [Zho09, SKM12, ZJS12]. In such a model, the cells that
represent an staircase or a gate also throw occupancy out of the system.

Another example can be found in the Sandpile Models [BTW87]. In the Sandpile Model,
cell state represents the amount of sand that is hosted in the cell, and transitions represent
material flow in a granular system. A sandpile model is said to be open if sand exits the
system when it reaches the grid frontier. In this case, the frontier cells have the particular
property that can send material outside the system. If we consider a system that involves
several sandpiles, then the outgoing flow of one sandpile can fall on another sandpile,
becoming an input flow. This model will be discussed in more detail later on.

Indeed, we can find examples in industrial processes in which not only there exist
relationships between different subsystems but, in addition, these relationships vary with
time. In the case of sandpiles this would happen if the relative position of the various
subsystems vary with time; e.g a set of conveyor belts to transport bulk material, or an
excavator loading sand into a truck.

The notation described will be used in the next sections to propose a modelling
methodology for a system with several interacting subdomains. Each subdomain will be
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modelled with an independent Cellular Automaton, and the different submodels will be
interconnected.

2 Cellular automata interaction

The previous examples show that, if we have several subsystems modelled by means of
Cellular Automata, we can be interested in simulating an exchange of matter, energy or
other type of information between them. Moreover, the relationship between the different
subdomains can vary along time during the simulation.

2.1 Interaction modelling

In order to model such situations we propose a modelling methodology that is based in
identifying data flow and defining rules for connecting different Cellular Automata cells.
The methodology can be decomposed in the following basic steps:

« Identification of the cells of the different automata that act as connection cells.
¢ Definition of models for the interactions that are to be simulated.

* Definition of a rule, or set of rules, that determine which cells need to be connected to
simulate the interactions.

* Monitoring of the existing connections during the simulation, to modify or remove
them.

Next, these four steps are explained in more detail.
2.1.1 Identification of emitting cells

In order to formalize the problem, and to allow a systematic definition of the procedure,
first we are going to define an special type of cells, which will be called emitting cells. An
emitting cell will be any cell of a Cellular Automaton that, due to the problem definition, is
able to throw information out of the system and, potentially, send it to a cell of a different
automata.

The first step of the methodology is the identification of such cells in every one of the
involved Cellular Automata. This identification will depend on the properties of the system
that is being simulated and on the kind of relationship that is to be modelled.

2.1.2 Modelling of the connections

The second step is to define a model for the information exchange that has motivated the
definition of the emitting cells. The model will depend on the particular problem and on the
features that we need to represent with our Cellular Automata model.

However, in many cases the information exchange will be the same that also takes place
between adjacent cells during the update of the Cellular Automata. In this case, a general
approach can be used that greatly simplifies the simulation phase.

When the interaction between an emitting cell and another Cellular Automaton follows
the same model as the one described by the local rule, the easiest way to set the relationship
is the modification of the neighbourhood of the emitting cell. By doing this, the simulation
of the interaction is featured when the local rule, ¢, is applied to the emitting cell during
the update of the Cellular Automaton.
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2.1.3 Configuration of the system of Cellular Automata

Once the emitting cells have been identified, and the relationships have been modelled, it
is necessary to define which cells need to be connected to each other. This will be done by
means of a set of rules and criteria that decide whether an emitting cell has to be connected
to a certain cell of another Cellular Automaton.

As it happens with the emitting cells, the identification of these criteria will depend on
the properties of the system that is being modelled. However, they will often be related to
the position of the cells, due to the kind of systems that are usually modelled by means of
cellular automata.

2.1.4 Update of the connections

Ithas been illustrated previously that the interaction between two or more Cellular Automata
can change during the simulation as a result of, for example, the displacement of the different
subsystems.

Thus, the connection rules will be used before the beginning of the simulation, to
configure the simulation scenario, but it can be necessary to check them also after every
simulation step to decide whether any relationship needs to be added, modified or removed.

After presenting the main steps of the proposed methodology, next we overview the
way they can be applied to perform a simulation that involves several interacting Cellular
Automata.

2.2 Interaction simulation

Cellular Automata are a computational approach to modelling systems and, often, they are
used to simulate the modelled systems by means of a computer program. The previous
modelling scheme can be applied very easily to an existing Cellular Automata computer
model following the next steps:

1. Build alist of Cellular Automata that contains all the automata that are to be simulated.

2. In the data structure used to implement a Cellular Automaton, build a list that holds
all the emitting cells of the automaton.

3. Either

(a) implement the functions that decide if an emitting cell needs to be connected to
any cell, or

(b) set up manually the connections of emitting cells.

4. If the local rule of the automaton is not enough to simulate the connections, then
implement the necessary models.

5. Run the simulation.

(a) Update every automaton. Call the connection models, when necessary.

(b) After every step run the procedures that update the connections.

Next section presents in more detail the data structures that allow the implementation
of the cell connections and the simulation of the relationships.
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3 Cell neighbourhood implementation

In this section, a set of data types and procedures are presented. They are used to store
the Cellular Automata information and to define and implement the neighbourhood of
a cell in such a way that foreign cells (cells from another Cellular Automaton) can be
used during a simulation. For sake of simplicity they are presented for a one-dimensional
Cellular Automaton, in which cells are arranged in a linear array. Later in this section the
generalization from this case to the two-dimensional case is discussed.

The data structures and the procedures that are presented next have been written using
the C programming language conventions, especially in what regards pointers, which are
expressed with asterisks after the type name, although they can, obviously, be translated
into any programming language.

3.1 Overall Description of the Implementation

Usually, a Cellular Automaton is implemented by means of a sequential data structure that
stores the cells’ data. When implementing the local rule, the neighbourhood is defined by
means of explicit reference to the indexes of the elements of the array.

In opposition to this approach, and in order to allow the communication between
different Cellular Automata, we propose the use of a data structure to represent cells that
uses pointers to refer to the cells that belong to its neighbourhood. With this cell data type,
the Cellular Automata implementation will become a multiply linked data structure, where
the different links define the neighbourhood relationship.

Using this implementation, and once it has been decided that a cell must be connected
to another one, the connection will be as simple as a pointer assignment.

3.2 Dynamic Neighbours in One Dimension

Let’s consider a one-dimensional Cellular Automaton with V cells. In this case, the grid is
an array of cells M = {(¢); ¢ = 1,..., N} and the neighbourhood of cell () is formed by
its adjacent cells V(i) = {(i — 1), (i + 1) }.

3.2.1 Cell Data Structure

In order to store the information of a cell, a basic data structure, that will be called
CellState is needed. This structure will not be defined here, as it is composed by the
parameters and state variables of a cell, and it depends on the particular application of the
Cellular Automaton. In order to store the complete grid of a Cellular Automaton, an array
of CellState structures is used. This array could be defined as

CellsState CA_GridO[N_CELLS];

for a Cellular Automata of size N_CELLS.

Computing the evolution of cell (i), which s stored in the data structure CA_Grid0[1i],
involves the state of its neighbour cells. The simplest way of accessing such cells’
information is by explicit indirection of the array elements CA_GridO[i-1] and
CA_Grid0[i+1]. But, this assumes that the neighbourhood relationship can only happen
between adjacent cells of the same Cellular Automaton, and it imposes a limitation in the
situation described in the introductory section of this paper.
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In order to overcome this limitation we propose to use pointers in order to refer to the
neighbours of a cell. This new data structure will make it possible to modify very easily
the neighbourhood of a cell to make any other cell to become its neighbour, no matter its
position in the grid and, even, whether it belongs to the same Cellular Automaton or not.
Using this idea, the basic cell data structure is as follows:

struct Cell {
CellState StateInfo;
Cell * Prev;
Cell * Next;

}i

Next, each attribute of the Ce11 structure is described briefly:

StateInfo An structure of type CellState, that contains the basic information for a
cell, including its state variables.

Prev A pointer to a Ce 11 structure, that stores the data of the neighbour that is to the left
of the cell, usually cell (¢ — 1).

Next A pointer to a Cell structure, that stores the data of the neighbour that is to the
right of the cell, usually cell (i + 1).

Again, the Cellular Automata grid can be defined by means of an array, but now using
the new data type, as

Cell CA_Grid[N_CELLS];

The Cell structure is general, in the sense that it allows the implementation of standard
Cellular Automata, just by pointing Prev and Next to their default values, the structures
of cells ¢ — 1 and ¢ + 1 respectively.

3.2.2 Basic Methods

Next, three basic methods are defined to show the use of the Ce11 data structure to define
dynamic neighbours. First, procedure Reset_Neighbours () makes it possible to use
the Cell structure in the traditional way, setting its neighbours as its adjacent cells.

Reset_Neighbours (int 1)

{
CA_Grid[i] .Prev = &CA_Grid[i-17];
CA_Grid[i] .Next = &CA_Grid[i+1];

If, on the contrary, we are interested in linking cell (4) to another arbitrary cell, no matter
whether it belongs to the same automata or not, the following procedures can be used.

Set_Neighbour_Prev(int i,Cell *_c)
{
CA_Grid[i] .Prev = _c;
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Set_Neighbour_Next (int i,Cell *_c)
{
CA_Grid[i] .Next = _c;

3.3 Cell Evolution

At this point it is important to note that the computation of the update rule is not affected at
all by this definition of the data structures. The only difference is the use of the value of the
structures pointed by Prev and Next instead of using an explicit indirection of the array.

Moreover, this fact has an interesting collateral effect. Using this data structure and
the related methods it is possible to make the neighbourhood relationship a non symmetric
relationship; the reason is that cell a can take cell b as a neighbour while cell b keeps its
original neighbourhood, thus allowing one-way information flow.

As an example, consider the system described by Figure 1. In this case, a cell of the
upper Cellular Automaton will have as a neighbour one of the cells of the lower Cellular
Automaton. However, in the lower Cellular Automaton we still want that cell to keep its
original neighbours to obtain the evolution of the lower subsystem.

3.4 Dynamic Neighbours in Two Dimensions

The data structures presented for the one-dimensional Cellular Automata can be easily
extended to be used in the two-dimensional case. Basically, the Ce11 structure needs to be
extended so that it has references to the eight possible cells of its neighbourhood.

This can be done either by defining eight pointers using appropriate names, or by using
an array of eight pointers as it is shown in the next piece of code

struct Cell2D {
CellState StateInfo;
Cell2D * Neighbours|[8];
}i

where Cel12D * Neighbours[8] represents an array of eight pointers to Ce112D
structures. The Reset_Neighbours () method also needs to be extended accordingly.

The methods that were defined for neighbour assignment, Set_Neighbour_Prev ()
and Set_Neighbour_Next (), are now unified in one single function, which receives
as a parameter the index of the neighbour to assign.

Set_Neighbour (int i,int n,Cell *_c)
{
CA_Grid[i] .Neighbours[n] = _c;

Thus, the step from one to two dimensions is rather straightforward and, as in the
one-dimensional case, it does not affect the calculus of the evolution of the Cellular
Automata. Based on this implementation of the Cellular Automata, arbitrary neighbourhood
configurations can be defined in order to build a simulation scenario.
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4 Interaction of two sandpiles

In order to illustrate the proposed methodology, the complete procedure is described for
a particular Cellular Automata model; the Sandpile Model [BTW87]. Briefly, a sandpile
model is a Cellular Automaton on a regular square grid in which the value of the state
variable represents the height of a sand pile over the grid.

The update rule of the sandpile model states that whenever the difference in height
between two neighbour cells is higher than a threshold, an avalanche happens. This means
that the upper cell reduces its height a fixed amount z, and the lower cell increases its height
the same amount. Thus, in this case, the interaction between tow cells is set in terms of
material exchange when an avalanche takes place.

The interaction between two sandpiles will be considered as a particular case of this
situation; when a cell in the frontier of one sandpile receives material, then this material is
considered to leave the system, and the cell does not increase its height. When this happens,
if another sandpile is placed below the cell, then it receives the material that has been thrown
by the upper sandpile.

4.1 Modelling of two interacting sandpiles

The proposed modelling methodology is applied to the case of two interacting sandpiles.
Next, the different steps that have been defined are described when they are applied to this
particular problem.

4.1.1 Emitting cells

The first step of the methodology is to identify the cells that will potentially interact with
other automata. According to the description of the problem of two interacting sandpiles,
the emiting cells in this case are the so-called frontier cells of the automata, which are
placed at the edges of the grid (see Figure 3). In general, in a n-dimensional grid of sizes
Nj X Ng x --- x Ny, acellis a frontier cell if and only if the : — th coordinate is 1 or N;.

Note that a frontier cell is an special cell in the sense that it will have several neighbours
undefined, as it does not have adjacent cells in some directions. This can be implemented
by initializing the corresponding pointers to NULL in the data structures defined previously
in this paper.

4.1.2 Interaction modelling

The second step in the methodology is to define the necessary interaction models.
However, in this case no particular interaction model is necessary, as the same kind of
interaction is considered between cells and between the two automata. Thus, by modifying
the neighbourhood of the frontier cells of the upper automata the interaction will be
automatically simulated when applying the local rule to the modified cells.

4.1.3 Overlapping cells

The third step is the definition of a rule that decides when an emitting cell has to be connected
to another cell during the simulation. In this case, the decision has to be made according to
the relative position of the emitting cell in the upper sandpile respect to the lower sandpile.
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Figure 3 A frontier cell is an emitting cell in the problem of two interacting sandpiles.

In order to set the rule, let’s first define this idea more precisely. Let us consider the
upper sandpile S,, and the lower sandpile .S;. It is assumed that the vertical position of
sandpile S, is higher than the vertical position of sandpile S;. We say that a cell (¢*) € S,,
overlaps cell (c!) € S; if the centre of cell (c*) is inside cell (c!). Now we can define the
rule.

Let’s consider a cell ¢ in the upper sandpile. If it overlaps a cell ¢! of the lower sandpile,
then c* is connected to the lower sandpile. In order to do this, all the missing neighbours

of c* are made to point to the corresponding neighbours in ¢!

4.1.4 Neighbourhood update

In order to set up the neighbourhoods of the upper frontier cells, a procedure will be
defined. This procedure can be called once, to configure the scenario at the beginning of
the simulation, but also can be called after every simulation step, if the relative position of
both sandpiles change along time.

Next, the procedure is described in pseudocode, using the data structures that were
defined previously in this paper. The next additional notation will be used:

Sandpile A structure that contains the data of a complete sandpile, including its position
in the simulation scenario.

Cell * Is\_Overlaping(Cell *c,Sandpile *s) A procedure thatchecks if
cell c overlaps any cell of the sandpile s. If that is the case, returns a pointer to the
overlapped cell. It returns NULL otherwise.
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Fr_U[] An array that contains a list of pointers or references to the frontier of the upper
cellular automata.

S1 An structure of type Sandpile with the information regarding the lower sandpile.

Using the previous data structures, the following procedure is applied to very emitting
cell of the upper automata, prior to the beginning of the simulation and after every simulation
step:

Algorithm 1: Input: Sandpile S1, Cell Fr_U[]
Variables : Cellcl
for c € Fr_U[]
cl « Is_Overlapping(c,S1)
if c1 # NULL
Assign missing neighbours in cell ¢ using the
neighbours in cell c1.
else
Reset neighbours in cell c1.
fi
end

This procedure assumes that the overlapped cell c1 is not a frontier cell of the lower
sandpile, S1. The reason is that frontier cells throw away the material they receive and,
thus, they are discarded.

5 Results

The example above has been used to simulate two different situations. A simple system
composed by a pair of one-dimensional sandpiles, and a more general simulation scenario,
which reproduces the load of granular material by a small loader machine.

5.1 A one-dimensional example

In order to illustrate the application of the methodology, first a simple one-dimensional
example is presented. Using the methodology proposed, two sandpiles have been set up
at different heights. The upper one has one of its edges over the centre of the lower one.
During the simulation, a fixed amount of material has been added to the upper system every
step. Figure 4 shows a sequence of snapshots of this simulation.

In this case, the system was static; there was no movement of the sandpiles during
the simulation. Thus, the Cellular Automaton configuration was defined during the set up
stage of the simulation and no update of the cells’ neighbourhood was necessary after every
simulation step.

5.2 Loader simulation

The modelling methodology presented in this paper has been applied to a more complex
simulation application. It has been used for the dynamic model in a virtual reality application
that simulates a small loader.
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Figure 4 A sequence of the simulation of two sandpiles that exchange material. From bottom to
top: the inital state of the simulation (a), the moment when the material reaches the edge
of the upper system (b) and the final state (c).
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Figure 5 A Cellular Automaton fixed to an excavator bucket (upper figure). When the bucket is
over another Cellular Automaton it can load granular material into it.

In this case, one sandpile is placed on the ground to simulate a heap of granular material
and several additional sandpiles are placed over the loader bucket or any other object that
needs to accumulate material (see Figure 5). The frontier cells of any moving sandpile are
checked after every simulation step to dynamically reconfigure their neighbourhood.

6 Conclusion

This paper has presented a modelling methodology for the simulation of several interacting
Cellular Automata. By means of the reconfiguration of the cells’ neighbourhood it is possible
to define arbitrary connections between the different automata involved.

The methodology has been described formally, and implementation details have also
been presented. In addition, it has been developed in more detail for the sandpile model,
a particular type of Cellular Automata. Moreover, the applicability of the methodology
has been illustrated by means of two applications, which show that it can be used even in
complex simulation environments.

The procedures that have been described, based in the modification of cells’

neighbourhood, provide with an automated method to intercommunicate two or more
automata so that they can share information during a simulation.
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