
Implementing an Agent Based Auction Model on a Cluster of
Inexpensive Heterogenous Workstations

Timothy M. Lynar, Ric D. Herbert and William J. Chivers

Faculty of Science and Information Technology, The University of Newcastle, Ourimbah, NSW, 2258, Australia.
E-Mail: timothy.lynar@newcastle.edu.au

Keywords: Agent based model, Cluster, Parallel computing

EXTENDED ABSTRACT

Agent based models are computer based simulations
that model a situation or phenomena from the bottom
up using ‘agents’. Agent based models are often
computationally intensive as they tend to simulate
micro behaviours in order to examine the emerging
system-level phenomena. Historically the size and
scope of agent based models has been limited by
a lack of accessible high performance computing
equipment. For example, it would have been
considered impossible to simulate the behaviour of
many independent heterogenous economic agents in
the development of early macroeconomic models, so
that system level variables like GDP were modelled.

Clustering techniques allow for the creation of high
performance computing environments at a relatively
low cost and make it possible to now consider
modelling the lower-level agents of agent based
models. Clusters comprise of independent and self
supporting computing systems that are networked
together to provide a means of interaction which
can be utilised in the completion of common tasks.
Clusters work by distributing the processing load
of an application amongst its stand-alone computing
elements. The stand-alone computing elements of
a cluster can be anything from powerful servers to
humble personal computers or even a mix of both.
For this reason it is feasible to develop a cluster for
a fraction of the cost of a supercomputer. This paper
looks at the performance of a cluster comprised of
heterogeneous recycled personal computers.

The authors evaluate the programming and imple-
mentation of an agent-based model on a cluster
of inexpensive heterogeneous workstations. The
workstations are recycled PCs and this paper
concentrates on a Java based solution: JavaParty. This
is inexpensive high performance computing as the
PCs were previously scrap and all software to run
the model comes from the Free and Open Source
Software movement.

An existing agent based model of resource allocation
through an auction between sellers and buyers is used
as the basis for all models in this paper. The model

used simulates a simple continuous double auction
where buyers and sellers post their bids on a billboard
in each round and a trade occurs whenever a bid
is greater than or equal to an ask. The model is
considered as a game which is repeated over time.

The authors wrote the software for the agent based
models used. In this paper current methodologies and
frameworks are reviewed and some of the available
tools for parallel programming and clustering are
discussed. Some preliminary results are presented
on the effectiveness of parallel computing methods,
in relation to the implementation of the agent based
model on a cluster by comparing the execution times
of the model. The execution time of two versions
of a model are then compared on a larger cluster
to compare the effectiveness of the cluster when
executing models of both high and low computational
intensity.

Some results show a significant improvement in
performance can be gained by using the cluster. The
results showed that the computational load of the
agent based models is important when clustering.
If the computational load is trivial then the cluster
will not increase the execution speed of the model,
and may even decrease it. However if the agent
based model has computationally intense threads it
can benefit significantly from being implemented
and executed on a cluster. The results with
computationally complex models showed that the
cluster provided a substantial performance boost.

The results are promising and highlight the potential
of using cluster to execute agent based models.
Clustering is suited to complex agent based models.
High performance computing can be made available
to those who are researching agent based or individual
based models at a relatively low cost through the use
of clusters.

1947



1 INTRODUCTION

Agent based models are computer based simulations.
Agent based models are often computationally
intensive as they tend to simulate micro behaviours
in order to examine the emerging system-level
phenomena. Historically the size and scope of agent
based models has been limited by a lack of accessible
high performance computing equipment. For
example, it would have been considered impossible
to simulate the behaviour of many independent
heterogenous economic agents in the development of
early macroeconomic models, so that system level
variables like GDP were modelled.

Modern computing power and recently the techniques
of parallel programming and clustering techniques
allow for the creation of high performance computing
environments at a relatively low cost and make it
possible to now consider modelling the lower-level
agents. Parallel programming allows for computing
tasks to be performed in a parallel rather than a
sequential fashion. Clusters are groups of stand-alone
computing elements that usually reside in the same
location.

In this paper the authors evaluate the programming
and implementation of an agent-based model on a
cluster of inexpensive heterogeneous workstations.
The workstations are recycled PCs in a Linux based
cluster and this paper concentrates on a Java based
solution: JavaParty. This is inexpensive high
performance computing as the PCs were scrap and
all software to run the model comes from the Free
and Open Source Software movement. The authors
wrote the software for the agent based model. In
this paper current methodologies and frameworks
are reviewed and some of the available tools for
parallel programming and clustering are discussed.
The paper then presents some preliminary results of
the effectiveness of parallel computing methods, in
relation to the implementation of the agent based
model on a cluster by comparing the execution times
of the model.

An existing agent based model of resource allocation
through an auction between sellers and buyers is used.
The difference in performance is demonstrated, before
and after the implementation of the model on a cluster.

2 AGENT BASED MODELS AND CLUSTERS

2.1 Agent based models and the need for high
performance computing

An agent based model simulates micro behaviours in
order to investigate the emerging macro phenomena.

Agents are software processes that are implemented
on a computer and have autonomy, the ability to
interact with other agents and the environment,
and are both proactive and reactive. Agents are
not controlled by any external coordinating device
(Gilbert & Terna 2000, Tesfatsion 2002). Agents can
be implemented as software objects with their own
attributes and methods.

Agent based models have the potential to be processor
intensive applications. For example, Goldstein (2007)
reports one application involved in modelling the
movement of sixteen thousand chickens in a pen. The
processor power required to run this simulation was
described as “... a chore that would tax a rack full
of conventional servers” (Goldstein 2007, p.37). So
agent based models raise the issue of the enormity
of computing power required to run them in a timely
fashion.

Historically, supercomputers have been employed in
processor intensive applications such as computer
modelling, however this high performance is costly.
Supercomputers have the highest cost of any system
and yield the highest performance feasible (Schneck
1990). In this paper cheaper alternatives are
considered. Clustering promises to be one way of
obtaining the computing power of a supercomputer at
a relatively low price (Sterling et al. 1999).

2.2 What is a cluster?

Clusters are groups of stand-alone computing el-
ements that usually reside in the same location.
Clusters comprise independent and self supporting
computing systems that are networked together to
provide a means of interaction which can be utilised in
the completion of common tasks (Sterling et al. 1999).
Clusters work by distributing the processing load
of an application amongst its stand-alone computing
elements; these elements then process the application.
The stand-alone computing elements of a cluster can
be anything from powerful servers to humble personal
computers or even a mix of both (Sterling et al. 1999).
For this reason it is feasible to develop a cluster for a
fraction of the cost of a supercomputer. This paper
looks at the performance of a cluster comprised of
heterogeneous recycled personal computers.

2.3 How does a cluster work?

For a cluster to operate an application must be coded
by a programmer in a way that allows it to be
distributed amongst the nodes of the cluster. When
the application is executed on the cluster these nodes
process their portion of the application. In order for a
cluster to show a performance increase over a standard
desktop computer it has to execute the parts of the

1948



application simultaneously on the different nodes of
the cluster. This is known as distributed parallel
computing. There are many methods of implementing
distributed parallel computing on a cluster. The next
section is a review of some of these methods.

3 CURRENT CLUSTER TECHNOLOGY

3.1 Methods of Clustering with Java

For this paper the model was implemented in Java.
For a program to be distributed amongst the nodes of
a cluster and its parts executed in parallel, specialist
solutions must be implemented. There are many such
solutions for the creation of a cluster of heterogeneous
workstations. Message Passing Interface (MPI)
implementations, Remote Method Invocation (RMI)
based implementations and OpenMosix are some of
the current technologies in this field.

The Message Passing Interface (MPI) is one such
solution. MPI is not an application or library
but is a standard that was created during 1993–
1994 (Gropp & Lusk 1995). MPI is a standard
for how processes should communicate once they
are created. It does not specify how processes
should be created nor does it include dynamic
processor management (Gropp & Lusk 1995). There
are many implementations of the MPI standard,
including M-JavaMPI, and Pure Java Message Passing
Implementation (PJMPI) which are implementations
for Java.

Java implementations of MPI fall into two categories:
Pure Java implementations, which are reported to
be slow, and implementations that have implemented
native libraries, and as such could not be considered
truly portable (Ma et al. 2002). WeiQin et al. appear
to agree that native libraries are unsuitable for a
heterogenous environment stating “even the programs
written in the same MPI binding language run on
different platforms may not be able to communicate
because of the difference of internal byte ordering”
(WeiQin et al. 2000, p.533). For this reason MPI
technology was not used for this cluster.

Parallel programming on Java is not exclusively
related to MPI. One other technology is Dataflow
Java. Dataflow Java is an extension of Java
that provides an alternative way of programming
multi-threaded applications. Dataflow Java allows
applications to be developed in a data centric way
(Lee & Morris 2000). Dataflow Java takes control
of most of the thread management in an application
and claims to be “implicitly parallel” (Lee & Morris
2000, p.1). It is important to note that dataflow
Java remains untested and unreleased and as such is
unsuitable to be implemented in this project. However

the concept behind Dataflow Java is of interest and
may be appropriate as it is developed in the future.

The Java Object-Passing Interface (JOPI) extends
Java to provide additional functionality. Java objects
are utilised to assist communication among parallel
applications. The functionality that is provided is
similar to data passing extensions such as MPI, but
is claimed to be more powerful (Mohamed et al.
2002, Al-Jaroodi et al. 2002). JOPI provides an
interface to the programmer that is similar to MPI
(Mohamed et al. 2002) and appears to provide greater
performance than MPI. JOPI appears to be an
excellent technology but has not been used for this
project, as it appears to be no longer available.

Titanium (Yelick et al. 1998) is another option for
parallel computing. It uses Java as its base and
is based on the SPMD principle, (Single Program,
Multiple Data). Titanium is not an extension of Java;
rather the Titanium compiler translates Titanium’s
code into C which then needs to be compiled by a
C compiler (Yelick et al. 1998). However Titanium
does not support threads and is not as cross-platform
as JavaParty.

JavaParty (Moschny & Haumacher 2007) is a cross
platform parallel programming extension to Java.
JavaParty consists of a pre-processor and a runtime-
system utilising a remote method invocation interface
to enable objects and threads to be spread across the
distributed environment. JavaParty is designed for “...
distributed parallel programming in heterogeneous
workstation clusters” (Philippsen & Zenger 1997,
p.1226). The main advantage of JavaParty to
the programmer is that there is “... no need to
significantly re-write or re-organize a given Java
program” (Philippsen & Zenger 1997, p. 1226). Few
changes need to be made to a class to make it parallel.
To distribute an object to a remote machine the class
modifier remote is required and instead of using
Java’s threads the RemoteThread class is provided.
Using these two simple modifications it is possible to
distribute the computing load of an application across
all the nodes in a cluster. Because of JavaParty’s ease
of programming and promising performance results it
was chosen as the technology to run the agent-based
model on.

JavaParty comes in two versions with each having a
different remote method invocation interface. One
version is based on Java’s RMI and the other is
based on KaRMI, which is a replacement for the
standard Java RMI. KaRMI was designed for high
performance computing and tests have shown that it
saves a median of 45% of runtime (Philippsen et al.
2000). The version of JavaParty used in this project
utilises KaRMI.

1949



OpenMosix is yet another alternative for clustering.
OpenMosix consists of a kernel patch and some user-
space tools. OpenMosix allows for the load-balancing
of processes among other connected OpenMosix
nodes. The main advantage of OpenMosix is that it
is implemented in the kernel and user-space and only
requires the programmer to program in threads. This
simplifies the task of clustering but also creates new
problems. The programmer must create or modify a
distribution of unix to include the Openmosix kernel
patch and tools. OpenMosix is also limiting in that it
can only be used on IA architecture and all nodes must
be running Linux (Knox 2007). OpenMosix should
provide a quick and easy way to cluster heterogenous
workstations, providing those workstations are of the
IA-32 architecture (Knox 2007). OpenMosix however
currently only has alpha support for the 2.6.x series
of Linux kernel (Knox 2007). This means that if
you wish to use OpenMosix you must use an older
distribution of Linux that has an old 2.4.x series
kernel.

After reviewing the available software that will
assist in the creation of an agent based model
on a cluster of heterogeneous workstations, it was
decided that JavaParty is currently the best option
for the creation of a simple cluster of heterogeneous
nodes. JavaParty is a cross-platform Java-based
technology that supports threading and can enable
remote execution of code with only minor changes to
an application.

4 IMPLEMENTATION

4.1 The Cluster

The cluster used consists of eleven nodes. Each
node is a stand-alone personal computer. The nodes
in the cluster are connected to each other through
standard 100Mb Ethernet network interface cards and
are connected through Ethernet cables to a 100Mb
switch. All the personal computers in the cluster are
of the same hardware makeup, they are all about four
years old and contain Pentium 4 processors. These
pieces of hardware have been selected because they
have been written off and were to be disposed of like
many other computers their age.

The cluster used in the preliminary tests with model
A consisted of two nodes and did have computers of
differing hardware, however the slowest node in this
cluster was dropped from the final cluster because of
its comparatively poor performance.

The software environment of the cluster is cur-
rently homogeneous. The Debian GNU/Linux
(Software in the Public Interest Inc 2007) distribution
of Linux is installed on all the workstations in the

cluster. Sun Java 1.4.2-02 run-time environment (Sun
2007) is installed and JavaParty (KaRMI) 1.9.5 is
also present. One advantage of using Java is that it
is possible to have nodes of differing hardware and
software makeup, so long as those nodes can run the
Java run-time environment, they should be able to be
included in the cluster.

4.2 Measuring performance

To test the performance of the applications on the
cluster, the Linux time command is used. The
time command has the ability to record the time an
application takes to execute. The time command is
accurate to one-tenth of a second (Christias 1994).

The values returned from the Linux time command
have been compared. The speed of the execution of
the application has been tested repeatedly with no
other non-system specific applications running. All
task schedulers were stopped, the swap partition was
disabled and the application run in console mode. This
application has been tested on the stand-alone system
after the application has been modified, to enable it to
be run in parallel. Once the cluster was setup, turned
on, and all nodes connected, the application was
then tested again using the same method as described
above. All the results have been recorded.

All data has been tabulated in JMP 5.1 (Institute 2007)
and graphs and statistics produced. An ANOVA has
been conducted to analyse variance between tests and
Tukeys Honestly Significant Difference (HSD) test is
used to show significant difference. The mean and
median execution times have also been calculated.

4.3 The Agent Based model

The model used in this paper examines a number
of simple strategies for agents in an auction. The
model allows the agents to evolve with unsuccessful
agents dying and being replaced by agents that inherit
the most successful strategy. The model seeks to
answer the question as to whether a particular strategy
dominates or whether a steady state of a mixture
of strategies evolves. The auction model used is a
continuous double auction where buyers and sellers
post their bids on a billboard in each round and a
trade occurs whenever a bid is greater than or equal
to an ask. The model is considered as a game
which is repeated over time. The details of the
model are presented elsewhere in this conference in
Herbert & Turton (2007).

1950



4.4 Model A

The agent based model that is used as the preliminary
model (model A) is a resource allocation model
through an auction between sellers and buyers. For
the preliminary results the model has been further
simplified. It contains a simple for loop to create
a number of agents each in a software thread. The
agents in this model are ZIT (Zero Intelligence
Traders) so that each agents either make a bid of a
random amount or an ask of a random amount. There
was no clearing of the bids implemented in this model.
The aim of this simple model is to demonstrate what
effect implementing an agent based model on a cluster
may have.

4.5 Model B and Model C

The final model is more computationally intensive
than the first model and is executed over the full
cluster. In the final model clearing occurs and all
results are recorded to a database. The final model
comes in two versions of varying computational
intensity. The first version of the final model (model
B) contains the same computationally light model as
the preliminary model, however it contains agents of
varying type, evolution and clearing. The second
version (model C) is the same as the first but with
each agent preforming an additional computationally
intense task, to simulate the computational impact of
more complex agent based models.

5 RESULTS

5.1 Results - model A

Preliminary analysis was performed on a two node
cluster. A two node cluster was used to test
whether the current setup was correct and whether
a reduction in execution time had occurred as a
result of clustering. The two node cluster consists
of two personal computers of different hardware.
The nodes of the cluster were connected together
through the available switch and network cables. Java
and JavaParty were installed. Initial tests were then
conducted on each individual node of this cluster and
then the two node cluster itself.

Node 0 appears to be the fastest node as it ran the
model in a mean time of 41.54 seconds and a median
time of 41.41 seconds. Node 1 ran the model much
slower with a mean time of 61.94 seconds and a
median time of 57.90 seconds. When the nodes were
clustered together they ran the model with a mean time
of 36.59 seconds and a median time of 36.83 seconds.

Figure 1. ANOVA of model A

An analysis of variance has been conducted and
Tukeys HSD used to show significant difference
between tests. Figure 1 shows these results. A
one-way Analysis of Variance(ANOVA) was used to
compare times of execution over the three possible
configurations (node 0, node 1 and cluster). The
ANOVA showed a significant difference at the 0.05
level of confidence. Tukeys HSD test was then used
to find that there were significant differences between
all groups at the 0.05 level of confidence. The
results show that the clustering techniques produce
a statistically significant overall improvement in
performance by producing significantly lower results
than that of the fastest individual node (node 0).

The nodes and the cluster were each tested twenty
times to determine the execution speeds of the model.
These results are displayed in Figure 2. It must
be noted the results with a two node cluster were
somewhat erratic as were the results of node 1. The
operating system, setup and all software was identical
on both nodes. The erratic behaviour of node 1 may
be attributed to the uneven distribution of threads to
the different cores on the dual core processor of node
1. The cluster also showed erratic behaviour and this
may also be attributed to the uneven distribution of
threads to the different nodes within the cluster.

Figure 2. The time taken to execute model A

1951



5.2 Results - model B

Results were derived by running tests on the full
cluster. Six tests were conducted with two versions
of the final model (model B and C). For each model
three tests were conducted. A test was conducted with
each model running entirely on a single node (node
0), with the model running on a single node (node 7)
with an external database (node 0) and the model run
over the entire cluster. Each model was run twenty
five times for each test.

The cluster performed poorly when executing model
B. When the model was run on a stand-alone
workstation the model took a mean time of 40.0
seconds to execute. When the model was executed
with a separate computer acting as a database server,
the execution time dropped to an mean time of
30.2 seconds. When the model was executed over
the entire cluster the execution speed was slightly
slower although not significantly slower, with an mean
execution time of 31.0 seconds.

Figure 3 shows the results of the execution of model B
over the full cluster. Although an ANOVA shows there
is significant difference at the 0.05 level of confidence,
Tukeys HSD test when used showed that there were
significant differences between some groups but not
others. The overlapping circles in Figure 3 indicate
that the tests for the cluster and node 7 and 0 are not
significantly different from each other.

Figure 3. ANOVA and Tukeys HSD of model B

The results from model B show that the cluster
provides no significant performance increase if the
application executed on the cluster has a light
computational function to perform. The ANOVA
and Tukeys HSD of model B show that even when
the threads of the application have little to do, no
significant decrease or increase in performance is
realised.

5.3 Results - model C

When model C was executed over a stand-alone
workstation it had a mean execution time of 65.7

seconds. When this model was executed on a single
computer with an additional computer acting as a
database server, the model executed in an mean time
of 57.4 seconds. When the model was run on the
cluster it executed in an mean time of 33.0 seconds.

An ANOVA was used to compare times of execution
over the three possible configurations of the two
models (Cluster, node 0, and node 7 and 0). Tukeys
HSD test was then used to find wether there were
significant differences between all groups at the 0.05
level of confidence.

Figure 4 show the results of model C. The ANOVA
shows significant difference at the 0.05 level of
confidence and Tukeys HSD test found that all groups
were significantly different.

Figure 4. ANOVA and Tukeys HSD of model C

The results from model C show that when the
individual threads of the application have a substantial
task to perform, the cluster provides a significant
speed increase over the fastest stand-alone system.

6 CONCLUSIONS

This paper has presented some preliminary results
from running a simple agent based model on a cluster
of heterogenous workstations. Initial results indicate
that implementing an agent based model on a cluster
can lead to significant speed increases in the execution
of the model. The implementation of a Java agent
based model was easily implemented on a cluster
of recycled heterogenous workstations running Linux
and JavaParty. All hardware and software used in
this cluster were obtained at no cost to the authors
of this paper. The workstations were old, written
off and destined for disposal. The operating system
and supporting software were all free. Although the
hardware and software that comprises this cluster is
free it should be noted that it can take considerable
time to initially acquire the skills and knowledge to
setup such a clustering environment. In this case it
took one person three weeks to build the initial cluster.
However, subsequent setups of clusters using the same
technology can be accomplished in a much shorter

1952



time period. The full cluster of eleven nodes took the
same person four days to setup.

The final results show that the computational load of
the threads in the agent based models is important
when clustering. If the computational load of these
threads is trivial then the cluster will not increase
the execution speed of the model, and may even
decrease it. However if the agent based model
has computationally intense threads it can benefit
significantly from being implemented and executed
on a cluster. High performance computing can be
made available to those who are researching agent
based or individual based models at a relatively low
cost through the use of clusters. However these
results highlight that clusters are not suitable to all
applications. For an application to take full advantage
of a cluster of this type the application must have
many computationally intense threads that can be
executed over the multiple nodes of the cluster.

Future work is planned to extend the test model and
expand the number of nodes on the cluster. Further
testing is planned to evaluate the full potential of this
technology.

7 REFERENCES

Al-Jaroodi, J., Nader, M., Hong, J. & Swanson, D.
(2002), An agent-based infrastructure for parallel
java on heterogeneous clusters, in B. Gropp,
R. Pennington, D. Reed, M. Baker, M. Brown
& R. Buyya, eds, ‘Proceedings 2002 IEEE
International Conference on Cluster Computing’,
Chicago, Illinois, USA, pp. 19–27.

Christias, P. (1994), ‘Time(1)’, Retrieved May 8,
2007, from http://unixhelp.ed.ac.uk/
CGI/man-cgi?time.

Gilbert, N. & Terna, P. (2000), ‘How to build and
use agent-based models in social science’, Mind &
Society 1(1), 57–72.

Goldstein, H. (2007), ‘Cure for the multicore blues’,
IEEE Spectrum 44, 37–39.

Gropp, W. & Lusk, E. (1995), Dynamic process
managment in a mpi setting, in ‘Proceedings
of Seventh IEEE Symposium on Parallel and
Distributed Processing’, San Antonio, Texas, USA,
pp. 530–533.

Herbert, R. D. & Turton, P. (2007), Simple strategies
of agents in an evolving auction model, in
‘Proceedings of MODSIM07’.

Institute, S. (2007), ‘Jmp software’, retrived 16 June
2007 from http://www.JMP.com/.

Knox, B. (2007), ‘OpenMosix, an open source linux
cluster project’, retrieved 4th June 2007 from
http://openmosix.sourceforge.net/.

Lee, G. & Morris, J. (2000), ‘Dataflow java:
Implicitly parallel java’, Australasian Computer
Architecture conference 2000 5, 42–50.

Ma, R. K. K., Wang, C.-L. & Lau, F. C. M. (2002),
‘M-javampi: A java-mpi binding with process
migration support’, IEEE/ACM International Sym-
posium on Cluster Computing and the Grid 2, 255–
263.

Mohamed, N., Al-Jaroodi, J., Jiang, H. & Swanson,
D. (2002), Jopi: a java object-passing interface,
in ‘JGI ’02: Proceedings of the 2002 joint ACM-
ISCOPE conference on Java Grande’, ACM Press,
New York, NY, USA, pp. 37–45.

Moschny, T. & Haumacher, B. (2007),
‘JavaParty – Java’s Companion for Distributed
Computing’, retrived 16 Jun 2007 from
http://www.ipd.uni-karlsruhe.de
/JavaParty.

Philippsen, M., Haumacher, B. & Nester, C. (2000),
‘More efficient serialization and rmi for java’,
Concurrency: Practice and Experience 12(7), 495–
518.

Philippsen, M. & Zenger, M. (1997), ‘Javaparty -
transparent remote objects in java’, Concurrency:
Practice and Experience 9(11), 1225–1242.

Schneck, P. B. (1990), ‘Supercomputers’, Annual
Reviews Computer Science 4, 13–36.

Software in the Public Interest Inc (2007), ‘Debian –
the universal operating system’, Retrieved May 28,
2007, from http://www.debian.org/.

Sterling, T., Salmon, J., Becker, D. & Savarese,
D. F. (1999), How to Build a Beowulf, MIT Press,
London.

Sun (2007), ‘Java technology’, Retrieved May 28,
2007, from http://www.sun.com/java/.

Tesfatsion, L. (2002), ‘Agent-based computational
economics:modelling economies as complex adap-
tive systems’, Information Sciences 149(4), 262–
268.

WeiQin, T., Hua, Y. & WenSheng, Y. (2000),
Pjmpi: Pure java implementation, in ‘The Fourth
International Conference on High-Performance
Computing in the Asia-Pacific Region’, Vol. 1,
IEEE Computer Society, Los Alamitos, CA, USA,
pp. 533–535.

Yelick, K., Semenzato, L., Pike, G., Miyamoto,
C., Liblit, B., Krishnamurthy, A., Hilfinger, P.,
Graham, S., Gay, D., Colella, P. & Aiken,
A. (1998), ‘Titanium: A high-performance Java
dialect’, Concurrency 10, 825–836.

1953




