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Abstract: Among biometric modalities, hand vein patterns are seen as providing an attractive 
method for high-level security access applications owing to high impenetrability and good user 
convenience. For biometric recognition based on near-infrared dorsal hand vein images, Local 
Binary Patterns (LBP) have emerged as a highly effective descriptor of local image texture with 
high recognition performance reported. In this paper, the traditional approach with LBP applied 
in the spatial domain is extended to multi-radius LBP in the wavelet domain to provide a more 
comprehensive set of feature categories to capture grey-level variation characteristics of vein 
patterns, and score weighted fusion based on the relative discriminative power of each feature 
category is proposed to achieve higher recognition performance. The proposed methodology is 
shown to provide a more robust performance with a recognition rate in excess of 99% and an 
equal error rate significantly less than 2%. 
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1 Introduction 

Among biometric modalities which have been increasingly 
used to replace traditional personal identification methods 
based on keys, cards and passwords, hand vein patterns are 
seen as providing an attractive method for high-level security 
access applications (Delac and Grgic, 2004; Ding et al., 2005; 
Shah et al., 2015; Wang et al., 2007; Wang et al., 2015). In 
addition to offering the same convenience (without the need 
of carrying keys or cards and memorising passwords) and 
same security (with higher impenetrability against stealing or 
falsification) like other biometric modalities (Lin and Fan, 
2004), hand vein based biometrics possess a number of 
unique advantages. In particular, hand veins are much harder 
to forge through liveness detection (Wang and Zhao, 2013); 
are less susceptible to surface conditions affected by dirt, 
scratches and wear; and are less intrusive owing to contactless 
imaging. 

For biometric recognition using Near-Infrared (NIR) dorsal 
hand vein images, the approaches found in the literature use 
predominantly geometry-based features extracted from vein 
patterns. With vein patterns represented by their medial axes 
and employing constrained sequential correlation, Cross  
and Smith (1995) achieved a False Rejection Rate (FRR)  
of 7.5% and a False Acceptance Rate (FAR) of 0% based on 
100 images from 20 subjects. With vein patterns represented by 
their minutiae points and employing the Hausdorff distance, 
Wang et al. (2008) showed the possibility of achieving an FRR 
and an FAR of 0% for 47 subjects. Based on the topological 
structure from the hand vein minutiae extracted using Delaunay 
triangulation and the geometrical features obtained from 
knuckle tips, Kumar and Prathyusha (2009) achieved an  
Equal Error Rate (EER) of 1.14% based on 300 images from 
100 subjects. Recently, based on the key points extracted from 
vein patterns using the scale-invariant feature transform, an 
EER of 0.81% has been reported based on 2040 images from 
204 hands (Wang et al., 2014). The biometric recognition 
performances of these methods are largely limited by the 
geometrical visibility of vein patterns. Since not all the dorsal 
hand veins can be made clearly visible without being affected 
by illumination conditions and hand postures, the vein patterns 
extracted from dorsal hand vein images are prone to error. 
Some thin veins could be missed, and some extra veins could 
be generated in dark image regions. Compounded by the 
additional factor of a limited number of vein lines visible under 

NIR (often much less than 10 per hand), small errors  
could become significant with a considerable impact on the 
recognition performance. 

An alternative approach is to use the grey-level appearance 
based on global or local measures. Applying independent 
component analysis to the global grey-level appearance of 
dorsal hand vein images has been shown to provide a better 
recognition performance than those approaches employing 
geometry-based features (Yuksel et al., 2011). Among the 
various approaches based on local grey-level appearance (Ojala 
et al., 1996), Local Binary Patterns (LBP) (Ojala et al., 2002) 
have emerged as a highly effective descriptor of local image 
texture in dorsal hand vein images, achieving a recognition 
performance around 98% (Wang et al., 2010; Wang et al., 
2011). This has led to the work described in this paper to 
extend the LPB approach to achieve a higher level of 
recognition performance for NIR dorsal hand vein images. 

From the perspective of image feature representation for 
hand vein based personal identification, a weakness of LBP is 
in its small coverage area of local grey-level variation 
characteristics. This has led to the work in this paper to 
extend LBP computed at a fixed sampling radius in the image 
domain in the traditional approach to the proposed approach 
with LBP computed at multiple sampling radii in the 
transformed wavelet domain, thereby providing additional 
texture categories at different orientations and scales with a 
larger coverage area to the hand vein classification stage. 
Since different texture categories and different coverage areas 
capture different aspects of grey-level variation characteristics 
of hand vein patterns and result in different classification 
performance, also proposed in this paper is score weighted 
fusion to yield an overall recognition performance that is 
higher than those based on individual texture categories. 
Although wavelet-based LBP has been previously proposed 
(Song and Li, 2013; Mu et al., 2011), this paper extends it to 
multi-radius wavelet LBP for image classification based on 
discriminative power of LBP computed at individual 
sampling radius in both spatial and wavelet domains. 
Furthermore, wavelet LBP has not been investigated for 
biometric recognition based on hand vein patterns. 

The rest of this paper is organised as follows. Section 2 
presents the dorsal hand vein images as well as necessary 
geometric and grey-level pre-processing operations required 
before feature extraction and recognition, and Section 3 
presents the proposed recognition methodology based on 



 Improving hand vein recognition by score weighted fusion 153 

wavelet and LBP plus score weighted fusion. These are then 
followed by Section 4 with experimental results to demonstrate 
the recognition performance of the proposed approach. Finally, 
the paper ends with the conclusions in Section 5. 

2 Dorsal hand vein images and pre-processing 

In this work, the dorsal hand vein images were acquired 
using the NIR imaging device developed by the authors 
(Wang et al., 2014). During biometric acquisition, each  
user is required to grasp a handle under a box, which 
contains Light Emitting Diodes (LED) to provide the NIR 
illumination at a wavelength of 850 nm, and a camera to 
capture the NIR light bounced off the back of the hand. A 
database was established by collecting dorsal hand vein 
images from 102 volunteers. In order to capture intra-class 
variation, each volunteer was required to grasp the handle 
20 times by using their left hand and right hand alternately 
during image capture. This results in ten images acquired 
from each hand with a total of 2040 dorsal hand vein images 
in the database. The images are stored with a resolution of 
640 × 480 pixels, and a sample image of the database is 
shown in Figure 1(a). The database is publicly available and 
has been used by researchers working on vein biometrics 
(Honarpisheh and Faez, 2013; Zhu and Huang, 2012; Tang 
et al., 2012; Zhu et al., 2013). 

Figure 1 (a) sample image; (b) shearing computation; (c) shear 
corrected image with centroid and extracted ROI shown 
in square; and (d) filtered ROI 

 
 (a)  (b) 

            
 (c) (d) 

There are two stages in pre-processing of dorsal hand vein 
images, which are geometric processing followed by grey-
level processing. The aim of geometric processing is to 
extract the same part of the hand-dorsal region from the 
images acquired, such that biometric recognition is less 
affected by geometric variations of vein patterns owing to 
inconsistent hand positions and postures with respect to the 
camera. Although the handle for grasping during vein image 
capture has restricted the hand position and posture, a slight 
horizontal shearing effect, as shown in Figure 1(a), has been 

found to occur in some of the acquired dorsal hand vein 
images owing to a small lateral wrist movement. This 
horizontal shear can be corrected by using 

    1 0

1
x y x y

t

    
 

 (1) 

where (x′, y′) denotes the pixel coordinates in the horizontally 
sheared image (acquired image), (x, y) the pixel coordinates 
after geometric image correction and t the shearing factor. 

In order to determine the shearing factor, the Ostu 
thresholding method (Otsu, 1979) is applied to the acquired 
image to yield a threshold, and the threshold is then used  
to convert the acquired image into a binary image with 1 
corresponding to the hand-dorsal region and 0 corresponding 
to the background as shown in Figure 1(b). Subsequently, 
four boundary points along two pre-defined horizontal lines 
near the top and bottom of the binary image are found based 
on the first transition from black to white and the last 
transition from white to black along the two horizontal lines. 
This is illustrated in Figure 1(b) with points A, B, C and D 
denoting the four boundary points found. Based on the 
imaging distance between the camera and hand, the 
horizontal lines were empirically fixed at 30 lines below the 
top image border and above the bottom image border. Using 
the middle points of AB and CD calculated and denoted as E 
and F, the shearing factor t is estimated as the slope of  
line EF. 

After the horizontal shear correction using equation (1), 
the image centroid (xo, yo) is used as the geometric reference 
for extraction of a consistent Region of Interest (ROI) and 
computed using 
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where I(x, y) denotes the pixel value at position (x, y) of the 
shear corrected image. As an example, Figure 1(c) shows 
the corresponding image with geometric correction and the 
ROI extracted from the acquired image shown in Figure 1(a). 
Finally, using the nearest neighbour interpolation, the size 
of the extracted ROI is normalised to 256 × 256 pixels. 

For grey-level processing, there are two objectives: the first 
is to increase image contrast and the second is to minimise 
image noise, so as to enable extraction of characteristic grey-
level variation of vein patterns. For the first objective, a 
rectangular pulse with the pulse width matched to the 
average vein width is used as the matched filter and applied 
to each row of the dorsal hand vein image to maximise the 
peak response upon encountering a vein. For the second 
objective, a 2D Wiener filter is used to minimise noise 
based on a local window with the window size set to the 
average vein width. Based on the average vein width of  
15 pixels, Figure 1(d) shows the filtered image of the 
extracted ROI shown in Figure 1(c) as an example, where 
the filtered image is seen to have a higher contrast between 
veins and background tissue, as well as more uniform grey-
level appearance of vein lines and background tissue. 
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3 Recognition method 

The proposed methodology for biometric recognition of dorsal 
hand vein images consists of wavelet transform to yield a 
multi-scale representation of image features at different 
orientations, multi-radius LBP to yield a feature vector for each 
of the informative wavelet decomposed image, and score 
weighted fusion to yield a high recognition performance. 

3.1 Wavelet transform of hand vein images 

Wavelet transform of an image provides a hierarchical set  
of sub-band images containing the feature information 
captured at different orientations and resolutions. Based on 
the separability property of the wavelet transform as a result 
of using orthogonal basis functions, the discrete wavelet 
transform of an image can be implemented as two 1D 
wavelet transforms, by using a two-channel filter bank 
consisting of a lowpass filter and a highpass filter with their 
impulse responses derived from a particular wavelet basis 
function, as shown in Figure 2. The first 1D wavelet 
transform is performed along the horizontal direction of 
each image with each row being treated as a 1D signal. By 
performing lowpass and highpass operations on each row 
followed by a 2-to-1 down-sampling operation to discard  
 

every other column, the first 1D wavelet transform produces 
two outputs for each image, namely the horizontal lowpass 
output and the horizontal highpass output. The second 1D 
wavelet transform is performed along the vertical direction 
of the outputs produced by the first 1D wavelet transform 
with each column of the horizontal lowpass output and the 
horizontal highpass output being treated as a 1D signal. By 
performing lowpass and highpass operations on each 
column followed by a 2-to-1 down-sampling operation to 
discard every other row, the second 1D wavelet transform 
produces four first-level wavelet components for each 
image, namely the vertical lowpass of the horizontal 
lowpass output denoted by w1,a, the vertical highpass of the 
horizontal lowpass output denoted by w1,h, the vertical 
lowpass of the horizontal highpass output denoted by w1,v 
and the vertical highpass of the horizontal highpass output 
denoted by w1,d. While w1,a corresponds to the first 
approximation of the input image, w1,h, w1,v and w1,d 
correspond to the horizontal, diagonal and vertical detail 
components, respectively. Applying the whole process again 
to w1,a yields four further wavelet components of w2,o at the 
second image decomposition level with o  [a, h, v, d] 
denoting the orientation, and the entire process can be 
repeated until the desired image decomposition level is 
reached. 

Figure 2 Wavelet based image decomposition 

 

Figure 3 Wavelet decomposed images 
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In implementing the discrete wavelet transform of dorsal  
hand vein images, the Haar wavelet was selected, since its 
rectangular basis function offers an advantage for localisation 
of vein edges in images and it is also the simplest wavelet for 
computation compared with other wavelets. Furthermore, the 
number of decomposition levels was set to two without increasing 
unnecessarily the number of additional feature categories. 
Using the extracted ROI shown in Figure 1(d) as an example, 
Figure 3 shows the output wavelet components produced by 
applying the two-level Haar wavelet transform. It is seen from 
Figure 3 that all the structure information of the vein pattern  
are contained in the approximation wavelet components at  
two different scales. Compared with the horizontal wavelet 

components, the vertical wavelet components are seen to 
contain more useful information of the vein structure, and this 
reflects the dominant orientation of most vein lines in the 
vertical direction. The diagonal wavelet components are seen to 
be least useful with very little vein structure visible. 

3.2 Multi-radius local binary patterns 

Proposed by Ojala et al. (2002), Local Binary Patterns (LBP) 
provide an efficient descriptor of local grey-level appearance. 
By treating a given pixel as the centre with its neighbourhood 
pixels defined as equally spaced sampling points on a  
circle from the centre pixel, the LBP generates a binary 
representation of the local grey-level appearance by comparing 
the centre pixel grey level with those of its neighbour pixels. 
This operation can be expressed mathematically as 
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where R denotes the radius of the circle from the centre pixel, P 
the number of equally spaced sampling points on the circle, gc 
the grey level of the centre pixel and gp the grey level of each 
sampling point on the circle. If a sampling point does not fall 
exactly at the integer pixel positions, then gp is obtained by 
bilinear interpolation of its four nearest neighbouring pixels. 

Although there are 2P possible binary patterns which 
could be produced by the LBP operation, only a small 
subset of them is useful to describe the primitive grey-level 
variation patterns. One subset is based on the uniformity 
measure of LBP defined as the number of binary transitions 
from 0 to 1 or 1 to 0 between successive bits in the circular 
representation of the binary code, and is given by 
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With U(LBPP,R) ≤ 2, the subset of LBP is known as the 
uniform LBP which contains at most two binary transitions 
in its circular binary patterns as a result of two significant 
spatial grey-level changes, and it has P(P − 1) + 3 possible 
binary patterns. 

Among the uniform LBP, there exist P − 1 rotated 
versions of each binary pattern with the smallest binary 
value, owing to P possible angular positions around the 
sampling circle. By removing the rotated versions, the 
number of possible binary patterns is reduced further to P, 
and the resulting rotation invariant uniform LBP is given by 
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With P = 8 and R = 2, Figure 4 shows ten possible LBP 
categories indicated by their corresponding pattern numbers 
based on equation (6), where black and white circles 
indicate binary values of 0 and 1. From Figure 4, patterns 0 
and 8 can be seen to indicate spot/flat area, patterns 1, 2, 6 
and 7 indicate line ending points, patterns 3 and 5 indicate 
corner points, pattern 4 indicates edges and pattern 9 
indicates all other possible non-uniform binary patterns 
(with grey circles indicating either binary 0 or 1). 

By obtaining LBP for each pixel at position (x, y) of an 
image of N × M pixels at radius R in either spatial or 
wavelet domain, a normalised histogram indicating the 
percentage of each binary pattern can be constructed as the 
feature vector of the image, and is given by 
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where k  [0, P+1]. To capture the grey-level variation 
patterns within a larger area, multiple LBP histograms at 
different sampling radii are computed, and concatenated to 
form a joint histogram of the multi-radius LBP as the 
feature vector of the image. For example, for the multi-
radius LBP computed at sampling radii of 2, 3 and 5 pixels, 

their joint histogram is given by 2 3 5, ,k k kH h h h    . 

An even more comprehensive feature vector can be 
provided by partition of each image in the spatial and wavelet 
domains into non-overlapping regions, and concatenation of 
the multi-radius LBP histograms from each region to provide 
position-based local grey-level appearance (Wang et al., 2010; 
Wang et al., 2011). In the implementation, the same image size 
is maintained for each partitioned block at different image 
scales. Hence, if the original image is divided into L × L non-
overlapping blocks, then each of the wavelet components is 
divided into (L/2) × (L/2) non-overlapping blocks at the first 
decomposition level, and (L/4) × (L/4) non-overlapping blocks 
at the second decomposition level. Ignoring the diagonal 
wavelet components as they have been found to be non-
informative, concatenation of the resulting LBP histograms 
from each image produces seven different feature categories, 
namely F0(l, H) for the original image with l  [0, L×L] 
denoting the index of the partitioned image blocks, F1,o(l, H) 
with l  [0, (L/2)×(L/2)] and o  [a, h, v] denoting  
the orientation of the three wavelet components at the  
first decomposition level and F2,o(l, H) with l  [0, (L/4)×(L/4)] 
for the three wavelet components at the second decomposition 

level. 
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Figure 4 Local binary patterns from 2
8,2
riULBP  

 
 

3.3 Score weighted fusion 

As a result of applying multi-radius LBP in both spatial and 
wavelet domains, seven feature categories are made available 
for dorsal hand vein recognition, with six coming from the 
wavelet decomposed images (with the non-informative diagonal 
wavelet component discarded) in addition to that from the 
original image. For an enrolled image in the database, let Fm,o 
denote its multi-radius LBP feature vector of the partitioned 
image in either spatial or wavelet domain with m  [0, 2] and o 
 [a, h, v]. If the corresponding feature vector of the input 
image to be identified is denoted by Qm,o, then the matching 
score between them based on the Euclidean distance is given by 

  2

, , , ,, ( , ) ( , )m o m o m o m o
l k

D F Q F l H Q l H     (8) 

Applying equation (8) to each feature category in the spatial 
and wavelet domains yields seven possible matching scores, 
and a simple fusion approach to compute the final matching 
score is to average across scores. However, different feature 
categories provide different recognition performance, and the 
category with higher discriminative power should contribute 
more to the final matching score. This leads to the score 
weighted fusion given by 

, ,c m o m o
m o

D c D  (9) 

where cm,o denotes the weighting factors. By using a training 
data set to learn the recognition performance of each feature 
category and denoting it as Sm,o, the weighting factors can be 
estimated as 
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4 Results and discussion 

By using the dorsal hand vein image database, this section 
presents the experiments conducted to yield appropriate 

weighting factors and to demonstrate the performance of the 
proposed approach. 

4.1 Wavelet-domain local binary patterns 

The first set of experiments was to obtain appropriate 
weighting factors for wavelet-domain LBP at one sampling 
radius by investigating the recognition performance of each 
feature category as well as score weighted fusion. 

With the ROI extracted from each dorsal hand vein 
image and normalised to 256 × 256 pixels, the 2-level Haar 
wavelet transform was applied to give the approximation, 
horizontal and vertical wavelet components with a size of 
128 × 128 pixels at the first decomposition level and 64 × 64 
pixels at the second decomposition level. By dividing ROI 
into 8 × 8 blocks as well as each of the wavelet components 
into 4 × 4 blocks at the first decomposition level and 2 × 2 
blocks at the second decomposition level to give a 
partitioned image size of 32 × 32 pixels per block, 2

8,2
riULBP  

was applied to each block to generate the corresponding LBP 
histogram, and the resulting histograms are concatenated to 
form seven feature categories for each dorsal hand vein 
image, namely one feature vector for ROI denoted by F0 with 
a length of 10 × 8 × 8, three feature vectors for the wavelet 
components at the first decomposition level denoted by F1,o 
with each having a length of 10 × 4 × 4 and three feature 
vectors for the wavelet components at the second decomposition 
level denoted by F2,o with each having a length of 10 × 2 × 2. 

The database of 2040 dorsal hand vein images acquired 
from 204 hands were divided into two parts. With ten hand 
vein images per hand, half of them from each hand were 
randomly selected to form the set of enrolled images and the 
remaining half was used to form the set of test images. 
Identification of a test image as belonging to a particular 
hand in the enrolled set is based on the minimum Euclidean 
distance computed using equation (8), and performance 
evaluation is based on the rank-1 recognition rate defined as 
the percentage of correctly recognised images. 
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Table 1 Rank-1 recognition rates of ROI and wavelet-domain one-radius LBP 

Feature vector F0 F1,a F1,h F1,v F2,a F2,h F2,v 

Rank-1 recognition 98.33% 95.78% 92.65% 95.10% 82.16% 44.12% 72.06% 

 

From Table 1 showing the recognition results obtained 
based on seven different feature categories, the relative 
performance is seen to be consistent with the image 
information provided by ROI and each wavelet component. 
From the viewpoint of decomposition levels, the feature 
vector of a particular orientation at a lower resolution level 
always yields a lower recognition rate than its counterpart at 
a higher resolution level, owing to loss of information 
through down sampling. From the viewpoint of wavelet 
components, the feature vector of the horizontal component 
yields a lower recognition rate than those of the vertical 
component and the approximation component, owing to 
very few veins running along the horizontal direction. As a 
result, the feature vector of ROI before wavelet decomposition 
is seen to provide the highest recognition rate of 98.33%, and 
the feature vector of the horizontal wavelet component at the 
second decomposition level is seen to provide the lowest 
recognition rate of 44.12%. For comparison of relative 
discriminative power with respect to the original LBP 
approach, applying 2

8,2
riULBP  to ROI without image partition 

yields a recognition rate of 95.49%, around 3% lower than that 
produced by F0 with ROI divided into 8 × 8 blocks. 

Substituting the recognition rates of seven feature 
categories listed in Table 1 into equation (10) yields the 
weighting factors shown in Table 2. Applying these weighting 
factors to yield the Euclidean distance and to find the nearest 
neighbour in the enrolled set for each of the test image, the 
rank-1 recognition rate was found to reach 99.02%, which is 
0.69% higher than that without using wavelet-domain LBP. 

4.2 Wavelet-domain multi-radius local  
binary patterns 

The second set of experiments was to extend score weighted 
fusion of feature categories based on LBP at one sampling 
radius in the wavelet domain to LBP at multiple sampling 
radii by investigating the recognition performance as a 
function of the number of partitioned image blocks and LBP 
sampling radius. For the former, the extracted ROI was 
divided into 8 × 8, 16 × 16 and 32 × 32 blocks. For the 
latter, and the sampling radius of 2

8,2
riULBP  was increased 

from 1 to 8 pixels in step of 1 pixel. 

Table 2 Weighting factors for ROI and wavelet-domain one-
radius LBP 

c0 c1,a c1,h c1,v c2,a c2,h c2,v 

0.1695 0.1651 0.1597 0.1639 0.1416 0.0760 0.1242 

Using the same set-up as the first set of experiments with 
half of the database used as enrolled images and the other 
half for testing, Table 3 shows the rank-1 recognition rates  
 

obtained by applying the two-level Haar wavelet transform 
and fusing the resulting LBP-based feature categories based 
on the weighting factors in Table 2. With the normalised 
ROI size of 256 × 256 pixels, the block size reduces from 
32 × 32 pixels to 8 × 8 pixels as the number of partitioned 
image blocks increases from 8 × 8 blocks to 32 × 32 blocks, 
and this results in maximum LBP sampling radius of 7 pixels 
for 16 × 16 blocks and 3 pixels for 8 × 8 blocks. From Table 3, 
there is a trend in the recognition performance which is seen to 
decrease as the number of partitioned image blocks and the 
LBP sampling radius increase. Furthermore, the recognition 
performance for the case of image partition based on 8 × 8 
blocks is seen to have least variation with the recognition 
rate staying around 99%. 

Table 3 Rank-1 recognition rates as a function of image 
blocks and sampling radius 

LBP sampling 
radius (pixels) 

8 × 8  
blocks 

16 × 16  
blocks 

32 × 32 
blocks 

1 98.92% 98.73% 98.24% 

2 99.02% 98.53% 98.04% 

3 99.02% 98.43% 96.76% 

4 98.82% 98.53%  

5 98.92% 98.04%  

6 99.02% 98.04%  

7 98.73% 95.69%  

8 98.92%   

From Table 3, the highest recognition rate of 99.02% is seen 
to occur at the LBP sampling radii of 2, 3 and 6 pixels with 
the number of image blocks set to 8 × 8. Since different 
local grey-level variation characteristics are provided by 
different LBP sampling radii, this leads to further 
concatenation of the histograms produced by 2

8,2
riULBP , 

2
8,3
riULBP  and 

2
8,6
riULBP  to provide a more comprehensive feature 

vector for each feature category, so as to increase the 
recognition performance. As a result, the feature vector 
length is increased to 10 × 4 × 4 × 3 for each wavelet 
component at the first decomposition level, and 10 × 2 × 2 × 3 
for each wavelet component at the second decomposition 
level. Table 4 shows the rank-1 recognition results obtained 
based on the multi-radius LBP feature vectors extracted 
from six wavelet components. 

Table 4 Rank-1 recognition rates of wavelet-domain multi-
radius LBP 

Feature 
vector 

F1,a F1,h F1,v F2,a F2,h F2,v 

Rank-1 
recognition

97.84% 94.41% 97.35% 93.53% 90.98% 97.25%
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Compared with Table 1, the recognition rate shown in Table 4 
for each wavelet component is always higher than the 
corresponding one in Table 1. Furthermore, there is less 
variation in the recognition performance. A big improvement 
in recognition performance is seen to occur for the horizontal 
wavelet component at the second decomposition level with an 
increase of 47% as a result of using the multi-radius LBP 
instead of one-radius LBP. Applying weighted fusion by 
substituting the recognition rates listed in Table 4 into 
equation (10), Table 5 shows the weighting factors obtained. 
Applying these weighting factors to yield the Euclidean 
distance and to find the nearest neighbour in the enrolled set 
for each of the test image, the rank-1 recognition rate was 
found to reach 99.12%. 

Table 5 Weighting factors for wavelet based multi-radius 
LBP 

c0 c1,a c1,h c1,v c2,a c2,h c2,v 

0.1467 0.1461 0.1410 0.1454 0.1397 0.1359 0.1452 

4.3 Performance evaluation 

With the score weighted fusion of wavelet-domain multi-
radius LBP found to yield the highest recognition rate, the 
third set of experiments was performed to compare the 
recognition performance of the proposed approach with the 
traditional multi-radius LBP. 

With the extracted ROI from each dorsal hand vein 
image divided into 8 × 8 blocks, Figure 5 shows the 
maximum, average and minimum recognition rates against 
the number of enrolled images obtained from ten repeated 
experiments based on different combinations of enrolled  
and test images. While Figure 5(a) shows the recognition 
performance of the traditional multi-radius LBP descriptor 
which was formed by concatenation of the histograms 
produced by 2

8,2
riULBP , 2

8,3
riULBP  and 2

8,6
riULBP , as its feature 

vector, Figure 5(b) shows the recognition performance of 
the proposed approach based on wavelet-domain multi-
radius LBP by using the weighting factors listed in Table 5. 
Although both approaches have similar trends of increasing 
recognition rate and decreasing performance variation as the 
number of training images increase, the proposed approach 
is seen to offer higher recognition rates with less variation. 
The average recognition rate of the proposed approach is 
seen to increase from 91.59% for one training image to 
99.12% for nine training images as shown in Figure 5(b), 
which are more than 10% and 1% higher than 81.29% and 
97.94% produced by the traditional multi-radius LBP 
descriptor as shown in Figure 5(a). Furthermore, the 
performance variation of the proposed approach is two 
times less, from 6.54% (with minimum and maximum 
recognition rates of 87.25% and 93.79%) for one training 
image to 3.43% (with minimum and maximum recognition 
rates of 96.57% and 100%) for nine training images shown 
in Figure 5(b), compared with the traditional multi-radius 
LBP descriptor from 13.07% (with minimum and maximum 

recognition rates of 71.13% and 84.20%) to 6.86% (with 
minimum and maximum recognition rates of 92.65% and 
99.51%) shown in Figure 5(a). Based on the rate of change in 
recognition performance and variation, a recommendation may 
also be made to use five enrolled images of each hand class. 

Figure 5 Average, maximum and minimum of recognition rates. 
(a) Traditional multi-radius LBP; (b) wavelet-domain 
multi-radius LBP 

 
(a) 

 
(b) 

By dividing the whole database into two halves with five 
images in each hand class used as enrolled images and the 
remaining five images used for testing, the curves of FAR 
and FRR against the recognition threshold, based on the 
traditional multi-radius LBP and the proposed wavelet-
domain multi-radius LBP are shown in Figures 6(a) and 7(a), 
respectively. While FAR was computed based on the 
Euclidean distances between the feature vectors of each test 
image of each hand class and all the enrolled images in 
different hand classes and corresponds to the percentage of 
the distances above the recognition threshold, FRR was 
computed based on the Euclidean distance of the feature 
vector of each test image of each hand class and all other 
enrolled images of the same hand class and corresponds to 
the percentage of the distances below the recognition 
threshold. With the threshold increasing from zero in steps 
of 0.01, the proposed approach is seen to have a lower EER 
of 1.79% at a lower threshold value of 0.713 as shown in 
Figure 7(a), compared with the traditional approach with a 
higher EER of 3.92% at a higher threshold of 0.746. For 
visualisation of the trade-off between FAR and FRR,  
see Figures 6(b) and 7(b), which show the corresponding 
receiver operating characteristic curve. 
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Figure 6 Traditional multi-radius LBP. (a) FAR and FRR 
curves; (b) ROC 

 
(a) 

 
(b) 

Figure 7 Wavelet based multi-radius LBP. (a) FAR and FRR curves; 
(b) ROC 

 

(a) 

 

(b) 

5 Conclusions 

This paper presents a method to provide a more 
comprehensive feature vector of NIR dorsal hand vein 
images, thereby improving its biometric recognition 
performance. In the work, the original LBP approach has 
been extended in three ways. First, it is applied not only in the 
spatial domain, but also in the wavelet domain to capture 
grey-level variation characteristics of vein patterns at 
different orientations and scales. Second, LBP is computed 
based on partitioned images in both spatial and wavelet 
domains to capture grey-level variation characteristics of vein 
patterns at the block level instead of global appearance, and 
this has the effect of increasing the statistical differences 
among the LBP histograms derived from different individuals 
with similar global image characteristics. Third, LBP 
computation in the wavelet domain is extended from one 
sampling radius to multiple sampling radii to capture the most 
discriminative grey-level variation characteristics of vein 
patterns in a larger area. 

The three extensions of the traditional LBP approach were 
built on investigation of the performance impact made by each 
component on hand vein recognition. For the wavelet 
orientation, the diagonal wavelet component was shown to be 
non-informative as it contains no apparent vein patterns, and 
the vertical wavelet component was shown to provide a higher 
recognition rate than that of the horizontal component owing to 
the dominant vertical orientation of hand vein patterns. For the 
wavelet resolution, lower decomposition levels were shown to 
provide a lower recognition performance, and this can be 
attributed to loss of information as a result of down sampling. 
For the number of image partitions and sampling radii, 
increasing their values tend to decrease the recognition 
performance in general, and the best recognition rate was 
shown with the number of image partitions set to 8 × 8 blocks 
and the sampling radii set to 2, 3 or 6 pixels. 

The improvement in recognition performance achieved by 
score weighted fusion of wavelet-domain multi-radius LBP can 
be seen. Using the recognition performance of 95.49% 
achieved by the original LBP approach as the baseline, 
adopting image partition for LBP computation based on  
8 × 8 blocks is shown to increase the recognition performance 
to 98.33%, adding wavelet-domain LBP with one sampling 
radius is shown to raise the recognition performance to 99.02% 
and increasing sampling radius from one to three is shown to 
achieve the highest recognition rate of 99.12%. A comparison 
with the traditional multi-radius LBP has also been made, and 
the proposed approach is shown to offer a recognition 
performance that is more robust with less variation as well as a 
higher recognition rate and lower EER. 

As a direction of future research, the proposed approach 
could be practically applied to low-quality dorsal hand vein 
images and to other biometric image modalities to increase 
recognition rate and to reduce performance variation. With the 
emerging challenge of heterogeneous images as a result of 
accommodating multiple devices for biometric acquisition in a 
distributed and big data environment, other directions for future 
research include biometric recognition of heterogeneous dorsal 
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hand vein images and further development of the proposed 
approach to address the new biometric challenges. 
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