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Abstract: In this paper, a novel control strategy based on an adaptive self recurrent
wavelet neural network (SRWNN) and a sliding mode controller/observer for a slider
crank mechanism is proposed. The aim is to reduce the tracking error of the linear
displacement of this mechanism while following a specified trajectory. The controller
design consists of two parts. The first one is a sliding mode control strategy and the
second part is an adaptive self recurrent wavelet neural network (SRWNN) controller.
This controller is trained offline first, and then the SRWNN weights are updated online by
the adaptive control law. Apart from the hybrid control strategy proposed in this paper, a
velocity observer is implemented to replace the use of velocity sensors. This study begins
with the derivation of the dynamic equations of the slider crank mechanism followed by
the derivation of the proposed observer and control strategies. Finally, to demonstrate
the effectiveness of the controller/observer strategy, a numerical example is supplied to
analyze the variables of the system, tracking error and the estimated variables.

Keywords: Adaptive wavelet neural networks; Sliding mode control; Sliding mode
observer; Slider crank mechanism

1 Introduction

The slider crank is a mechanism with several applications
in industry and other fields such as gasoline and diesel

engines (Wai, 2003), where the linear displacement
generated by a force is converted to a circular movement
or vice versa (Haddad and Chellaboina, 2002; Lin et al,
1999). Even when in the literature some traditional

Copyright c© 2009 Inderscience Enterprises Ltd.



2 Azar et al.

approaches are used (Komaita and Furuta, 2008; Saito
et al, 2009; Wai, 2003), the main objective of this
study is to improve the previously mentioned works. As
it is known, wavelet neural networks are implemented
in different applications as shown in Alexandridis
and Zapranis (2013); Min et al (2014); Yoo et al
(2007, 2005, 2006). In this paper, a novel approach is
presented considering these control strategies. The main
idea is to develop and design an appropriate control
methodology taking into account a hybrid strategy which
consists of a sliding mode controller (Azar and Serrano,
2015, 2018; Azar and Zhu, 2015; Vaidyanathan and
Azar, 2015; Vaidyanathan et al, 2015) together with
and adaptive self recurrent wavelet neural networks
(SRWNN) (Abiyev et al, 2013; Hongyan et al, 2010,
2007; Wu et al, 2014; Yoo et al, 2007; Taha and Taha,
2018) to stabilize this mechanical system. Note that a
slider crank mechanism is a closed chain mechanical
system. There are many examples of observers for
nonlinear systems that are fundamental for the proposed
observer shown in this paper, such as, Davila et al
(2005); Kalsi et al (2009); Su et al (2007). In this
paper, a full order observer is presented to obtain the
estimated velocities without the need of sensors (Wai,
2003; Wang et al, 2014; Xiao and Zhu, 2014). Considering
the work of Hongyan et al (2010, 2007) an adaptive
self recurrent wavelet neural network and sliding mode
controller for the slider crank mechanism is proposed.
The reason to implement a self recurrent wavelet neural
network and sliding mode controller is that this control
strategy has been demonstrated to be superior to other
neural network controller approaches. By implementing
the separation principle, the observer and controller can
be designed independently (Alexandridis and Zapranis,
2013; Lin et al, 1999; Sawada and Itamiya, 2012; Yoo
et al, 2005). The self recurrent wavelet neural network
controller architecture consists of four layers: the input
layer, a mother wavelet layer, a product layer and an
output layer (Yoo et al, 2005) which makes this controller
part more efficient than other neural network controller
approaches.

2 Dynamic model of the slider crank
mechanism

In this section, the dynamic model of the slider
crank mechanism is presented. A complete dynamic
model based on the Euler-Lagrange equations is derived
considering all the system states that mark a complete
difference from other dynamical models found in
literature (Haddad and Chellaboina, 2002; Lin et al,
1999; Saito et al, 2009). In Fig. 1, the slider crank
mechanism is depicted. As can be noticed, the linear
motion is converted to rotational motion by applying
a force F1(t). This produces a linear motion a(t) that
generates a rotational movement on each joint θ1(t),

Figure 1 Slider crank mechanism

θ2(t) and θ3(t). The Euler-Lagrange equations are given
by:

D(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)) = τ(t), (1)

where q(t) ∈ <n is the angular position and linear
displacement vector, τ ∈ <n is the torque/force vector,
D ∈ <n×n is the positive definite inertia matrix, C ∈
<n×n is the torque vector due to Coriolis and centrifugal
forces and g ∈ <n is the torque vector yielded by
gravitational forces. The dimension of the slider crank
mechanical system is n = 4, where the vectors q(t) and
τ(t) are defined by:

q(t) =


θ1(t)
θ2(t)
θ3(t)
a

 , τ(t) =


0
0
0

F1(t)

 (2)

In order to implement the proposed control strategy,
the dynamic equation (1) is divided into the following
individual parts (Spong et al, 2006):

n∑
j=1

Dkj(q(t))q̈j(t)

+

n∑
i=1

n∑
j=1

Cijk(q(t), q̇(t))q̇i(t)q̇j(t) + gk(q(t)) = τk(t),

(3)

where Dkj(q(t)) is the (j, k) element of the inertia
matrix, Cijk(q(t), q̇(t)) is the (i, j) Christoffel symbol,
gk(q(t)) is the k element of the gravity vector and τk(t) is
the k element of the input vector τ(t), where k = 1, 2, 3, 4
for the slider crank dynamic equation. The components
of the inertia matrix are explained in the Appendix. For
convenience, the j element of the angular/linear position
vector and force/torque vector are given by qj(t) and
τj(t) respectively.

3 Control system architecture and Observer
design

The control system architecture for the slider crank
mechanism is depicted in Fig. 2. This control strategy
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is based on simulation but the hardware and actuator
dynamics can be added with a force to current
converter (Tahmasebi et al, 2014). The proposed
adaptive controller technique is formed by the following
three components: (1) the adaptive self recurrent wavelet
neural network controller; (2) sliding mode controller
and (3) a full order nonlinear observer.

The implemented observer is based on different
observer approaches for several kinds of mechanical
systems. The observer is based on Davila et al (2005); Su
et al (2007); De Wit and Fixot (1991), where the inverse
dynamics of an n degrees of freedom mechanical system
is implemented along with other techniques such as
sliding mode to develop a successful observer. Examples
of sliding mode observers for nonlinear systems can be
found in Kalsi et al (2009); Xiao and Zhu (2014).

In order to design a suitable observer to estimate
the state variables of the slider crank mechanism, the
first step is to convert the dynamic model (1) of the
slider crank mechanism to state space by selecting the
following state variables:

x1(t) = q(t), x2(t) = q̇(t) (4)

obtaining the state space model

ẋ1(t) = x2(t)

ẋ2(t) = D−1(x1(t))[τ(t)− C(x1(t), x2(t))x2(t)− g(x1(t))].
(5)

Therefore, the state space representation (5) of the
slider crank mechanism is:

ẋ1(t) = x2(t)

ẋ2(t) = f(t, x1(t), x2(t), τ(t)). (6)

Considering that all the states of the slider crank
mechanism will be estimated from the measured position
x1(t), the following observer is proposed to estimate all
the state variables of this mechanism:

˙̂x1(t) = x̂2(t)
˙̂x2(t) = −k0 sgn(e(t)) + f(t, x1(t), x̂2(t), τ(t))− k1e(t),

(7)

where x̂1(t) and x̂2(t) are the estimated position and
velocity vectors, k0 and k1 are positive constants and
sgn(·) is the sign function. The error signals e(t) and ė(t)
are defined by:

e(t) = x̂1(t)− x1(t)

ė(t) = x̂2(t)− ẋ1(t) = x̂2(t)− x2(t). (8)

These are the error signals implemented in (7) and
they are used in the development of the error dynamics
of the system employed in the convergence test of
the estimated variables. Therefore, the system error

dynamics is given by Su et al (2007); De Wit and Fixot
(1991)

ë(t) = ˙̂x2(t)− ẋ2(t) =

− k0 sgn(e(t)) + f(t, x1(t), x̂2(t), τ(t))

− k1e(t)− f(t, x1(t), x2(t), τ(t)). (9)

Now, defining the variable

r(t) = ė(t) + e(t) (10)

The dynamic errors defined by the signal r(t) is:

ṙ(t) = −k0 sgn(e(t)) + f(t, x1(t), x̂2(t), τ(t))− k1e(t)
− f(t, x1(t), x2(t), τ(t)) + x̂2(t)− x2(t). (11)

The error equation (11) is important because the
convergence of the observer explained in this section can
be corroborated.

Theorem 1: Consider the observer obtained in (7). If
e(t) = 0 as t→∞, then the asymptotic convergence of
the state variables is assured.

Proof: This condition is tested by selecting an
appropriate Lyapunov functional V (r(t), e(t)) to prove
that V̇ (r(t), e(t)) ≤ 0. Consider the following Lyapunov
functional:

V (r(t), e(t)) =
1

2
rT (t)r(t) +

1

2
eT (t)e(t). (12)

Now, deriving (12) we obtain

V̇ (r(t), e(t)) = rT (t)ṙ(t) + eT (t)ė(t). (13)

Substituting the derivatives of the error signals ṙ(t)
and ė(t) from (11) and (8), respectively, yields:

V̇ (r(t), e(t)) = −rT (t)k0 sgn(e(t))

+ rT (t)f(t, x1(t), x̂2(t), τ(t))− rT (t)k1e(t)

− rT (t)f(t, x1(t), x2(t), τ(t)) + rT (t)x̂2(t)

− rT (t)x2(t) + eT (t)x̂2(t)− eT (t)x2(t).

(14)

Rearranging (14) we have

V̇ (r(t), e(t)) = −rT (t)k0 sgn(e(t))

− rT (t)(f(t, x1(t), x2(t), τ(t))

− f(t, x1(t), x̂2(t), τ(t)))− rT (t)k1e(t)

− rT (t)(x2(t)− x̂2(t))

− eT (t)(x2(t)− x̂2(t)). (15)

Then, an upper bound for the derivative of the
Lyapunov function is found in the following form (Liu,
1999; Xiang and Siow, 2004):

V̇ (r(t), e(t)) ≤ −k0min
∥∥rT (t) sgn(e(t))

∥∥
−k1min

∥∥rT (t)e(t)
∥∥

−
∥∥rT (t)

∥∥ ‖f(t, x1(t), x2(t), τ(t))− f(t, x1(t), x̂2(t), τ)‖
−
∥∥rT (t)

∥∥ ‖x2(t)− x̂2(t)‖ −
∥∥eT (t)

∥∥ ‖x2(t)− x̂2(t)‖ ,
(16)
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Figure 2 Control system architecture

where

k0min, k1min > 0, k0min = min
i∈n

k0i, k1min = min
i∈n

k1i,

(17)

Thus, the global asymptotic convergence of the
observer is ensured and the proof is completed.

4 Controller design

In this section, the design and development of an
adaptive self recurrent wavelet neural network and
sliding mode controller is described. As shown in Fig.
3, the controller architecture consists of a sliding mode
and an adaptive SRWNN controller in which their input
signals are determined by the error signals e(t), ė(t), that
are used as the inputs of the controller, and S, Ṡ as the
sliding variables.

4.1 Self recurrent wavelet neural network
controller structure and offline training

The inputs of the SRWNN controller part are established
by the dynamic errors of the slider crank mechanism
that, in this case, are the linear displacement error e4(t)
and the linear velocity error ė4(t). A schematic diagram
of the self recurrent wavelet neural network controller is
shown in Fig. 3. The hybrid control strategy consists of
the following four layers as defined in (Alexandridis and
Zapranis, 2013; Yoo et al, 2005, 2006):

Layer 1: The input layer of the SRWNN controller
part with inputs e4(t) and ė4(t).
Layer 2: The mother wavelet layer in which each node is
a mother wavelet with a self-feedback loop. In this article
a function similar to φ(x(t)) = −x(t)exp(− 1

2x
2(t)) is

implemented as a mother wavelet function.
Layer 3: The product layer, where the product of the
mother wavelets is obtained.
Layer 4: The output layer, where the sum of the
products obtained in layer 3 and the weighted inputs are
computed.

The neural network architecture for the SRWNN
controller part of the slider crank mechanism is designed

Figure 3 SRWNN controller architecture

with two input signals, the linear displacement error
e4(t) and the linear velocity error ė4(t). The mother
wavelets of the second layer are defined by:

φ(zjk(n)) =

−
(
ujk(n)−mjk

djk

)
exp

(
−1

2

(
ujk(n)−mjk

djk

)2
)
,

(18)

where

φ(zjk(n)) = φ

(
ujk(n)−mjk

djk

)
, (19)

with

zjk(n) =
ujk(n)−mjk

djk
, (20)

where mjk and djk are the translation and dilation
factors of the mother wavelet (Yoo et al, 2005, 2006).
The subscript j, k is the k input term of the j wavelet.
The inputs of this layer, in discrete time n, are defined
by:

ujk(n) = xk(n) + φjk(n− 1)θjk, (21)
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where θjk is the weight of the auto-feedback loop shown
in Fig. 3 due to the feedback in each mother wavelet in
layer 2. In layer 3, the product of each mother wavelet
or wavelon is denoted by:

Φj(x(n)) =

Ni∏
k=1

φ(zjk(n)) =

Ni∏
k=1

[
−
(
ujk(n)−mjk

djk

)
exp

(
−1

2

(
ujk(n)−mjk

djk

)2
)]

.

(22)

The signal provided by the output layer is given by:

y(n) =

Nw∑
j=1

wjΦj(x(n)) +

Ni∑
k=1

akxk(n),

(23)

where wj is the connection weight between the product
node and the output node, and ak is the connection
weight between the input node and the output node. In
order to compute the weights of the adaptive SRWNN
controller for initialization purpose, a weight vector W
is defined as:

W = [ak,mjk, djk, θjk, wj ]
T ,

(24)

where the weights explained in this subsection are
grouped into one vector in order to train the adaptive
SRWNN controller part offline before the real time
implementation.

4.2 Offline Training

The offline training of the SRWNN controller part
of this strategy is crucial for a suitable initialization
of the adaptive SRWNN weight vector. The training
method implemented for this purpose is the well-known
gradient descent method (Alexandridis and Zapranis,
2013; Yoo et al, 2007, 2005, 2006) which consists of
the minimization of an objective function as described
below.

J(n) =
1

2
[yd(n)− y(n)]2 =

1

2
e2(n),

(25)

where yd(n) is the desired output and y(n) = ŷd(n) is
the actual output of the adaptive SRWNN controller
part. In this method the weight vector W is updated in
each iteration while minimizing the functional cost (25).
It is defined in (Yoo et al, 2007) as:

W (n+ 1) = W (n) + ∆W (n) = W (n) + η̄

(
− ∂J(n)

∂W (n)

)
,

(26)

where

η̄ = diag[ηa, ηm, ηd, ηθ, ηw],

(27)

and the partial derivative of the functional cost is given
by:

∂J(n)

∂W (n)
= −e(n)

∂y(n)

∂W (n)
.

(28)

Applying the chain rule recursively, the adjustments
of the weights of each layer can be obtained. The
components of the weight vector are given by:

∂y(n)

∂ak(n)
= xk(n),

(29)

∂y(n)

∂mjk(n)
= − wj

djk

∂Φj(x(n))

∂zjk(n)
,

(30)

∂y(n)

∂djk(n)
= − wj

djk
zjk(n)

∂Φj(x(n))

∂zjk(n)
,

(31)

∂y(n)

∂θjk(n)
=
wj
djk

φjk(n− 1)
∂Φj(x(n))

∂zjk(n)
,

(32)

∂y(n)

∂wj(n)
= Φj(x(n)),

(33)

where

∂Φj(x(n))

∂zjk(n)
= (z2jk(n)− 1)exp

(
−
(

1

2

)
z2jk(n)

)
.

(34)

With these partial derivatives the SRWNN controller
can be trained by this iterative algorithm to initialize
the weight vector of the adaptive SRWNN control.
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4.3 Adaptive SRWNN and Sliding Mode
Controller Design

In order to derive the necessary equations with their
respective stability conditions for the control of the linear
displacement of the slider crank mechanism, consider the
following hybrid control law (Hongyan et al, 2007):

τ4(t) = F1(t) = Usmc(t) + UNN (t), (35)

where

Usmc(t) = kasgn(ṡ4(t)) + kbs4(t)

(36)

is the sliding mode controller part of the overall
controller and ka, kb > 0 are the sliding gains, ṡ4 and
s4 the derivative and original variables for the dynamic
errors of the slider crank mechanism defined later.
Moreover,

UNN (t) =

Nw∑
j=1

wjΦj(x(n)) +

Ni∑
k=1

akxk(n) (37)

is the adaptive self recurrent wavelet neural network
controller part of the overall controller where its weights
have been defined previously with only one SRWNN
controller output. To design the controller, it is necessary
to include the Coriolis matrix components shown in (3).

Ck,j(q(t), q̇(t)) =

4∑
i=1

Cijk(q(t))q̇i(t),

(38)

where j, k = 1, 2, 3, 4. Define the terms of the position
vector (2) as qj(t), where q1(t) = θ1(t), q2(t) = θ2(t),
q3(t) = θ3(t) and q4(t) = a(t) are the respective angular
positions and linear displacements of the slider crank
mechanism, considering that there is only one input (the
force τ4(t) = F1(t)). The following error signals:

ej(t) = qdj(t)− qj(t)
(39)

are necessary for the development of the proposed
hybrid control strategy and to test the stability of the
system, where qdj(t) is the desired reference trajectory
for the j joint (Liu, 1999; Slotine and Weiping, 1988;
Xiang and Siow, 2004).

q̇rj(t) = q̇dj(t) + Φej(t),

(40)

sj(t) = q̇rj(t)− q̇j(t),
(41)

and

ṡj(t) = q̈rj(t)− q̈j(t).
(42)

Due to the convergence of the dynamic errors of the
observer, the following assumptions are implemented:

ej(t)→ 0 , ėj(t)→ 0 , ëj(t)→ 0

qj(t) ' q̂j(t) , q̇j(t) ' ˙̂qj(t) , q̈j(t) ' ¨̂qj(t).

(43)

With these considerations, the stability of the overall
system (controller, observer and slider crank mechanism)
is assured by the following theorem.

Theorem 2: The proposed control law (35) stabilizes
the linear displacement position of the slider crank
mechanism.

Proof: This condition is tested by selecting an
appropriate Lyapunov functional V (s) and proving that
V̇ (s) ≤ 0 assuring the global asymptotic stability of the
overall control system, so q4(t) is stabilized when t→∞.
In order to prove the theorem, it is necessary to define the
dynamic errors of the system as follows (Seraji, 1989):

D44(q(t))ṡ4(t)

+

n∑
j=1
j 6=4

D4j(q(t))ṡj(t) +

n∑
j=1

C4j(q(t), q̇(t))sj(t) =

− F1(t) +D44(q(t))(q̈d4(t) + Φė4(t))

+

n∑
j=1
j 6=4

D4j(q(t))(q̈dj(t) + Φėj(t))

+

n∑
j=1

C4j(q(t), q̇(t))(q̇dj(t) + Φej(t)) + g4(q(t)),

(44)

for n = 4, where Dij is the (i, j) element of the inertia
matrix, Cij is the (i, j) element of the Coriolis matrix
and g4(q(t)) is the fourth element of the gravity vector.
Considering that D41(q(t)) = D42(q(t)) = D43(q(t)) = 0
(see Appendix), (44) becomes

D44(q(t))ṡ4(t) +

n∑
j=1

C4j(q(t), q̇(t))sj(t) =

−F1(t) +D44(q(t))(q̈d4(t) + Φė4(t))

+

n∑
j=1

C4j(q(t), q̇(t))(q̇dj(t) + Φej(t)) + g4(q(t)).

(45)



Adaptive Self Recurrent Wavelet Neural Network 7

Then, rearranging the terms in (45) and substituting
(40) and its derivative, we obtain:

D44(q(t))ṡ4(t) = −F1(t)−
n∑
j=1

C4j(q(t), q̇(t))sj(t)

+ D44(q(t))q̈r4(t)

+

n∑
j=1

C4j(q(t), q̇(t))q̇rj(t) + g4(q(t)).

(46)

Now, considering the linear parameterization of the
mechanical system as shown in (Slotine and Weiping,
1988), the following equation is obtained:

D44(q(t))q̈r4(t) +

n∑
j=1

C4j(q(t), q̇(t))q̇rj(t) + q4(q(t))

= Y4(q(t), q̇(t), q̇rj(t), q̈rj(t))W̃ , (47)

where Y4 is the fourth row of the dynamic parameters
of the system and W̃ is the parameter estimation error.
By implementing (47) in (46) and rearranging the terms,
yields

ṡ4(t) = −D−144 (q(t))F1(t)

− D−144 (q(t))

n∑
j=1

C4j(q(t), q̇(t))sj(t)

+ D−144 (q(t))Y4(q(t), q̇(t), q̇rj(t), q̈rj(t))W̃ . (48)

Now, the following Lyapunov function to test the
stability of the overall system is considered:

V (s(t)) =
1

2
s24(t) +

1

2
W̃T W̃ . (49)

Deriving (49) yields

V̇ (s(t)) = s4(t)ṡ4(t) +
˙̃
W

T

W̃ . (50)

Substituting (48) into (50), we obtain

V̇ (s(t)) = −s4(t)D−144 (q(t))F1(t)

− s4(t)D−144 (q(t))

n∑
j=1

C4j(q(t), q̇(t))sj(t)

+ s4(t)D−144 (q(t))Y4(q(t), q̇(t), q̇rj(t), q̈rj(t))W̃

+
˙̃
W

T

W̃ .

(51)

The adaptive laws for the SRWNN controller part of the
overall controller is:

˙̃
W

T

= −s4(t)D−144 (q(t))Y4(q(t), q̇(t), q̇rj(t), q̈rj(t))W̃ .

(52)

Then,

V̇ (s(t)) = −s4(t)D−144 (q(t))F1(t)

− s4(t)D−144 (q(t))

n∑
j=1

C4j(q(t), q̇(t))sj(t).

(53)

The upper limit of the Lyapunov functional derivative
is:

V̇ (s(t)) ≤ −
∥∥s4(t)D−144 (q(t))F1(t)

∥∥
−

n∑
j=1

∥∥s4(t)D−144 (q(t))C4j(q(t), q̇(t))sj(t)
∥∥ ,

(54)

due to

Φ ≤ Λ

Φ =

∥∥∥∥∥∥s4(t)D−144 (q(t))

n∑
j=1

C4j(q(t), q̇(t))sj(t)

∥∥∥∥∥∥
Λ =

n∑
j=1

∥∥s4(t)D−144 (q(t))C4j(q(t), q̇(t))sj(t)
∥∥ .

(55)

With the derivative of the Lyapunov function as shown
in (54), the global asymptotic stability of the system is
assured and the proposed hybrid controller strategy is
suitable for the control of the slider crank mechanism.

5 Numerical Simulations

The simulation was performed in MATLAB R© 2018b
and SIMULINK R© using an ODE45 solver. The
objective of this simulation is to test the proposed
controller/observer strategy implemented in the studied
mechanism for position tracking of q4 (estimating the
velocities) and to corroborate that the tracking error is
smaller than the obtained by other control strategies.
The desired trajectory for the linear displacement
q4 is qd4 = 0.3sin(2.5133t) + 0.3 with the slider crank
parameters shown in Table 1. A self recurrent wavelet
neural network controller and a variation of the
computed torque algorithm as shown in Sawada and
Itamiya (2012); Wai (2003) are simulated for comparison
purposes.

The parameters of the full order observer are:

k0 = 1× 10−5


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (56)
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Table 1 Slider crank mechanism parameters

Link Length Center of mass Inertia tensor
(m) (m) (Kg.m2)

1 0.3 0.15 0.18
2 0.5 0.25 0.18
3 0.10 0.05 0.18

and

k1 = 1× 10−5


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (57)

while the sliding mode controller gains are ka = 0.01
and kb = 0.01. The neural network architecture of the
adaptive SRWNN consists of two inputs e4(t) and ė4(t)
with four mother wavelets or wavelons in layer 2. The
initial weights calculated by the gradient descent method
are:

ak = [0.1999, 3.5000],

mjk = [3.7000, 1.3000, 7.1000, 6.0000],

djk = [0.7000, 1.8999, 0.1500, 6.4000],

θjk = [12.7000, 10.4000, 5.5000, 0.9000],

wj = [2.3000, 1.2000].

(58)

In Fig. 4 the linear displacement error qd4(t)− q4(t) is
shown for the proposed and other control strategies. We
can observe that the proposed hybrid controller has the
smallest tracking error in comparison with (Sawada and
Itamiya, 2012; Wai, 2003) considering that the accuracy
is improved and the inverse dynamic is estimated by the
SRWNN controller.

Figure 4 Tracking error for the linear displacement q4(t)

In Fig. 5, the linear displacement q4(t) is depicted for the
three control strategies, proving that the hybrid SRWNN
control technique improves the position accuracy in
comparison with (Sawada and Itamiya, 2012; Wai, 2003).

Figure 5 Linear displacement q4(t)

In Fig. 6 the input forces F1(t) for the proposed and
other control approaches are shown, which demonstrates
that the smallest control effort is obtained with the
proposed control technique in comparison with the other
two strategies, avoiding the actuator saturation.

Figure 6 Input force F1(t)

Finally, in Fig. 7 the angular displacement of the
rotational arm θ1(t) is shown, where a more accurate
result is obtained by the proposed control strategy in
comparison with Wai (2003) and a less noisy outcome is
obtained in comparison with Sawada and Itamiya (2012).

6 Conclusion

The design, development and implementation of an
adaptive self recurrent wavelet neural network and
sliding mode controller/observer for a slider crank
mechanism is presented. It is proved that a full
order observer for this mechanical system can be
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Figure 7 Angular displacement of the rotational arm
q1(t) (θ1(t))

designed taking into account the linear displacement
measurement. Then, an adaptive self recurrent wavelet
neural network and sliding mode controller provide
a flexible approach for the control of the slider
crank mechanism. Finally, it is corroborated that this
controller/observer strategy yields significantly better
results in comparison with other control strategies, and
more important, this control approach can be used
in other applications such as robotics and mechanical
systems.

7 Appendix: Slider crank dynamic
equations components

In this section, the symmetric inertia matrix components
are shown (Spong et al, 2006). The components of the
inertia tensors are represented by Ixxi, Iyyi, Izzi, where
i = 1, 2, 3. The masses of the rotational arm, connecting
arm and linear displacement block are represented by
m1, m2 and m3 respectively. In this section only the
fourth row terms (59)-(60) are shown, with the diagonal
terms (61),(63) and (65), due to space limitations.

D41(q(t)) = D42(q(t)) = D43(q(t)) = 0,

(59)

D44(q(t)) = m1 +m2 +m3,

(60)

D11(q(t)) = (m1 +m2 +m3)γ(t)

+ (m1 +m2 +m3)η(t)

+ Izz1 + Izz2,

(61)

γ(t) = [− sin (δ) a− l2 sin (ε)− lc1 sin (θ1(t))]
2

η(t) = [cos (δ) a+ l2 cos (ε) + lc1 cos (θ1(t))]
2
,

(62)

D22(q(t)) = (m1 +m2 +m3)ρ(t) + (m1 +m2 +m3)κ(t)

+ Izz1 + Izz2, (63)

where

ρ(t) = [− sin (δ) a− lc2 sin (ε)]
2

κ(t) = [cos (δ) a+ lc2 cos (ε)]
2

δ = θ1(t) + θ2(t) + θ3(t)

ε = θ1(t) + θ2(t)

(64)

D33(q(t)) = (m1 +m2 +m3)λ(t) + (m1 +m2 +m3)µ(t)

+ Izz1 + Izz2,

(65)

where

λ(t) = [sin (θ1(t) + θ2(t) + θ3(t))]
2
a2,

µ(t) = [cos (θ1(t) + θ2(t) + θ3(t))]
2
a2. (66)

The lengths for each arm are given by l1, l2 and l3. The
center of masses of each link are lc1, lc2 and lc3; g is the
gravity constant and the respective angular and linear
velocities are given by θi(t) and a, respectively.
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