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Abstract

Pharmacogenomics (PGx) studies are to identify genetic variants that may affect drug efficacy and 

toxicity. A machine understandable drug- gene relationship knowledge is important for many 

computational PGx studies and for personalised medicine. A comprehensive and accurate PGx-

specific gene lexicon is important for automatic drug-gene relationship extraction from the 

scientific literature, rich knowledge source for PGx studies. In this study, we present a 

bootstrapping learning technique to rank 33,310 human genes with respect to their relevance to 

drug response. The algorithm uses only one seed PGx gene to iteratively extract and rank co-

occurred genes using 20 million MEDLINE abstracts. Our ranking method is able to accurately 

rank PGx-specific genes highly among all human genes. Compared to randomly ranked genes 

(precision: 0.032, recall: 0.013, F1: 0.018), the algorithm has achieved significantly better 

performance (precision: 0.861, recall: 0.548, F1: 0.662) in ranking the top 2.5% of genes.
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1 Introduction

Pharmacogenomics is the study of how human genetic variations affect an individual’s 

response to drugs, with a focus on drug metabolism, absorption and distribution (Evans and 

McLeod, 2003). Understanding how the genetic variants correspond to various drug 

responses is an essential step of personalised medicine (Swen et al., 2007; Weiss, 2008; 

Davis et al., 2009). The success of personalised drug treatment largely depends on the 

availability of accurate, comprehensive knowledge bases for machine-understandable drug-

gene relationships. The volume of published biomedical research, and thus the corpora of 

putative pharmacogenomics knowledge, is growing fast. As of 2012, the MEDLINE 

database contains over 21 million biomedical literature citations (see http://

www.ncbi.nlm.nih.gov/pubmed). Clearly, with the current rate of growth in this corpus, it 

has become increasingly likely that important knowledge connecting drugs, genes and 
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diseases will be routinely missed. For these reasons, there is a need to systematically acquire 

structured pharmacogenomics knowledge from the literature. Substantial manual curation 

efforts have been used to achieve this end. Currently, the Pharmacogenomics Knowledge 

Base (PharmGKB) is the largest manually created resource of information on how variation 

in human genetics leads to variation in drug response (Klein et al., 2001). However, 

extracting biomedical information from the published literature manually and transforming 

it into machine-understandable knowledge is a difficult task because biomedical 

terminologies and knowledge are huge, dynamic and highly complicated.

Developing automatic approaches to extracting PGx-specific drug-gene relationships from 

free text is an active research area. Both statistical and Natural Language Processing (NLP) 

methods have been used (Garten et al., 2010). Chang and Altman (2004) extracted drug-

gene pairs from the literature based on co-occurrence statistics and used machinelearning 

algorithms to build models that can classify the extracted relationships. Garten and Altman 

(2009) developed Pharmspresso, a text-mining tool for extracting PGxspecific concepts and 

relationships from full text. Guided by curated drug-gene relationships in PharmGKB, 

Theobald et al. (2009) constructed n-way Bayesian networks based on conditional 

probability tables extracted from co-occurrence statistics over the entire MEDLINE corpus, 

and produced a broad-coverage analysis of the relationships between these biological 

entities. Hansen et al. (2009) recently described an algorithm that uses existing biomedical 

knowledge about drug structure and indications to rank 12,460 genes in the genome on the 

basis of their potential relevance to specific drugs. Wu et al. (2012) showed that the Latent 

Dirichlet Allocation (LDA) model can be used to effectively rank candidate gene-drug 

relations based on MEDLINE cooccurrence. Recently, NLP-based methods have been in the 

mainstream of PGx-specific drug-gene relationship extraction. Ahlers et al. (2007) 

developed an NLP system (Enhanced SemRep) to extract pharmacogenomics relationships 

in MEDLINE citations. Coulet et al. (2010) have developed an NLP technique to build a 

PGx ontology from 17 million MEDLINE abstracts using syntactic dependency structure. 

Recently, we have developed a conditional approach to extract PGx-specific drug-gene pairs 

from MEDLINE (Xu and Wang, 2012). Our approach used known drug-gene pairs as prior 

knowledge to implicitly classify sentences before relationship extraction.

Semantic relationships between drugs and genes, such as drug-gene target relationships and 

drug-gene metabolising (PGx) relationships, are complicated. Automatically, extracting 

drug-gene relationships from free text and distinguishing them by PGx relevance is a 

challenging task. A high-quality PGx-specific lexicon is critical for automatic PGx-specific 

drug-gene relationship extraction tasks (Figure 1). Currently, there are over 33,310 human 

genes (accessed in October 2010), most of which are not PGx-related. Therefore, there is a 

need to identify PGx-specific genes amongst these for use in drug-gene relationship 

extraction. In this study, starting with all known human genes and 20 million MEDLINE 

abstracts, we have developed a bootstrapping, learning approach to iteratively extract and 

rank genes according to their relevance to drug pharmacogenomics. This technique is based 

on the assumption that PGx genes are often mentioned together in MEDLINE abstracts. If 

we start with a known PGx gene such as ‘cytochrome P450, family 2, subfamily C, 

polypeptide 9’ (CYP2C9), it is likely that genes mentioned with it are also PGx genes with a 

likelihood that decreases as the co-occurrence distance grows.
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For instance, consider the following sentence: “Those genes are ATP-binding cassette 

subfamily B member 1 (ABCB1), the noradrenaline, dopamine and serotonin transporters 

(SLC6A2, SLC6A3 and SLC6A4), cyclic AMP-responsive element binding protein 1 

(CREB1), corticotropin-releasing hormone receptor 1 (CRHR1) and neurotrophic tyrosine 

kinase type 2 receptor (NTRK2)” (Dong et al., 2009). There are a total seven genes 

(ABCB1, CREB1, CRHR1, NTRK2, SLC6A2, SLC6A3 and SLC6A4) and three drugs 

(noradrenaline, dopamine and serotonin) mentioned. Among these seven genes, only four 

genes (ABCB1, SLC6A2, SLC6A3 and SLC6A4) are related to drug metabolism and 

disposition. If a PGx-specific gene lexicon is used to extract drug-gene pairs from this 

sentence, the false positive rate would be greatly decreased from that of an extraction using a 

lexicon comprised of all human genes because non-PGx genes such as CREB1, CRHR1 and 

NTRK2 would be excluded. While a high-quality drug lexicon is available (e.g. the FDA 

drug list), there is no comprehensive and accurate list of PGxspecific genes. Although 

HGNC (HUGO Gene Nomenclature Committee) maintains a comprehensive list of 33,310 

human genes, there are no criteria for classification that incorporate the gene’s function in 

drug disposition (see http://www.genenames.org/).

PharmGKB is the largest pharmacogenomics knowledge base and there are 10,898 drug-

gene pairs drawn from 918 drugs and 2388 genes (accessed in October 2010). However, the 

genes in PharmGKB are a mixture of non-PGx-specific genes such as BRCA1 (‘breast 

cancer 1, early onset’), TP53 (‘tumour protein p53’), IL6 (‘Interleukin 6’), VDR (‘vitamin D 

(1, 25-dihydroxyvitamin D3) receptor’) and AR (‘androgen receptor’), and PGx-specific 

genes such as CYP2C9 and VKROC1 (‘vitamin K epoxide reductase complex, subunit 1’). 

Correspondingly, the drug-gene pairs in PharmGKB are also a mixture of non-PGX-specific 

pairs (clodronate-VDR and levonorgestrel-AR) and PGxspecific pairs (warfarin-CYP2C9 

and warfarin-VKORC1). For example, two drug-gene pairs, caffeine-BRCA1 and cisplatin-

BRCA1, are incorrectly assigned semantic subtype ‘PD’ (Pharmacodynamics). In addition, 

total 15 interleukin ligand or receptor genes (e.g. L2, IL4, IL4R, IL5, IL6) are associated 

with 34 drug-gene pairs (e.g. warfarin-IL6, salbutamol-IL6R and cetuximab-IL8) and these 

drug-gene pairs are incorrectly assigned the semantic subtypes ‘PD’ or ‘PK’ 

(Pharmaokenetics). If we can correctly classify genes such as BRCA1, TP53 and IL6 as 

non-PGx-specific, the precision of drug-gene semantic type classification in PharmGKB can 

be improved.

The manual examination of gene names in order to find PGx genes will be a difficult task. 

For instance, it is difficult to tell if gene CALU (a calumenin gene) is a PGx gene by its 

name alone. However, when gene CALU appears together with other PGx genes in a specific 

context, it becomes easier to make this determination. For example, consider the following 

sentence: “Compound genetic profiles comprising VKORC1, CALU and CYP2C9 improve 

categorisation of individual warfarin dose” (Vecsler et al., 2006). From this sentence alone 

and without further knowledge about CALU, we can determine CALU is a PGx gene based 

on its co-occurrence with two other typical PGx genes VKORC1 and CYP2C9. There is 

research into ranking genes based on co-citation metrics. Jesson et al. (2001) created a 

weighted gene-to-gene co-citation network (PubGene) for 13,712 human genes by analysis 

of over 10 million MEDLINE records. In this network, nodes represent each gene or protein 

and the edges connecting them represent the number of articles in which each gene or 
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protein pair is co-cited (Jenssen et al., 2001). PubGene ranks genes using link structure 

analysis with the purpose of helping researchers to retrieve information on genes and 

proteins. Morrison et al. (2005) developed the GeneRank algorithm by combining gene 

expression information with a network structure derived from the Gene Ontology (GO) or 

expression profile correlations. However, none of these studies rank genes based on their 

role in drug metabolism, absorption and distribution.

2 Approach

Our method is based on the assumption that genes with a similar function tend to be 

mentioned together in the biomedical research literature. Intuitively, a gene that is cocited 

with many other PGx genes is likely to be assigned a high probability of being PGx-related. 

In our recent studies, we have developed and evaluated semi-supervised, bootstrapping 

approaches to extracting and ranking disease entities (Xu et al., 2008), drug entities (Xu et 

al., 2009a; Xu et al., 2009b), and binary is a relationships from MEDLINE abstracts (Xu et 

al., 2009a; Xu et al., 2009b). In this study, we demonstrate that these bootstrapping 

techniques can be extended to extract and rank PGx genes. This iterative algorithm runs as 

follows: a first iteration begins with a known PGx gene such as CYP2C9 (the seed gene) and 

finds other PGx genes that co-occur. For example, using CYP2C9, we can extract 13 

additional PGx genes from the following sentence: “The aim of this study was to explore the 

frequencies of polymorphisms in drugmetabolising enzymes (CYP1A1, CYP2C9, 

CYP2C19, CYP3A4, CYP2D6, CYP3A5, DPYD, UGT1A1, GSTM1, GSTP1, GSTT1) and 

drug transporters (ABCB1[MDR1] and ABCC2[MRP2])” (Bosch et al., 2006). In the next 

iteration, those genes extracted in previous iterations are used as seeds. As a result, we can 

extract additional genes that do not co-occur with the initial seed gene CYP2C9. For 

instance, using GSTT1 (‘glutathione S-transferase theta 1’) from the previous iteration, we 

can extract additional glutathione S-transferase genes such as GSTO1 and GSTO2 from the 

following sentence: “Genotyping of GSTM1 and GSTT1 genes was carried out by a 

multiplex PCR; GSTA1, GSTO1, GSTO2, GSTP1 polymorphisms were determined using 

the PCR-RFLP method” (Piacentini et al., 2010). Neither GSTO1 nor GSTO2 appear 

together with the initial seed CYP2C9 in MEDLINE. Similarly, using ABCB10, we can 

extract a whole set of ATC-binding cassette transporter genes such as ABCB10, ABCB2, 

ABCB3, ABCB8, ABCB9, TAP1 and TAP2 from sentence “In the human genome, the five 

adenosine triphosphate (ATP)-binding cassette (ABC) half transporters ABCB2 (TAP1), 

ABCB3 (TAP2), ABCB9 (TAP-like), and in part, also ABCB8 and ABCB10 are closely 

related with regard to their structural and functional properties” (Herget and Tampé, 2007). 

Since this is a semi-supervised approach without human intervention, false positives can be 

introduced. The criterion of co-occurrence with a known PGx gene is not by itself decisive 

regarding whether or not the gene in question is indeed a PGx gene. For example, 12 genes 

co-occur with PGx gene CYP3A4 in the sentence that follows: “The expression levels of 13 

of these genes, ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, 

MMP9, PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric 

samples using either the qRT-PCR” (Kapucuoglu et al., 2003). None of these 12 genes are 

PGx genes. Therefore, it is important to rank genes in a manner that takes all co-occurring 
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genes into account. In this study, we developed a ranking algorithm to prioritise PGx-

specific genes.

3 Data and methods

We used 20 million MEDLINE abstracts (roughly 100 million sentences) published from 

1965 to 2010 as our text corpus for PGx gene extraction and ranking. We used the publicly 

available information retrieval library Lucene (see http://lucene.apache.org/java/docs/

index.html) to create an index of the 100 million MEDLINE sentences. The 33,310 gene 

symbols downloaded from HGNC were used as the universe of human genes (accessed in 

October 2010). We downloaded the drug-gene pairs from PharmGKB, which contains a total 

of 10,898 drug-gene pairs, 918 drugs and 2388 genes (accessed in October 2010). We 

applied our algorithm in ranking the 2388 genes available in PharmGKB. The algorithm 

started with a known PGx gene CYP2C9 as seed and looped over a procedure consisting of a 

gene extraction step and a gene-ranking step. In the gene extraction step, the seed or 

extracted gene(s) from the previous step were used as search queries to the Lucene search 

engine in order to find all the sentences in which these genes appear. The genes that co-

occur were then extracted from returned sentences. The process stopped after two iterations. 

This stopping point was determined by a manual examination that revealed a lack of any 

new PGx genes in subsequent iterations. Figure 2 shows the iterative gene extraction 

process.

The ranking score of a gene being a PGx-specific gene at a given iteration is given as 

following:

RS GN
i = ∑

j = 0

k
Wi jRS GN − 1

i j

The term on the left is the ranking score of gene Gi being a PGx-specific gene in iteration N, 

and the term within the summation on the right is the ranking score of co-occurring gene Gj 

being a PGx-specific gene in iteration N-1 weighted by the number of times Gi and Gj co-

ocurring. The ranking algorithm is similar to topic sensitive page ranking algorithm 

(Haveliwala, 2003). Starting from a seed gene, the ranking algorithm iteratively propagates 

its confidence score to its co-occurred genes. The ranking score of each gene is the sum of 

scores of its co-occurring genes weighted by co-occurrence count. The confidence score of 

the seed gene was given a score of 1.0. For example, starting with the seed gene CYP2C9, 

we extracted four additional genes G1, G2, G3 and G4 after first iteration, with the co-

occurrence (with seed) counts 100, 20, 10, 1, respectively. Then the weight of G1 after first 

iteration is (100/131) × 1.0. At the second iteration, the ranking scores will be calculated 

again based on the score vector from the first iteration.

Since there is no gold standard list of PGx-specific genes for precision and recall evaluation, 

it is hard to evaluate the precision and recall in a totally unbiased way. The genes in 

PharmGKB drag–gene pairs are not necessarily PGx–specific. For example, when searching 

for drug tamoxifen at PharmGKB (see http://www.pharmgkb.org/drag/

PA451581#tabview=tab5&subtab=31), we got its related genes such as ABCB1, BRCA1, 
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CYP2B6, ESR1 and ESR2, which is a mix of PGx genes (ABCB1 and CYP2B6) and non-

PGx–specific genes (BRCA1, ESR1 and ESR2). Therefore for precision evaluation, we 

manually examined a randomly selected 20% of the extracted 13,581 genes. For each gene, 

we examined its name and the MEDLINE sentences where it appears. Since it is often 

impossible to decide whether a gene is PGx-specific or not by examining its symbol or 

name, the actual context where a gene appears is necessary for deciding whether or not a 

gene is PGx-specific. Three evaluators with graduate level of biomedical background 

conducted the evaluation. A gene was assigned true positive only if all three evaluators 

agreed. Precision was calculated as the proportion of PGx genes amongst the ranked genes. 

We used the java.util.Random class to generated random numbers between 1 and the size of 

the input list and selected 20% of input genes for manual examination. Due to the manual 

curation effort, we only did random sampling once, which is one of the limitations of our 

study. It could generate a biased data set, but the chance will be very small since the 

sampling method is random and not biased towards any particular genes and our ranking 

method. The manual examination process may introduce biase towards to specific 

evaluators, but not towards the algorithm.

For recall evaluation for extracting and ranking HGNC genes, we used all 79 CYP 

(Cytochrome P450 enzymes) genes selected from 33,310 HGNC genes as the gold standard. 

The CYP genes account for 70%−80% of enzymes involved in drug metabolism. Our 

intuition is that if our algorithm can find all or most of CYP genes after two iterations and 

also ranked all the CYP genes high in the list, it indicates that the algorithm has good recall 

in both gene extraction and ranking. For recall evaluation for extracting and ranking HGNC 

genes, we used all 79 CYP genes selected from 33,310 HGNC genes as the gold standard. 

The recall is estimated as the proportion of all 79 CYP genes that appear amongst the ranked 

genes. The assumption is that these 79 CYP genes are uniformly distributed among all the 

PGx genes. Similarly, we used the 50 CYP genes (out of 2388 genes) in PharmGKB for 

recall measure of our algorithms in extracting and ranking PharmGKB genes. Since both 

precision and recall are important for our task, F1 measure was used to evaluate the overall 

performance of the extraction and ranking process. The F1 measure is the harmonic mean of 

precision and recall:

F1 = 2 ⋅ precision ⋅ recall
precision + recall

4 Results

4.1 Performance of the gene extraction and ranking algorithms in ranking HGNC genes

Using CYP2C9 as the seed gene, we extracted 13,581 genes after two iterations. Table 1 

shows the precision, recall and F1 measure of the ranked 13,581 genes in terms of their 

score of being PGx genes. As shown in Table 1, the algorithm was able to extract 75 out of 

the total 79 CYP genes (a recall of 0.949) after two iterations. Additionally, most of the 

extracted CYP genes were ranked high on the list. Thus, this demonstrates that both the 

extraction and ranking algorithms have high recalls. For example, there were 41 CYP genes 

amongst the 136 genes in the 1.0% rank (a recall of 0.519) and 60 CYP genes in the 340 
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genes in the 2.5% rank (a recall of 0.759). Among the 79 CYP genes, six CYP genes 

(CYP2D8P1, CYP2C17, CYP2B7P1, CYP2D7P1, CYP20A1 and CYP2G2P) appeared only 

once in MEDLINE, and our algorithm was able to extract them and ranked them high on the 

list. Most of the high-ranking genes were PGx genes with a precision of 0.807 for the 1.0% 

rank, and the precisions dropped rapidly to 0.037 for the whole gene list, while recall did not 

increase significantly (column 3 and 4 in Table 1). The precision and recall of a rank 

determined from a random ordering were significantly lower (column 6 and 7 in Table 1). In 

summary, we have shown that (a) the bootstrapping gene extraction algorithm using a single 

seed has high recall (0.949) and is able to extract most of the PGx-specific genes after two 

iterations, (b) the gene-ranking algorithm has achieved both high precision and high recall 

by ranking most PGx-specific genes high on the list.

4.2 Performance of the gene extraction and ranking algorithms in ranking PharmGKB 
genes

Next we showed that our algorithm was able to accurately rank genes available in the 

PharmGKB drug-gene relationship database, in which there were a total 2388 genes (of 

which 50 are CYP genes). In a manner similar to the last experiment, these 50 CYP genes 

were used to estimate recalls of extraction and ranking algorithms. After two iterations, we 

extracted 2093 genes (out of 2388 genes) using CYP2C9 as the seed. Based on our manual 

curation of a random sample of 20% of the extracted PharmGKB genes, we estimated that 

only 13.0% of the extracted 2093 PharmGKB genes were PGx genes (Table 2). Our 

algorithm successfully ranked these genes highly according to their relevance to PGx. The 

precision dropped rapidly from 100% at the 1.0% rank to 13.0% for the whole list. 

Compared to the randomly ranked gene list (column 6 and 7 in Table 2), our ranking 

algorithm was able to rank most PGx genes high on the list (column 3 and 4). For the recall 

estimate, 94% of the 50 CYP genes were ranked among the 418 in the 20% rank. This 

ranked gene list may be used to refine or augment the drug-gene relationship classification 

in the PharmGKB.

4.3 Effects of seeds on the gene extraction and ranking algorithms

We investigated the effects of seeds in subsequent gene extraction and ranking processes. We 

compared five seed genes: CYP2C9, CYP2D6 (‘cytochrome P450, family 2, subfamily D, 

polypeptide 6’), VKORC1, BRCA1 and EGFR (‘epidermal growth factor receptor’). Among 

these five seed genes, CYP2C9, CYP2D6 and VKORC1 are typical PGx genes. Both 

CYP2C9 and CYP2D6 are cytochrome P450 family genes involved in drug metabolism, and 

VKORC1 is a typical PGx gene involved in vitamin K metabolism. Neither BRCA1 nor 

EFGR is PGx gene. BRCA1 is a tumour suppressor gene and its mutation is related to breast 

cancer. EGFR is a proto-oncogene involved in many cancers. We applied our extraction and 

ranking algorithms using each of the five genes as seed. Table 3 shows the top ten-ranked 

genes for each seed after two iterations. As shown in Table 3, all top ten-ranked genes for 

the three PGx seed genes (CYP2C9, CYP2D6 and VKORC1) are true PGx genes, while 

none of the top-ranked genes using seed genes BRCA1 and EGFR are PGx genes. 

Interestingly, most of the top ten genes for seed EGFR, which is oncogene, are also 

oncogenes, such as BRAF, PIK3CA, NRAS, HRAS, PTPN11, RAF1 and KRAS. Similarly, 

for the tumour suppressor gene BRCA1, which encodes a nuclear phosphoprotein that plays 
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a role in maintaining genomic stability, most of the top-ranked genes are also tumour 

suppressor genes, such as FANCD1, FANCD2, PALB2, RAD51, CHEK2, BRIP1, BCCIP 

and TP53. This demonstrated that out algorithm was able to find genes similar to a given 

seed. The seed can be a PGx gene, oncogene, tumour suppressor gene or other type of gene. 

The top-ranked genes for the three PGx seed genes were all typical PGx genes, which 

demonstrated that our algorithm may not be sensitive to specific seed choices as long as the 

seed is a typical PGx gene (e.g. CYP2C9, CYP2D6, CYP2C19, CYP3A4 and VKORC1). 

The final PGx genes extracted using different PGx gene seeds may converge after two 

iterations. To approve this, we need to manually examine the extracted gene lists for 

different seed genes.

We then used the Jaccard index to measure the similarity of top-ranked gene lists for these 

five seed genes in order to investigate the effect of seed genes on PGx gene extraction and 

ranking. The Jaccard coefficient measures the similarity between two sets, and is defined as 

the size of the intersection divided by the size of the union of two sets. As shown in Table 4, 

there were considerable overlaps in top-ranked genes when PGxspecific seeds were used 

(columns 2 and 3). On the other hand, there was a little overlap when the gene lists derived 

using PGx-specific seeds were compared to those using non- PGx-specific seeds (columns 4 

and 5). For instance, while 67.2% of the top 500 genes were the same for seeds CYP2C9 

and CYP2D9, only 2.7% of the top 500 genes were the same for seeds CYP2C9 and EGFR. 

There were no overlaps in the top-ranked 100 genes between CYP2C9 and BRCA1 or 

EGFR. Both CYP2C9 and CYP2D6 are cytochrome P450 family genes and the top-ranked 

gene lists for these two seeds are more similar (67.2% for top 500 ranked genes) than those 

between CYP2C9 and VKORC1 (48.1% for top 500 ranked genes).

5 Discussion

We have developed a bootstrapping learning to iteratively search for and rank PGxspecific 

genes among 33,310 human genes and 2388 PharmGKB genes. Our algorithm is able to 

accurately find and rank PGx-specific genes highly on the input gene lists. We also 

demonstrated that this gene searching and ranking algorithm is domain independent and can 

be used to ranking other gene types, such as oncogenes, or tumour suppressor genes. This 

algorithm can be used to create domain-specific lexicons for other types of biomedical 

relationship extraction. However, it has several limitations and requires further 

improvements in precision and recall. First, the precision is not perfect and some non-PGx 

genes are ranked high on the list. The highest precision is 0.807 for genes in the 1.0% rank 

as shown in Table 1. For example, a total of 12 genes co-occur with the highly ranked PGx 

gene CYP3A4 in the following sentence: “The expression levels of 13 of these genes, 

ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, MMP9, 

PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric samples 

using either the qRT-PCR or TRAC assay” (Junnila et al., 2010). Based on our algorithm, all 

12 genes are ranked highly since they co-occur with a highly ranked PGx gene. Another 

example is the gene MKNK, which is a MAP kinase interacting serine/threonine kinase 1 

gene. The MKNK gene symbol appears in MEDLINE only twice, once with the highly 

ranked PGx gene CYP2C8. However, the MEDLINE abstract where the gene MKNK co-

occurs with CYP2C8 is not related to PGx studies. We can improve the precision of our gene 
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extraction and ranking algorithm using text classification techniques to first classify 

MEDLINE abstracts into PGx-related or non- PGx-related. Our ranking algorithm implicitly 

uses the knowledge about the gene entities themselves to classify MEDLINE sentences and 

their gene occurrences based on known PGx genes. For example, if a gene co-occurs with a 

PGx gene in a sentence, then it is likely that the sentence is related to a PGx study and the 

gene is a PGx-specific gene. On the other hand, text classifiers can learn text features 

surrounding gene entities, not entities themselves to classify sentences. We can improve our 

algorithm by training a text classifier using manually curated PGx articles available in 

PharmGKB and incorporating the text classification score into our ranking algorithm to 

reduce false positive rate. We expect that incorporating both text features and the gene 

ranking score will result in a higher precision algorithm. The effect of a text classifier on 

precision and recall will largely depend on how good the text classifier is in classifying a 

text document and how the text classification scores with the gene ranking score are 

combined.

Another limitation in our ranking algorithm is that it ranks common, ambiguous genes 

highly. For example, the gene symbol SD is a valid gene symbol for ‘segregation distorter 

homolog’. But in most MEDLINE abstracts where it appears, SD represents ‘Standard 

Deviation’ and appears together with many PGx genes. More robust networkbased ranking 

algorithms may be able to detect common ambiguous genes if we assume that common 

ambiguous genes such as SD and MS are randomly distributed and associated with all other 

human genes. Standard network ranking algorithms such as PageRank algorithm (Page et 

al., 1999) can be used to detect the random distribution of common ambiguous genes in the 

whole gene-gene network and the non-random enrichment of PGx genes in PGx-specific 

sub-networks.

In this study, we conducted comprehensive precision and recall study for only one seed 

gene, CYP2C9, due to the time-consuming manual evaluation process for precision 

calculation. For precision evaluation, we manually examined a randomly selected 20% of all 

13,581 genes extracted, starting with seed gene CYP2C9 for HGNC genes and 2093 genes for 

PharmGKB genes. For each gene, we examined its name and the MEDLINE sentences in 

which it appeared to determine if it was a PGx gene. If a different seed, for example 

VKORC1, is used; the extracted gene list will be different from the 13,581 genes extracted 

with seed CYP2C9. Manual examination of a portion of the gene list with a different seed 

will be needed for precision calculation. However, we expect that the precision and recall 

will not differ significantly as long as a good seed is used. In our study, we have 

demonstrated that there are significant overlaps in extracted and ranked gene lists when three 

different PGx genes CYP2C9, CYP2D6 and VKORC1 are used as seeds (Tables 3 and 4). In 

addition, the top-ranked genes for each seed are also typical PGx genes, further 

strengthening our belief that as long as a good PGx gene is used as seed, the actual PGx 

genes in the final gene lists will be similar. One of the goals of this study is to create a 

comprehensive and accurate PGx-specific gene lexicon to facilitate drug-gene relationship 

extraction from free text; it will be important to conduct a quantitative study using state-of-

art PGx drug-gene extraction algorithms to demonstrate the degree of improvements of a 

precise and comprehensive PGx gene lexicon on subsequent drug-gene extraction. It is 
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possible that the effects of the gene lexicon on certain types of algorithms (e.g. statistical or 

machine learning approaches) will be greater than on others (e.g. NLP-based approaches).

6 Conclusion

A high-quality PGx-specific gene lexicon is important for automatic drug-gene relationship 

extraction tasks. In this study, we have developed a bootstrapping learning technique to rank 

33,310 human genes and 2388 PharmGKB genes on their relevance to drug response. The 

algorithm uses one seed PGx gene to iteratively extract and rank genes that co-occur using 

20 million MEDLINE abstracts. Compared to randomly ranked genes (precision: 0.032, 

recall: 0.013, F1: 0.018), the algorithm has achieved significantly better performance 

(precision: 0.861, recall: 0.548, F1: 0.662) for the top 2.5% of ranked genes. In addition, our 

algorithm has achieved similar performance in ranking PharmGKB genes (precision: 1.000, 

recall: 0.500, F1: 0.667). This algorithm is domain independent and can be used to rank 

other types of genes.
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Figure 1. 
Drug-gene relationship extraction input: drug and gene lexicons
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Figure 2. 
Iterative approach in finding PGx genes starting from a single seed
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Table 1

Precision, recall and F1 of the ranked 13,581 HGNC genes after two iterations using seed CYP2C9

Ranked Randomly Ranked

Cut-off (%) Count Precision Recall F1 Precision Recall F1

1.0 136 0.807 0.519 0.632 0.015 0.000 0.000

2.5 340 0.587 0.759 0.662 0.032 0.013 0.018

5.0 680 0.402 0.861 0.548 0.041 0.051 0.045

7.5 1018 0.312 0.886 0.462 0.038 0.089 0.053

10 1358 0.250 0.899 0.392 0.035 0.101 0.052

20 2716 0.142 0.911 0.246 0.035 0.253 0.061

30 4074 0.103 0.924 0.185 0.037 0.304 0.065

40 5432 0.081 0.937 0.150 0.036 0.380 0.066

50 6790 0.067 0.937 0.126 0.037 0.405 0.068

60 8148 0.059 0.949 0.111 0.038 0.494 0.070

70 9506 0.051 0.949 0.097 0.038 0.608 0.071

80 10864 0.046 0.949 0.088 0.038 0.734 0.072

90 12223 0.041 0.949 0.079 0.038 0.810 0.072

100 13581 0.037 0.949 0.071 0.037 0.949 0.071
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Table 2

Precision, recall and F1 of the ranked 2093 PharmGKB genes after two iterations using seed CYP2C9

Ranked Randomly Ranked

Cutoff (%) Count Precision Recall F1 Precision Recall F1

1.0 21 1.000 0.300 0.462 0.150 0.040 0.063

2.5 52 1.000 0.500 0.667 0.135 0.040 0.062

5.0 104 0.875 0.580 0.698 0.154 0.080 0.105

7.5 157 0.821 0.780 0.800 0.135 0.100 0.115

10 209 0.722 0.840 0.777 0.129 0.180 0.150

20 418 0.474 0.940 0.630 0.122 0.200 0.152

30 628 0.354 0.960 0.517 0.129 0.340 0.187

40 837 0.287 0.960 0.442 0.130 0.420 0.193

50 1047 0.231 0.980 0.374 0.130 0.520 0.208

60 1256 0.200 0.980 0.332 0.131 0.620 0.216

70 1465 0.177 0.980 0.300 0.132 0.740 0.224

80 1674 0.160 0.980 0.275 0.133 0.820 0.229

90 1883 0.144 0.980 0.251 0.133 0.920 0.232

100 2093 0.130 0.980 0.229 0.130 0.980 0.229
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Table 3

Top ten-ranked genes for five seeds: three PGx genes (CYP2C9, CYP2D6 and VKORC1), one tumour 

suppressor gene (BRCA1) and one oncogene (EGFR).

Rank Seed1
(CYP2C9)

Seed2
(CYP2D6)

Seed3
(VKORC1)

Seed4
(BRCA1)

Seed5
(EGFR)

1 CYP2C9 CYP2D6 VKORC1 BRCA1 EGFR

2 CYP2D6 CYP2C9 CYP2C19 FANCD1 BRAF

3 CYP3A4 CYP2C19 CYP2C8 PALB2 PIK3CA

4 CYP1A2 VKROC1 CYP3A4 RAD51 NRAS

5 CYP2C19 CYP3A4 CYP2D6 CHEK2 HRAS

6 CYP2B6 CYP1A2 CYP1A2 BRIP1 PTPN11

7 CYP3A5 CYP2C8 CYP2B6 FANCD2 RAF1

8 CYP2C8 CYP3A5 CYP2C18 BRCA3 SOS1

9 GGCX CYP2B6 CYP2A6 BCCIP KRAS

10 CYP2A6 CYP1A1 CYP2E1 TP53 MAP2K1
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Table 4

Jaccard similarity among top ranked genes for seeds: CYP2C9, CYP2D6, VKORC1, BRCA1 and EGFR.

Rank CYP2C9/CYP2D6 CYP2C9/VKORC1 CYP2C9/BRCA1 CYP2C9/EGFR

10 66.7 53.8 0.0 0.0

25 61.3 56.2 0.0 0.0

50 75.4 51.5 0.0 0.0

100 65.3 46.0 0.0 0.0

200 71.7 40.8 1.8 0.5

300 68.5 56.9 4.0 0.8

400 68.4 47.1 5.5 2.2

500 67.2 48.1 7.4 2.7
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