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Abstract

Since co-expressed genes often are co-regulated by a grouanséription factors,
different conditions (e.g., disease versus normal) may lead to diffenestriggion factor
activities and therefore different co-expression relationships.ethad for identifying
condition specific co-expression networks by combining the recentslajsd network
qguasi-clique mining algorithm and the Expected Conditional F-statisiis been
proposed. This method has been applied to compare the transcriptionahs ogtween
the non-basal and basal types of breast cancers. This work translational
bioinformatics study integrating network analysis which lifte traditional gene list

based disease biomarker discovery to the gene and protein interaction level.

This work presents a method for identifying condition specific gene co-ekpress
networks. The method involves construction of a Weighted Graph Co-expression
Network (WGCN) and mining the WGCNSs to identify dense co-expression networks
followed by a chi-square test based enrichment analysis for detestidgion specific
co-expression relationship. The expression values in all the conditions for the genes
constituting a condition specific co-expression network are visualized as IEatuimah
suggest that the genes are highly correlated in a specific condition but thaticorsedre

disrupted in other conditions.
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Chapter 1 - Introduction

Gene co-expression network analysis is a widely adopted bioirtioemaethod in
biomedical research with many applications including discoveringeiprptotein
interaction relationships [1-4], predicting new gene functions [5, 6] and pathwagsd7],
identifying disease biomarkers or genes [8-13]. In addition, mamyitdms have been
developed to identify gene modules or networks composed of highly co-eeppmses
[3, 11, 14, 15]. These co-expression networks can be used as quantitdative tlesease

biomarkers [11, 16-18].

However, a typical gene co-expression relationship is not static, it changagddferent
biological or disease conditions. For instance, in [19], it has beennshiat the
correlation between théRG2 and CAR2 genes in yeast changes from positive to
negative as the expression level of another geRAZ) changes. In addition, changes of
co-expression relationships between gene pairs have been detezdaders [20, 21]. In
particular, condition specific co-expression relationship reveals itemmdspecific

potential biological mechanisms.

In this project, an expansive search for condition-specific gerexmession between

gene pairs is conducted to discover condition specific gene cossig@renetworks.
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Since co-expressed genes often are co-regulated by a grouanséription factors,
different conditions (e.g., disease versus normal) may lead to diffenestriggion factor
activities and therefore different co-expression networks. Irthiess a method has been
proposed for identifying condition-specific co-expression networks by econgbgene
co-expression network mining and the Expected Conditional F-stdE<Ii€) developed
in [20] for evaluating changes in the co-expression relationship amoffgredif

conditions.

Specifically, the recently developed network quasi-clique mining ighgorfor weighted
gene co-expression networks is used. In gene co-expression netwogdspnPe
correlation coefficient (PCC) is often used as the metric &asure co-expression
between two genes in a microarray dataset [3, 5, 22]. A weigitaoh can be
established by setting genes as vertices and PCC values ifoalikelute values) as
weights of the edges. In some network mining algorithms, a threghmigpbosed on the
PCC values to derive an un-weighted network suchttf@genes are only connected by
an edge if the PCC value between them is higher than a predi¢hreshold [3]The
un-weighted gene co-expression network approach has several drawicho#lisig the
selection of the threshold which may be too rigid for weights arobhat threshold.
Therefore weighted GCN (WGCN) method has been recently wedielgted and a series
of tools have been developed to identify networks from WGCNs usingrdheral
clustering based approach [8, 14, 22]. Howevkis approach often identifies large
clusters (e.g., with hundreds or even thousands of genes), cannot dioettlyl the

intra-cluster connectivity and it does not allow shared genes hetweeclusters even



though many genes have multiple functions. Recently a WGCN dengerkdinding
algorithm named eQCM [11] which is a derivation of the quasi-clmgeeging (QCM)
algorithm [23] has been developed. This algorithm guarantees a lower bautick
densities of the identified networks and allows overlaps betweamrikst In this paper,
the eQCM algorithm is used to detect co-expression networkadn eondition and
identify networks which are enriched with edges showing largghtvehanges between
different conditions as measured by the ECF statistics, whiahmetric for evaluating
changes of correlation relationship in different conditions [20].

The developed method is applied to compare the transcriptional progeawesen two
subtypes of breast cancers, namely the non-basal and basal tippeasbfcancers which
are well known for their different molecular markers and prognogsatients. This work
is a translational bioinformatics study integrating network yamal which lifts the
traditional gene list based disease biomarker discovery to theagdr@otein interaction

level.



Chapter 2 — The Expected Conditional F-Statistic

To understand cancer it is important to explore molecular changeslular processes
from normal state to cancerous state. Differentially expdegsees are potential markers
for clinical diagnoses and medical treatments. The F-statist its variants like t-test,
signal-to-noise statistic and SAM method are commonly used toifideifterentially
expressed genes. A clustering algorithm may be used to find groupses that behave
similarly across a dataset. However all these methods nm&s/ gnoups of genes which

form differential co-expression patterns under different experimental comsliti

Statistical tests such as the t-test or ANOVA, identifymegethat are differentially
expressed under one or more conditions. The output of such tests isaalshgilgenes,

with an associated test statistic and p-value. There is no indication of gdnels may be
interacting with one another. Alternatively clustering algorithams often used to find
groups of genes which display similar expression profiles acrakstaset, and these

clusters are subsequgranalyzed visually for patterns of interest.

However, genes which show highly correlated patterns of expressiome biological
state, but not in another, may not be highly correlated across the dataset, and

therefore would not be associated with one another if a clustalgogithm is used.
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Variation may exist in this and may lead to that gene beroyped incorrectly.
Furthermore, clustering algorithms do not provide methods to identiypg that are

behaving differently in different biological conditions.

Identification of differentially co-expressed gene clustergenre pairs usually do not use
a priori defined gene sets or pairs but try to find the best omes@ all possible
combinations without considering prior knowledge. Thus the biologicajpraation of

the clusters or pairs may also need the ontology and pathway based annotatiog analysi

There have been several methods proposed to compute differentiapresston

between a pair of genes. The differential CoxS algorithm foereifitial co-expression
analysis of paired gene sets between conditions has the benefith afifterential co-

expression and gene set-wise analyses [29]. Kostka and Spang [@ifjetka method
to investigate differentially co-expressed groups of genes, asingdditive model for
scoring gene-gene co-expression and then a stochastic searaghralgoifind groups of
genes showing differential co-expression patterns.etJeh[28] developed ACT, the
Arabidopsis Co-expression Tool, which allows users to calculatexmession across

user-defined data sets and uses a correlation cut-off to define groups of genes.

We use Expected Conditional F-Statistic (ECF) an extension ¢f-8tatistic to identify
differential gene co-expression in this work. While the F-statisacwgdely used method
to test whether a gene is differentially expressed, ECF @geaatt a pair of genes and

evaluates the difference in correlation of the two genes sdifferent conditions. It is



essentially a method to find gene pairs that are in principleiyegicorrelated in one
condition and not correlated in other. Higher the difference in etios| higher is the

ECF value.

As in [20] the ECF is given as:

Ey(Ax|y=y)) = [Z p; (1

N txi — Bxj  Pi(Hyi — Hyr)
- pi) Pk Di Dj -
- Ox Oy

i<j

(uy; — ivi)]*
+M+ﬂ] N (pi_pj)z}
Y

wherelxy= y) is the conditional F-statistic and taking its expectation we get the ECF
p; Is the Pearson Correlation Coefficient and is given as
Z;lil(xij — x)(vij — By)

PCCL =
i _\2 . _\2
\/2?21(’%‘ — fx) * \/Z;-l;l(yu — fy)
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Chapter 3- Materials and Methods

The method includes the following major steps as outlined in the following workflow:

1. Pre-processing of the microarray data

For a gene expression (microarray) dataset with multiplglesmit is normalized using
standard microarray data normalization algorithms. For Affyimn&eneChip data, they
are normalized using the Robust Multi-array Analysis (RMApoathm for
normalization [30]. For any gene with multiple probesets in theaairay, the values
from the probeset with the highest mean expression value is used to refhraisgahe as

suggested by [26].

2. Construct WGCN for each condition

First compute the Pearson correlation coefficients (PCC) betexssry pair of genes in
the specific condition and then apply our recently developed weighapet quasi-clique
mining algorithm eQCM to identify tightly co-expressed genevagks [11]. For a pair

of genes X, Y) the Pearson Correlation Coefficient in tiH& group is given as:



Z?il(xij — ix) (vij — i)

\/Z’]il(xi,- - lf)?l)z * \/Z;'lil(yij - 17}71)2

PCC; =

wherex; is thej™ observation oKX in thei™ group, the estimated megag, =%* L X
1
n;—1

, and the estimated varianE%L =

* 7L (X — px,)?. The WGCN is constructed as

a weighted graph G (V, E, W) in which the PCC values constihgedge weights W

between the nodes (genes).

3. lIdentify dense co-expression networks from the WGCNs
The eQCM algorithm is applied to the G (V, E, W) to identiBnse networks. For a

28 SN Wi
i=14&j=1,j#i U, Where
k(k—1)

network ofk nodes, the density of the network is definedl as

W is the weight between theh andj-th nodes in the network. In the eQCM algorithm
there are two parameteysandt, which all contributes to density of the detected co-

expression networks [11]. In this study, weyet0.99 and = 1.

4. Compute the combined ECF score between every gene pairr@gs multiple
conditions. For every pair of genes, the ECF-statistics is computed askssin [21],
which is essentially a metric that evaluates a change of PCC betweeandiconditions.

Specifically, ECF-statistic is given in as:



Ey(Ax|y=y)) = [Z p; (1

N Pxi — Hxj  pi(Uyi — Hyk)
- pi) Pk Di Dj -
- Ox Oy

i<j

(uy; — ivi)]*
+M+ﬂ] N (pi_pj)z}
Y

and the combined ECF-statistic score ECF(X,Y) v&fay = y) + Ex(Avix = x). A relatively
high value of ECF(X,Y) signifies that the correlation betweeneg&nand gene Y

changed significantly between different conditions [20].

5. Identify high ECF gene pairs

The graph constructed in step 1 is examined. For N genes in a geaprekists N*(N-
1)/2 edges and corresponding ECF values. The ECF values ard narike descending
order and the gene pairs with top 5% of the ECF values areesklédl such gene pairs

are referred to asgh ECF gene pairs.

6. Identify co-expression networks enriched with high ECF gene pairs

Since the threshold is the top five percentile of the all ECE&egalit is expected that on
an average 5% of the edges in a co-expression network willE@Fescores above the
threshold. Therefore chi-square tests can be applied to determmeafexpression
network is significantly enriched with edges with high ECF esoFor a network with
nodes, a contingency table can be derived as in Table 1. The Bonferrhaidms
applied to compensate for multiple tests in determining the threshotte chi-square

test p-values. Specifically, iM networks are identified in Step 3, then the p-value
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threshold is set &.05/M

Table 1L An example of contingency table for the chi-square test.

# of expected high ECF gene padirs
p g gene p K- 1)
0.95 X ————

(0.05 x "("2‘”) ' 2

# of observed h/igh ECF gene pairs@ - # of observed high ECF gene paits

7. Mapping genes to transcription factors.

Transcription factors are proteins that bind to specific DNA ssmpse thereby
controlling the expression of genes. Having identified the sulemks enriched with

high ECF edges it is further important to investigate thestaption factors that co-
regulate the sub-networks enriched with high ECF genes. The guife dataset from

the  molecular signatures database of Broad Institute was  used

(http://www.broadinstitute.org/gsea/msigdb/collectiong.jsplists 614 gene motifs and

their respective targets. We determine the gene motifshwdrie enriched with targets
(genes) contained in the sub-networks enriched with high ECF edge®tdrmine the
enriched gene motifs hyper-geometric test is used. It desdfigeprobability of K
successes in n draws from a finite population of size N contaMisgccesses without

replacement.

P(X=K) = [kCx * - Cn-xl/MC
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In the figure below M represents the genes in the microarray datasgirdsents the
genes which are the transcription factor targets (success statepyellents the genes in
the condition specific sub-networks (random selection) and X represents the number of

Successes.

Figure 1

lllustration of hyper-geometric test

Once the enriched gene motifs are determined the transcription factoargexkfrom it
(example: ‘ER’ is extracted from ‘V$ER_07’). The extracted transoripactor is
identified in the microarray dataset and its fold change over different conditidribea

respective p-values (t-test) are computed and reported

11



Chapter 4 -Results

This method has been applied to a breast cancer gene expresagmt ftatn the NCBI
Gene Expression Omnibus with accession numbers GDS2250 which contains human
samples for control, non-basal like and basal like human breast ¢escess. For non-
basal like subtype, 171 networks were identified using eQCM digoaind out of which
88 show enriched high ECF gene pairs (p < 0.05/171) suggesting extensiveatisotipt
transcriptional programs in the other (i.e., basal) type of bezaster. For basal-like
subtype, 23 out of 99 total networks were identified. These are titgpsuspecific
networks for further analysis including gene ontology/pathway engohrmanalysis and
correlation with survival times. Table 2 shows examples of the networks idefdifithe
non-basal type breast cancer samples. In addition, the heatmia@ gérie expression
values for the network 10 is shown in Figure 2. It is clear thatgdrme expression
profiles show high correlations in the non-basal like breast cated not in the basal

like breast cancers.

An important aspect of this exercise is to learn the causahamisms of such disruption

of co-expression relationships. Here this question is investigateg the first network

12



in Table 2 as an example. There are 46 genes in this network.tbsiggne enrichment

analysis GeneCoDisaitp://genecodis.dacya.ucmst is determined that this set of

genes are highly enriched with the transcription factor LEfgfetsa (hyper-geometric test
p-value 3.34317xI) as shown in Figure 3. Interestingly, in checking the original
microarray data, it is found that LEF1 shows higher expressionslewebng the non-
basal like breast cancer samples compared to the basakdé&st cancer samples with
log mean fold change being 1.31 (fold change 2.48) and one-tail p-value for Stue$tnt t-t
being measured as 0.022. This observation suggests that LEF1 playsoatamt role in
maintaining the co-expression relationshipnatwork 1 in non-basal like breast cancer
samples while its absence contributes to the disruption of the cessigm network in
the basal like breast cancer samples. In fact, LEF1 has beam 20 be involved in
many different cancers including breast cancer as an impadargonent of the cancer

relatedWnt pathway [24, 25].

We then expand the transcription factor enrichment analysis tteealientified networks
as described in the previous section. Results obtained by usingetiischare tabulated
as shown in Table 3 and Table 4. Amongst all the transcription fa&®&swhich is
enriched in both sub-groups, basal and non-basal, seems to be the mostrpr@ioiche
change = -1.81 and p-value = 3.66"2D Besides AR, GATA2 and CEBPB which are

enriched only in non-basal sub-type show significant fold-change.

13



Table 2: Examples of the networks enriched with high ECF gene pairtthiéonon-basal

subtype of breast cancers.

Network # of expected high# of observed higl
Chi-square p-value

Index ECF edges ECF edges
1 3.81E-08 89 167
2 0 83 342
3 6.04E-07 77 143
4 0 83 234
5 0 770 1787
6 0 92 374
7 0 322 1105
8 1.56E-05 620 742
9 5.57E-06 179 260
10 1.64E-06 158 241
11 3.52E-08 107 192
12 0 289 1120
13 2.99E-08 80 156
14 0 334 1117
15 3.34E-06 107 176
16 0 150 492
17 0 413 1271
18 0 95 359
19 0 121 584

14




Figure 2. Heat map representing gene expression in a co-expression netwawing high
correlation among the non-basal like breast cancer samples batthetbasal-like breast cancer
samples. This finding reveals potentially specific trapsional programs associated with non-
basal like breast cancer which is disrupted in the basal liket loaaaser

a)

continued on next page
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continued on next page
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Figure 3 Top ten enriched biological terr Top 10 enriched biological terms (includi
gene ontology, transcription ttor, microRNA and KEGG pathways) in the 46 gene
the network 1 in Table 2. The-axis enumerates the number of genes associatedhe
terms listed on the left. The transcription factdF1 is on the top with 18 gen

associated with it.
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Table 3: Enriched Transcription Factors for the basal cancer subgroup

Transcription| Gene Motif Network| p-value fold t-test p-
Factor Id change | value
STATS5B TTCYNRGAA_V$STATSB 01 | 4 0.02574 | 1.06 0.158
SRF V$SRF_Q4 22 0.000004| 1.08 0.0496
SRF V$SRF_Q6 22 0.000008| 1.08 0.0496
SRF CCAWWNAAGG_V$SRF_Q4 | 22 0.000008| 1.08 0.0496
SRF V$SRF_Q5_01 22 0.000031| 1.08 0.0496
SRF V$SRF_C 22 0.000134| 1.08 0.0496
NF1 V$NF1_Q6_01 22 0.037703| -1.02 0.584
NF1 V$NF1_Q6 22 0.040709| -1.02 0.584
STATSB TTCYNRGAA_V$STAT5B_01 | 24 0.037311| 1.06 0.158
PAX2 V$PAX2_01 29 0.017916| -1.04 0.297
AR V$AR_Q2 29 0.047996| -1.81 3.67E-1
PAX8 V$PAX8_01 54 0.034517, 1.02 0.149
PAX4 VEPAX4_04 91 0.015003| -1.03 0.446
FOXD3 V$FOXD3_01 91 0.015287| 1.21 0.066
VDR V$VDR_Q6 91 0.024445| -1.09 0.00218
GATAG6 V$GATA6_01 91 0.025562| 1.31 0.0102
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Table 4: Enriched Transcription Factors for the non-basal cancer subgroup

Transcrip | Gene Motif Network| p-value Fold p-value (t-

t Factor ID change test)

ATF3 TGAYRTCA_V$ATF3_Q6 1 0.0120 1.10383 0.06546528
ATF1 V$ATF1_Q6 1 0.0144 -1.0211 0.431335
HSF1 V$HSF1_01 1 0.01761 1.08890 0.04290051
HSF1 RGAANNTTC_V$HSF1 01 1 0.03473 1.0889(0 0.15733549
E2F1 V$E2F1_Q4 01 1 0.0358 1.08213 0.14605310
PAX3 CGTSACG_V$PAX3 B 1 0.04004 1.20141 0.13477072
ATF3 TGACGTCA_V$ATF3_Q6 1 0.04177 1.10383 0.12348833
MSX1 V$MSX1 01 13 0.02351 -1.09740 0.11220595
ATF1 V$ATF1_Q6 14 0.00462 -1.02113  0.10092356
ATF3 TGAYRTCA_V$ATF3_Q6 14 0.02746 1.10383 0.08964118
ATF3 TGACGTCA_V$ATF3_Q6 14 0.03759 1.10383 0.07835879
ATF1 V$ATF1_Q6 16 0.00079 -1.0211 0.06707641
ATF3 TGAYRTCA_V$ATF3_Q6 16 0.00854 1.10383 0.0557940p
ATF3 TGACGTCA _VS$ATF3_Q6 16 0.00943 1.10383 0.04451164
ATF3 V$ATF3_Q6 16 0.01461 1.10383 0.06546528
HSF1 V$HSF1 01 16 0.01552 1.08890 0.04290051
FOXO04 | TTGTTT_V$FOXO0O4_01 16 0.03677 1.03702 0.07875606
E4F1 GTGACGY_VS$E4F1_Q6 16 0.03996 -1.1088 0.00116162
FOXO1l | V$FOXO1_01 16 0.04053 -1.06697  0.02810615
HSF1 RGAANNTTC_V$HSF1 01 16 0.04137 1.0889( 0.04290051
HOXA4 | VSHOXA4_Q2 16 0.04834 1.04547 0.4742465

continued on next page
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continued from page 21

1

'

NF1 V$NF1_Q6_01 16 0.04834 -1.01564  0.5844937
ATF3 TGAYRTCA_V$ATF3_Q6 17 0.01926 1.10383 0.06546528
ATF1 V$ATF1_Q6 17 0.02025 -1.02113  0.431335
HSF1 V$HSF1_01 17 0.02448 1.08890 0.042900%
E2F1 VSE2F1_Q4_01 17 0.04617 1.08213 0.041292
HSF1 RGAANNTTC_V$HSF1_01 17 0.04789 1.0889( 0.042900%
PAX3 CGTSACG_V$PAX3_B 17 0.04936 1.20141 0.0188914
PAX2 V$PAX2_02 21 0.04999 -1.04258  0.2972777
SOX5 V$SOX5_01 24 0.03990 1.02546 0.3815135
NF1 V$NF1_Q6_01 24 0.04489 -1.01562  0.5844937
PBX1 V$PBX1_02 31 0.02393 -1.15393 0.0002210
PAX8 V$PAX8_01 32 0.04651 1.02327 0.148986
LEF1 VSLEF1_Q2 44 0.04749 -1.23831 0.0402204
NF1 V$NF1_Q6 51 0.02772 -1.01562 0.5844932
MSX1 V$MSX1_01 51 0.02984 -1.09740  0.1747607
ATF3 TGAYRTCA_V$ATF3_Q6 60 0.01541 1.10383 0.0654652
HSF1 V$HSF1_01 60 0.02089 1.08890 0.042900%
E2F1 VSE2F1_Q4 01 60 0.04085 1.08213 0.041292y
HSF1 RGAANNTTC_V$HSF1_01 60 0.04109 1.0889( 0.042900%
PAXS CGTSACG_V$PAX3_B 60 0.04461 1.20141 0.0188914
ATF3 TGACGTCA_V$ATF3_Q6 60 0.04747 1.10383 0.0654652
SRF V$SRF_Q6 62 0.03264 1.08099 0.0495677
LHX3 YTAATTAA_V$LHX3_01 62 0.03657 1.02490 0.5307498

continued on next page
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continued from page 22

SOX9 V$SOX9_B1 66 0.01722 1.21783 0.0010167
SRY V$SRY_02 66 0.02056 1.05458 0.0154536
GATAl | V$GATA1_01 66 0.04071 1.00752 0.4984056
MSX1 V$MSX1_01 66 0.04917 -1.09740  0.1747607
GATA2 | V$GATA2_01 89 0.04766 -1.30677] 2.7500E-06
GATA2 | V$GATA2_01 92 0.03616 -1.30677] 2.7500E-0¢
HSF1 V$HSF1_01 98 0.00596 1.08890 0.042900%
E2F1 V$E2F1_Q4 01 98 0.01173 1.08213 0.041292y
ATF3 TGAYRTCA_V$ATF3_Q6 98 0.01663 1.10383 0.0654652
ATF1 V$ATF1_Q6 98 0.01819 -1.02113  0.431335
HSF1 RGAANNTTC_V$HSF1_01 98 0.04331 1.0889( 0.042900%
LEF1 CTTTGA_VS$LEF1_Q2 98 0.04519 -1.23831  0.0402204
PAX3 CGTSACG_V$PAX3_B 98 0.04618 1.20141 0.0188914
ATF3 TGACGTCA_VS$ATF3_Q6 98 0.04943 1.10383 0.0654652
ATF1 V$ATF1_Q6 99 0.00151 -1.02113  0.431335
ATF6 V$ATF6_01 99 0.00158 1.04160 0.1132485
PAX3 CGTSACG_V$PAX3_B 99 0.00214 1.20141 0.0188914
E4F1 GTGACGY_VS$E4F1_Q6 99 0.00306 -1.10887  0.0011616
HSF1 V$HSF1_01 99 0.00833 1.08890 0.042900%
SRF V$SRF_01 99 0.00842 1.08099 0.0495677
ATF3 TGAYRTCA_V$ATF3_Q6 99 0.009393| 1.103836 0.06546528
E4F1 V$E4F1_Q6 99 0.009645 -1.1088f¢  0.00116162
E2F1 VSE2F1_Q4_01 99 0.015448 1.082136  0.041292)77

continued on next page
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continued from page 23

ATF3 TGACGTCA_V$ATF3_Q6 99 0.018907, 1.103836 0.06546528
HSF1 RGAANNTTC_V$HSF1_01 99 0.023231 1.088903  0.042900b1
SRF V$SRF_Q4 99 0.023591 1.080993 0.04956771
ATF3 V$ATF3_Q6 99 0.027031| 1.103836 0.06546528
STAT5A | VSSTATS5A_04 99 0.038608| 1.062279 0.1018519
FOXO04 TTGTTT_V$FOXO4_01 99 0.045008 1.037023 0.07875606
SOX5 V$SOX5_01 115 0.019848 1.025464 0.381513%
ATF3 TGAYRTCA_V$ATF3_Q6 122 0.015411] 1.10383p 0.06546548
ATF1 V$ATF1_Q6 122 0.017207| -1.02113 0.431335
HSF1 V$HSF1_01 122 0.020894 1.088903 0.042900%1
E2F1 VSE2F1_Q4_01 122 0.040854  1.082186  0.04129277
HSF1 RGAANNTTC_V$HSF1_01 122 0.04109 1.088903 0.042900b1
PAX3 CGTSACG_V$PAX3_B 122 0.044616 1.201415 0.0188914
ATF3 TGACGTCA_VS$ATF3_Q6 122 0.047475 1.103836 0.06546528
GATA2 | V$GATA2_01 123 0.025985| -1.30677  2.75002E-06
AR V$AR_01 123 0.046482| -1.8134q  3.66744E-10
ATF1 V$ATF1_Q6 128 0.000732| -1.02113 0.431335
HSF1 V$HSF1_01 128 0.001037 1.088903  0.042900%1
SRF V$SRF_01 128 0.001371 1.080993 0.049567Y71
ATF6 V$ATF6_01 128 0.002816| 1.041603 0.1132485
ATF3 TGAYRTCA_V$ATF3_Q6 128 0.0029 1.103836 0.06546528
E4F1 GTGACGY_VS$E4F1_Q6 128 0.003041 -1.10887 0.00116162
PAX3 CGTSACG_V$PAX3_B 128 0.003771 1.201415 0.0188914

continued on next page
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continued from page 24

E4F1 VSE4F1_Q6 128 0.005012 -1.1088¢7  0.00116162
ATF3 TGACGTCA_VS$ATF3_Q6 128 0.008934 1.103836 0.06546528
SRF V$SRF_Q4 128 0.011738 1.080993 0.049567Y1
FOXO1 V$FOXO1_01 128 0.012784 -1.0669Y  0.02810615
ATF3 V$ATF3_Q6 128 0.013887| 1.103836 0.06546528
HSF1 RGAANNTTC_V$HSF1_01 128 0.01664 1.088903 0.042900p1
E2F1 VSE2F1_Q4_01 128 0.024716 1.082186  0.04129277
SRF V$SRF_C 128 0.027726  1.080993 0.04956771
FOXO4 TTGTTT_V$FOXO04_01 128 0.033669 1.037023 0.07875606
HSF2 V$HSF2_01 128 0.034274 1.047504 0.1739826
ATF4 V$ATF4_Q2 128 0.037798| 1.01913b 0.2626214
CEBPB V$CEBPB_02 128 0.047262 1.101568 1.16468Er05
SRF V$SRF_Q6 128 0.049257 1.080993 0.049567Y1
SOX5 V$SOX5_01 137 0.038361 1.025464 0.381513%
NF1 V$NF1_Q6_01 137 0.043201 -1.01562  0.5844932
IRF2 V$IRF2_01 148 0.023861] 1.043192  0.3332626
ATF3 TGAYRTCA_V$ATF3_Q6 171 0.014242] 1.10383p 0.06546528
ATF1 V$ATF1_Q6 171 0.016252| -1.02113 0.431335
HSF1 V$HSF1_01 171 0.019765 1.088903 0.04290051
HSF1 RGAANNTTC_V$HSF1_01 171 0.038917 1.088903  0.04290051
E2F1 VSE2F1_Q4_01 171 0.039138  1.082186  0.04129277
PAXS CGTSACG_V$PAX3_B 171 0.043071 1.201415 0.0188914
ATF3 TGACGTCA_V$ATF3_Q6 171 0.045544 1.103836 0.06546528
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Chapter 5 - Discussion

Network-based representation and analysis of data from high-througkpeitimental
technologies is increasingly being used to both visualize and glémifcomponents and
their interactions involved in a given cellular system. In paldic construction of co-
expression networks from gene expression microarray datasetedently become a
popular alternative to the conventional analytic approaches, such aketdwtion of
differential expression using statistical testing or the coesgion analysis using
unsupervised clustering. Representing dependencies in the dataseteasion networks
allows the researcher to explore the whole spectrum of paerrefationships among the
genes as opposed to flat lists of genes from statisietd br distinct groups of genes

from clustering tools.

While network methods are increasingly used in biology, the networ&butsry of

computational biologists tends to be far more limited than that pf,se&ial network
theorists. The relationship between network theory and the fielchiofoarray data
analysis helps to clarify the meaning of and the relationship ametmgprk concepts in
gene co-expression networks. Network theory offers a wealthtwfive concepts for
describing the pair wise relationships among genes, which aretetepn cluster trees

and heat maps. Conversely, high throughput microarray data anadgbisologies
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(singular value decomposition, tests of differential expressions)atso be used to

promote interesting problems in network theory.

This work presents a method for identifying condition-specific genexpoession
networks. The method combines the weighted co-expression network nanohg
condition- specific co-expression relationship detection using aqclairs test based
enrichment analysis. By applying this method to a breast canmoarray data set
replete with different subtypes, we were able to identifargd number of condition-
specific co-expression networks in non-basal like breast camscggesting that the
underlying co-expression relationship has been disrupted in the iBadatdast cancers.
These results provide a new perspective for studying gene imerabtnamics in
cancers and assessing the effects of perturbation on key gestesas transcription
factors. Specifically, using the first network as an exampleswggest that the decreased
gene expression level of the LEF1 transcription factor in bikeabteast cancers may be
associated with the disruption of this co-expression network, thus littkigetwork to
potential cancer development. Our work provides a way for dym@édlgnicharacterizing

the gene interaction networks.

By mapping genes to transcription factors it is found that AR (Androgen Recept
mostly significantly enriched in sub-networks of both sub groups shows a high fold
change. There is sufficient proof in the literature that AR is related tetlwaacer.
Further our method can tell us the genes which are regulated by AR. In otheowords

method finds condition specific gene co-expression networks and the transcripttos fa

27



regulating the condition specific co-expressed genes. Besides ARyiftioa factors

such as GATA2 and CEBPB are found to be significantly enriched.
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