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Abstract 
 

Since co-expressed genes often are co-regulated by a group of transcription factors, 

different conditions (e.g., disease versus normal) may lead to different transcription factor 

activities and therefore different co-expression relationships. A method for identifying 

condition specific co-expression networks by combining the recently developed network 

quasi-clique mining algorithm and the Expected Conditional F-statistic has been 

proposed. This method has been applied to compare the transcriptional programs between 

the non-basal and basal types of breast cancers. This work is a translational 

bioinformatics study integrating network analysis which lifts the traditional gene list 

based disease biomarker discovery to the gene and protein interaction level. 

     

This work presents a method for identifying condition specific gene co-expression 

networks. The method involves construction of a Weighted Graph Co-expression 

Network (WGCN) and mining the WGCNs to identify dense co-expression networks 

followed by a chi-square test based enrichment analysis for detecting condition specific 

co-expression relationship. The expression values in all the conditions for the genes 

constituting a condition specific co-expression network are visualized as heat maps which 

suggest that the genes are highly correlated in a specific condition but the correlations are 

disrupted in other conditions.
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Chapter 1 - Introduction 

 

Gene co-expression network analysis is a widely adopted bioinformatics method in 

biomedical research with many applications including discovering protein-protein 

interaction relationships [1-4], predicting new gene functions [5, 6] and pathways [7], and 

identifying disease biomarkers or genes [8-13]. In addition, many algorithms have been 

developed to identify gene modules or networks composed of highly co-expressed genes 

[3, 11, 14, 15]. These co-expression networks can be used as quantitative traits or disease 

biomarkers [11, 16-18].  

 

However, a typical gene co-expression relationship is not static, it changes given different 

biological or disease conditions. For instance, in [19], it has been shown that the 

correlation between the ARG2 and CAR2 genes in yeast changes from positive to 

negative as the expression level of another gene (CPA2) changes. In addition, changes of 

co-expression relationships between gene pairs have been detected in cancers [20, 21]. In 

particular, condition specific co-expression relationship reveals condition specific 

potential biological mechanisms.  

 

In this project, an expansive search for condition-specific gene co-expression between 

gene pairs is conducted to discover condition specific gene co-expression networks.  
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Since co-expressed genes often are co-regulated by a group of transcription factors, 

different conditions (e.g., disease versus normal) may lead to different transcription factor 

activities and therefore different co-expression networks. In this thesis a method has been 

proposed for identifying condition-specific co-expression networks by combining gene 

co-expression network mining and the Expected Conditional F-statistic (ECF) developed 

in [20] for evaluating changes in the co-expression relationship among different 

conditions.  

 

Specifically, the recently developed network quasi-clique mining algorithm for weighted 

gene co-expression networks is used. In gene co-expression networks, Pearson 

correlation coefficient (PCC) is often used as the metric to measure co-expression 

between two genes in a microarray dataset [3, 5, 22]. A weighted graph can be 

established by setting genes as vertices and PCC values (or their absolute values) as 

weights of the edges. In some network mining algorithms, a threshold is imposed on the 

PCC values to derive an un-weighted network such that two genes are only connected by 

an edge if the PCC value between them is higher than a pre-defined threshold [3]. The 

un-weighted gene co-expression network approach has several drawbacks including the 

selection of the threshold which may be too rigid for weights around that threshold. 

Therefore weighted GCN (WGCN) method has been recently widely adopted and a series 

of tools have been developed to identify networks from WGCNs using hierarchical 

clustering based approach [8, 14, 22]. However, this approach often identifies large 

clusters (e.g., with hundreds or even thousands of genes), cannot directly control the 

intra-cluster connectivity and it does not allow shared genes between two clusters even 
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though many genes have multiple functions. Recently a WGCN dense network finding 

algorithm named eQCM [11] which is a derivation of the quasi-clique merging (QCM) 

algorithm [23] has been developed. This algorithm guarantees a lower bound on the 

densities of the identified networks and allows overlaps between networks. In this paper, 

the eQCM algorithm is used to detect co-expression networks in each condition and 

identify networks which are enriched with edges showing large weight changes between 

different conditions as measured by the ECF statistics, which is a metric for evaluating 

changes of correlation relationship in different conditions [20].  

The developed method is applied to compare the transcriptional programs between two 

subtypes of breast cancers, namely the non-basal and basal types of breast cancers which 

are well known for their different molecular markers and prognosis in patients. This work 

is a translational bioinformatics study integrating network analysis which lifts the 

traditional gene list based disease biomarker discovery to the gene and protein interaction 

level. 
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Chapter 2 – The Expected Conditional F-Statistic 

 

To understand cancer it is important to explore molecular changes in cellular processes 

from normal state to cancerous state. Differentially expressed genes are potential markers 

for clinical diagnoses and medical treatments. The F-statistic and its variants like t-test, 

signal-to-noise statistic and SAM method are commonly used to identify differentially 

expressed genes. A clustering algorithm may be used to find groups of genes that behave 

similarly across a dataset. However all these methods may miss groups of genes which 

form differential co-expression patterns under different experimental conditions. 

 

Statistical tests such as the t-test or ANOVA, identify genes that are differentially 

expressed under one or more conditions. The output of such tests is a simple list of genes, 

with an associated test statistic and p-value. There is no indication of which genes may be 

interacting with one another. Alternatively clustering algorithms are often used to find 

groups of genes which display similar expression profiles across a dataset, and these 

clusters are subsequently analyzed visually for patterns of interest.  

 

However, genes which show highly correlated patterns of expression in one biological 

state, but not in another, may not be highly correlated across the entire dataset, and 

therefore would not be associated with one another if a clustering algorithm is used. 
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Variation may exist in this and may lead to that gene being grouped incorrectly. 

Furthermore, clustering algorithms do not provide methods to identify groups that are 

behaving differently in different biological conditions. 

 

Identification of differentially co-expressed gene clusters or gene pairs usually do not use 

a priori defined gene sets or pairs but try to find the best ones among all possible 

combinations without considering prior knowledge. Thus the biological interpretation of 

the clusters or pairs may also need the ontology and pathway based annotation analysis. 

 

There have been several methods proposed to compute differential co-expression 

between a pair of genes. The differential CoxS algorithm for differential co-expression 

analysis of paired gene sets between conditions has the benefits of both differential co-

expression and gene set-wise analyses [29].   Kostka and Spang [27] described a method 

to investigate differentially co-expressed groups of genes, using an additive model for 

scoring gene-gene co-expression and then a stochastic search algorithm to find groups of 

genes showing differential co-expression patterns. Jen et al [28] developed ACT, the 

Arabidopsis Co-expression Tool, which allows users to calculate co-expression across 

user-defined data sets and uses a correlation cut-off to define groups of genes. 

 

We use Expected Conditional F-Statistic (ECF) an extension of the F-Statistic to identify 

differential gene co-expression in this work. While the F-statistic is a widely used method 

to test whether a gene is differentially expressed, ECF operates on a pair of genes and 

evaluates the difference in correlation of the two genes across different conditions. It is 
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essentially a method to find gene pairs that are in principle positively correlated in one 

condition and not correlated in other.  Higher the difference in correlation, higher is the 

ECF value.  

 

As in [20] the ECF is given as: 

��(�(�|��	
�� = 
���
�

(1

− ������� �	
�

���	��	�� ����� −	����� − ��(��� − ���������

+ �� ��� − ���!�� �� +	 �� − ��!�"			 
 

where �(�|��	
� is the conditional F-statistic and taking its expectation we get the ECF 

     �� is the Pearson Correlation Coefficient and is given as 	
#$$� = ∑  &�� −	��'(! )�� −	��'(!*+���

,∑  &�� −	��'(!�	*+��� ∗ 	,∑  )�� −	��'(!�*+���
 

 

in which 

 the estimated mean is given as ��'(  = 
�
*+ ∗ 	∑ &��*+���  ,  

and the estimated variance is given as ��'�.  = 
�

*+�� ∗ ∑ (&�� −	��'�. �*+���
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Chapter 3- Materials and Methods 

 

The method includes the following major steps as outlined in the following workflow:  

 

1. Pre-processing of the microarray data.  

For a gene expression (microarray) dataset with multiple samples, it is normalized using 

standard microarray data normalization algorithms. For Affymetrix GeneChip data, they 

are normalized using the Robust Multi-array Analysis (RMA) algorithm for 

normalization [30]. For any gene with multiple probesets in the microarray, the values 

from the probeset with the highest mean expression value is used to represent that gene as 

suggested by [26]. 

 

2. Construct WGCN for each condition.  

First compute the Pearson correlation coefficients (PCC) between every pair of genes in 

the specific condition and then apply our recently developed weighted graph quasi-clique 

mining algorithm eQCM to identify tightly co-expressed gene networks [11]. For a pair 

of genes (X, Y) the Pearson Correlation Coefficient in the ith group is given as:
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#$$� = ∑  &�� −	��'(! )�� −	��'(!*+���

,∑  &�� −	��'(!�	*+��� ∗ 	,∑  )�� −	��'(!�*+���
 

 

where xij is the jth observation of X in the ith group, the estimated mean ��'(  = 
�
*+ ∗ 	∑ &��*+���  

, and the estimated variance ��'�.  = 
�

*+�� ∗ ∑ (&�� −	��'�. �*+��� . The WGCN is constructed as 

a weighted graph G (V, E, W) in which the PCC values constitute the edge weights W 

between the nodes (genes).  

 

3. Identify dense co-expression networks from the WGCNs.  

The eQCM algorithm is applied to the G (V, E, W) to identify dense networks. For a 

network of k nodes, the density of the network is defined as / = �∑ ∑ 0+12134,16+2+34�(���� , where 

Wij is the weight between the i-th and j-th nodes in the network. In the eQCM algorithm 

there are two parameters γγγγ and t, which all contributes to density of the detected co-

expression networks [11]. In this study, we set γγγγ = 0.99 and t = 1. 

 

 4. Compute the combined ECF score between every gene pair across multiple 

conditions. For every pair of genes, the ECF-statistics is computed as described in [21], 

which is essentially a metric that evaluates a change of PCC between different conditions. 

Specifically, ECF-statistic is given in as: 
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��(�(�|��	
�� = 
���
�

(1

− ������� �	
�

���	��	�� ����� −	����� − ��(��� − ���������

+ �� ��� − ���!�� �� +	 �� − ��!�"			 
and the combined ECF-statistic score ECF(X,Y)  = EY(λX/Y = y) + EX(λY/X = x). A relatively 

high value of ECF(X,Y) signifies that the correlation between gene X and gene Y 

changed significantly between different conditions [20].  

 

5. Identify high ECF gene pairs. 

The graph constructed in step 1 is examined. For N genes in a graph there exists N*(N-

1)/2 edges and corresponding ECF values. The ECF values are ranked in the descending 

order and the gene pairs with top 5% of the ECF values are selected. All such gene pairs 

are referred to as high ECF gene pairs. 

 

6. Identify co-expression networks enriched with high ECF gene pairs.  

Since the threshold is the top five percentile of the all ECF values, it is expected that on 

an average 5% of the edges in a co-expression network will have ECF scores above the 

threshold. Therefore chi-square tests can be applied to determine if a co-expression 

network is significantly enriched with edges with high ECF scores. For a network with k 

nodes, a contingency table can be derived as in Table 1. The Bonferroni method is 

applied to compensate for multiple tests in determining the threshold on the chi-square 

test p-values. Specifically, if M networks are identified in Step 3, then the p-value 



10 
    

threshold is set at 0.05/M 

 

 
Table 1. An example of contingency table for the chi-square test. 
 

# of expected high ECF gene pairs 

70.05 × �(����
� < 

0.95 × >(> − 1�2  

# of observed h/igh ECF gene pairs 
�(����

�  - # of observed high ECF gene pairs 

 

 

7. Mapping genes to transcription factors. 

Transcription factors are proteins that bind to specific DNA sequences, thereby 

controlling the expression of genes. Having identified the sub-networks enriched with 

high ECF edges it is further important to investigate the transcription factors that co-

regulate the sub-networks enriched with high ECF genes. The gene motifs dataset from 

the molecular signatures database of Broad Institute was used 

(http://www.broadinstitute.org/gsea/msigdb/collections.jsp). It lists 614 gene motifs and 

their respective targets. We determine the gene motifs which are enriched with targets 

(genes) contained in the sub-networks enriched with high ECF edges. To determine the 

enriched gene motifs hyper-geometric test is used. It describes the probability of K 

successes in n draws from a finite population of size N containing M successes without 

replacement.  

 

P(X=k) = [KCx * (M-K)C(N-x)]/MC N 
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In the figure below M represents the genes in the microarray dataset, K represents the 

genes which are the transcription factor targets (success states), N represents the genes in 

the condition specific sub-networks (random selection) and X represents the number of 

successes. 

 

 

Figure 1 

 

Illustration of hyper-geometric test 

 

Once the enriched gene motifs are determined the transcription factor is extracted from it 

(example: ‘ER’ is extracted from ‘V$ER_07’). The extracted transcription factor is 

identified in the microarray dataset and its fold change over different conditions and the 

respective p-values (t-test) are computed and reported
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Chapter 4 - Results 

 

This method has been applied to a breast cancer gene expression dataset from the NCBI 

Gene Expression Omnibus with accession numbers GDS2250 which contains human 

samples for control, non-basal like and basal like human breast cancer tissues. For non-

basal like subtype, 171 networks were identified using eQCM algorithm and out of which 

88 show enriched high ECF gene pairs (p < 0.05/171) suggesting extensive disruption of 

transcriptional programs in the other (i.e., basal) type of breast cancer. For basal-like 

subtype, 23 out of 99 total networks were identified. These are the subtype specific 

networks for further analysis including gene ontology/pathway enrichment analysis and 

correlation with survival times. Table 2 shows examples of the networks identified for the 

non-basal type breast cancer samples. In addition, the heatmap of the gene expression 

values for the network 10 is shown in Figure 2. It is clear that the gene expression 

profiles show high correlations in the non-basal like breast cancers but not in the basal 

like breast cancers.  

 

An important aspect of this exercise is to learn the causal mechanisms of such disruption 

of co-expression relationships. Here this question is investigated using the first network 
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in Table 2 as an example. There are 46 genes in this network. Using the gene enrichment 

analysis GeneCoDis2 (http://genecodis.dacya.ucm.es/), it is determined that this set of 

genes are highly enriched with the transcription factor LEF1 targets (hyper-geometric test 

p-value 3.34317×10-10) as shown in Figure 3. Interestingly, in checking the original 

microarray data, it is found that LEF1 shows higher expression levels among the non-

basal like breast cancer samples compared to the basal like breast cancer samples with 

log mean fold change being 1.31 (fold change 2.48) and one-tail p-value for Student t-test 

being measured as 0.022. This observation suggests that LEF1 plays an important role in 

maintaining the co-expression relationship in network 1 in non-basal like breast cancer 

samples while its absence contributes to the disruption of the co-expression network in 

the basal like breast cancer samples. In fact, LEF1 has been shown to be involved in 

many different cancers including breast cancer as an important component of the cancer 

related Wnt  pathway [24, 25].  

 

We then expand the transcription factor enrichment analysis to all the identified networks 

as described in the previous section. Results obtained by using this method are tabulated 

as shown in Table 3 and Table 4. Amongst all the transcription factors, AR which is 

enriched in both sub-groups, basal and non-basal, seems to be the most prominent (fold 

change = -1.81 and p-value = 3.66*10-10). Besides AR, GATA2 and CEBPB which are 

enriched only in non-basal sub-type show significant fold-change. 
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Table 2: Examples of the networks enriched with high ECF gene pairs for the non-basal 

subtype of breast cancers. 

Network 

Index 
Chi-square p-value 

# of expected high 

ECF edges 

# of observed high 

ECF edges 

1 3.81E-08 89 167 

2 0 83 342 

3 6.04E-07 77 143 

4 0 83 234 

5 0 770 1787 

6 0 92 374 

7 0 322 1105 

8 1.56E-05 620 742 

9 5.57E-06 179 260 

10 1.64E-06 158 241 

11 3.52E-08 107 192 

12 0 289 1120 

13 2.99E-08 80 156 

14 0 334 1117 

15 3.34E-06 107 176 

16 0 150 492 

17 0 413 1271 

18 0 95 359 

19 0 121 584 
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Figure 2: Heat map representing gene expression in a co-expression network showing high 

correlation among the non-basal like breast cancer samples but not in the basal-like breast cancer 

samples. This finding reveals potentially specific transcriptional programs associated with non-

basal like breast cancer which is disrupted in the basal like breast cancer 

a) 

continued on next page 

5 10 15 20 25 30 35 40 45



16 
    

continued from page 15 

b) 

continued on next page 

5 10 15 20 25 30 35 40 45



17 
    

continued from page 16 

c)

continued on next page 
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continued from page 17 

d)

 

5 10 15 20 25 30 35 40 45



 

Figure 3 Top ten enriched biological terms.

gene ontology, transcription fac

the network 1 in Table 2. The x

terms listed on the left. The transcription factor LEF1 is on the top with 18 genes 

associated with it. 
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Top ten enriched biological terms. Top 10 enriched biological terms (including 

gene ontology, transcription factor, microRNA and KEGG pathways) in the 46 genes in 

the network 1 in Table 2. The x-axis enumerates the number of genes associated with the 

terms listed on the left. The transcription factor LEF1 is on the top with 18 genes 

 

  

Top 10 enriched biological terms (including 

tor, microRNA and KEGG pathways) in the 46 genes in 

axis enumerates the number of genes associated with the 

terms listed on the left. The transcription factor LEF1 is on the top with 18 genes 
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Table 3: Enriched Transcription Factors for the basal cancer subgroup 

Transcription 

Factor 

Gene Motif Network 

Id 

p-value fold 

change 

t-test p-

value 

STAT5B TTCYNRGAA_V$STAT5B_01 4 0.02574 1.06 0.158 

SRF V$SRF_Q4 22 0.000004 1.08 0.0496 

SRF V$SRF_Q6 22 0.000008 1.08 0.0496 

SRF CCAWWNAAGG_V$SRF_Q4 22 0.000008 1.08 0.0496 

SRF V$SRF_Q5_01 22 0.000031 1.08 0.0496 

SRF V$SRF_C 22 0.000134 1.08 0.0496 

NF1 V$NF1_Q6_01 22 0.037703 -1.02 0.584 

NF1 V$NF1_Q6 22 0.040709 -1.02 0.584 

STAT5B TTCYNRGAA_V$STAT5B_01 24 0.037311 1.06 0.158 

PAX2 V$PAX2_01 29 0.017916 -1.04 0.297 

AR V$AR_Q2 29 0.047996 -1.81 3.67E-10 

PAX8 V$PAX8_01 54 0.034517 1.02 0.149 

PAX4 V$PAX4_04 91 0.015003 -1.03 0.446 

FOXD3 V$FOXD3_01 91 0.015287 1.21 0.066 

VDR V$VDR_Q6 91 0.024445 -1.09 0.00218 

GATA6 V$GATA6_01 91 0.025562 1.31 0.0102 
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Table 4: Enriched Transcription Factors for the non-basal cancer subgroup 

Transcrip

t Factor 

Gene Motif Network 

ID 

p-value Fold 

change 

p-value (t-

test) 

ATF3 TGAYRTCA_V$ATF3_Q6 1 0.0120 1.10383 0.06546528 

ATF1 V$ATF1_Q6 1 0.0144 -1.0211 0.431335 

HSF1 V$HSF1_01 1 0.01761 1.08890 0.04290051 

HSF1 RGAANNTTC_V$HSF1_01 1 0.03473 1.08890 0.15733549 

E2F1 V$E2F1_Q4_01 1 0.0358 1.08213 0.14605310 

PAX3 CGTSACG_V$PAX3_B 1 0.04004 1.20141 0.13477072 

ATF3 TGACGTCA_V$ATF3_Q6 1 0.04177 1.10383 0.12348833 

MSX1 V$MSX1_01 13 0.02351 -1.09740 0.11220595 

ATF1 V$ATF1_Q6 14 0.00462 -1.02113 0.10092356 

ATF3 TGAYRTCA_V$ATF3_Q6 14 0.02746 1.10383 0.08964118 

ATF3 TGACGTCA_V$ATF3_Q6 14 0.03759 1.10383 0.07835879 

ATF1 V$ATF1_Q6 16 0.00079 -1.0211 0.06707641 

ATF3 TGAYRTCA_V$ATF3_Q6 16 0.00854 1.10383 0.05579402 

ATF3 TGACGTCA_V$ATF3_Q6 16 0.00943 1.10383 0.04451164 

ATF3 V$ATF3_Q6 16 0.01461 1.10383 0.06546528 

HSF1 V$HSF1_01 16 0.01552 1.08890 0.04290051 

FOXO4 TTGTTT_V$FOXO4_01 16 0.03677 1.03702 0.07875606 

E4F1 GTGACGY_V$E4F1_Q6 16 0.03996 -1.1088 0.00116162 

FOXO1 V$FOXO1_01 16 0.04053 -1.06697 0.02810615 

HSF1 RGAANNTTC_V$HSF1_01 16 0.04137 1.08890 0.04290051 

HOXA4 V$HOXA4_Q2 16 0.04834 1.04547 0.4742465 

continued on next page 
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continued from page 21 

NF1 V$NF1_Q6_01 16 0.04834 -1.01564 0.5844932 

ATF3 TGAYRTCA_V$ATF3_Q6 17 0.01926 1.10383 0.06546528 

ATF1 V$ATF1_Q6 17 0.02025 -1.02113 0.431335 

HSF1 V$HSF1_01 17 0.02448 1.08890 0.04290051 

E2F1 V$E2F1_Q4_01 17 0.04617 1.08213 0.04129277 

HSF1 RGAANNTTC_V$HSF1_01 17 0.04789 1.08890 0.0429005 

PAX3 CGTSACG_V$PAX3_B 17 0.04936 1.20141 0.0188914 

PAX2 V$PAX2_02 21 0.04999 -1.04258 0.2972777 

SOX5 V$SOX5_01 24 0.03990 1.02546 0.3815135 

NF1 V$NF1_Q6_01 24 0.04489 -1.01562 0.5844932 

PBX1 V$PBX1_02 31 0.02393 -1.15393 0.0002210 

PAX8 V$PAX8_01 32 0.04651 1.02327 0.148986 

LEF1 V$LEF1_Q2 44 0.04749 -1.23831 0.0402204 

NF1 V$NF1_Q6 51 0.02772 -1.01562 0.5844932 

MSX1 V$MSX1_01 51 0.02984 -1.09740 0.1747607 

ATF3 TGAYRTCA_V$ATF3_Q6 60 0.01541 1.10383 0.0654652 

HSF1 V$HSF1_01 60 0.02089 1.08890 0.0429005 

E2F1 V$E2F1_Q4_01 60 0.04085 1.08213 0.0412927 

HSF1 RGAANNTTC_V$HSF1_01 60 0.04109 1.08890 0.0429005 

PAX3 CGTSACG_V$PAX3_B 60 0.04461 1.20141 0.0188914 

ATF3 TGACGTCA_V$ATF3_Q6 60 0.04747 1.10383 0.0654652 

SRF V$SRF_Q6 62 0.03264 1.08099 0.0495677 

LHX3 YTAATTAA_V$LHX3_01 62 0.03657 1.02490 0.5307498 

continued on next page 
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continued from page 22 

SOX9 V$SOX9_B1 66 0.01722 1.21783 0.0010167 

SRY V$SRY_02 66 0.02056 1.05458 0.0154536 

GATA1 V$GATA1_01 66 0.04071 1.00752 0.4984056 

MSX1 V$MSX1_01 66 0.04917 -1.09740 0.1747607 

GATA2 V$GATA2_01 89 0.04766 -1.30677 2.7500E-06 

GATA2 V$GATA2_01 92 0.03616 -1.30677 2.7500E-06 

HSF1 V$HSF1_01 98 0.00596 1.08890 0.0429005 

E2F1 V$E2F1_Q4_01 98 0.01173 1.08213 0.0412927 

ATF3 TGAYRTCA_V$ATF3_Q6 98 0.01663 1.10383 0.0654652 

ATF1 V$ATF1_Q6 98 0.01819 -1.02113 0.431335 

HSF1 RGAANNTTC_V$HSF1_01 98 0.04331 1.08890 0.0429005 

LEF1 CTTTGA_V$LEF1_Q2 98 0.04519 -1.23831 0.0402204 

PAX3 CGTSACG_V$PAX3_B 98 0.04618 1.20141 0.0188914 

ATF3 TGACGTCA_V$ATF3_Q6 98 0.04943 1.10383 0.0654652 

ATF1 V$ATF1_Q6 99 0.00151 -1.02113 0.431335 

ATF6 V$ATF6_01 99 0.00158 1.04160 0.1132485 

PAX3 CGTSACG_V$PAX3_B 99 0.00214 1.20141 0.0188914 

E4F1 GTGACGY_V$E4F1_Q6 99 0.00306 -1.10887 0.0011616 

HSF1 V$HSF1_01 99 0.00833 1.08890 0.0429005 

SRF V$SRF_01 99 0.00842 1.08099 0.0495677 

ATF3 TGAYRTCA_V$ATF3_Q6 99 0.009393 1.103836 0.06546528 

E4F1 V$E4F1_Q6 99 0.009645 -1.10887 0.00116162 

E2F1 V$E2F1_Q4_01 99 0.015448 1.082136 0.04129277 

continued on next page 
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continued from page 23 

ATF3 TGACGTCA_V$ATF3_Q6 99 0.018907 1.103836 0.06546528 

HSF1 RGAANNTTC_V$HSF1_01 99 0.023231 1.088903 0.04290051 

SRF V$SRF_Q4 99 0.023591 1.080993 0.04956771 

ATF3 V$ATF3_Q6 99 0.027031 1.103836 0.06546528 

STAT5A V$STAT5A_04 99 0.038608 1.062279 0.1018519 

FOXO4 TTGTTT_V$FOXO4_01 99 0.045005 1.037023 0.07875606 

SOX5 V$SOX5_01 115 0.019848 1.025464 0.3815135 

ATF3 TGAYRTCA_V$ATF3_Q6 122 0.015411 1.103836 0.06546528 

ATF1 V$ATF1_Q6 122 0.017207 -1.02113 0.431335 

HSF1 V$HSF1_01 122 0.020894 1.088903 0.04290051 

E2F1 V$E2F1_Q4_01 122 0.040854 1.082136 0.04129277 

HSF1 RGAANNTTC_V$HSF1_01 122 0.04109 1.088903 0.04290051 

PAX3 CGTSACG_V$PAX3_B 122 0.044616 1.201415 0.0188914 

ATF3 TGACGTCA_V$ATF3_Q6 122 0.047475 1.103836 0.06546528 

GATA2 V$GATA2_01 123 0.025985 -1.30677 2.75002E-06 

AR V$AR_01 123 0.046482 -1.81346 3.66744E-10 

ATF1 V$ATF1_Q6 128 0.000732 -1.02113 0.431335 

HSF1 V$HSF1_01 128 0.001037 1.088903 0.04290051 

SRF V$SRF_01 128 0.001371 1.080993 0.04956771 

ATF6 V$ATF6_01 128 0.002816 1.041603 0.1132485 

ATF3 TGAYRTCA_V$ATF3_Q6 128 0.0029 1.103836 0.06546528 

E4F1 GTGACGY_V$E4F1_Q6 128 0.003041 -1.10887 0.00116162 

PAX3 CGTSACG_V$PAX3_B 128 0.003771 1.201415 0.0188914 

continued on next page 
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E4F1 V$E4F1_Q6 128 0.005012 -1.10887 0.00116162 

ATF3 TGACGTCA_V$ATF3_Q6 128 0.008934 1.103836 0.06546528 

SRF V$SRF_Q4 128 0.011738 1.080993 0.04956771 

FOXO1 V$FOXO1_01 128 0.012784 -1.06697 0.02810615 

ATF3 V$ATF3_Q6 128 0.013887 1.103836 0.06546528 

HSF1 RGAANNTTC_V$HSF1_01 128 0.01664 1.088903 0.04290051 

E2F1 V$E2F1_Q4_01 128 0.024716 1.082136 0.04129277 

SRF V$SRF_C 128 0.027726 1.080993 0.04956771 

FOXO4 TTGTTT_V$FOXO4_01 128 0.033669 1.037023 0.07875606 

HSF2 V$HSF2_01 128 0.034274 1.047504 0.1739826 

ATF4 V$ATF4_Q2 128 0.037798 1.019135 0.2626214 

CEBPB V$CEBPB_02 128 0.047262 1.101568 1.16468E-05 

SRF V$SRF_Q6 128 0.049257 1.080993 0.04956771 

SOX5 V$SOX5_01 137 0.038361 1.025464 0.3815135 

NF1 V$NF1_Q6_01 137 0.043201 -1.01562 0.5844932 

IRF2 V$IRF2_01 148 0.023861 1.043192 0.3332626 

ATF3 TGAYRTCA_V$ATF3_Q6 171 0.014242 1.103836 0.06546528 

ATF1 V$ATF1_Q6 171 0.016252 -1.02113 0.431335 

HSF1 V$HSF1_01 171 0.019765 1.088903 0.04290051 

HSF1 RGAANNTTC_V$HSF1_01 171 0.038917 1.088903 0.04290051 

E2F1 V$E2F1_Q4_01 171 0.039138 1.082136 0.04129277 

PAX3 CGTSACG_V$PAX3_B 171 0.043071 1.201415 0.0188914 

ATF3 TGACGTCA_V$ATF3_Q6 171 0.045544 1.103836 0.06546528 
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Chapter 5 - Discussion 

 

Network-based representation and analysis of data from high-throughput experimental 

technologies is increasingly being used to both visualize and identify the components and 

their interactions involved in a given cellular system. In particular, construction of co-

expression networks from gene expression microarray datasets has recently become a 

popular alternative to the conventional analytic approaches, such as the detection of 

differential expression using statistical testing or the co-expression analysis using 

unsupervised clustering. Representing dependencies in the dataset as interaction networks 

allows the researcher to explore the whole spectrum of pair wise relationships among the 

genes as opposed to flat lists of genes from statistical tests or distinct groups of genes 

from clustering tools. 

 

While network methods are increasingly used in biology, the network vocabulary of 

computational biologists tends to be far more limited than that of, say, social network 

theorists. The relationship between network theory and the field of microarray data 

analysis helps to clarify the meaning of and the relationship among network concepts in 

gene co-expression networks. Network theory offers a wealth of intuitive concepts for 

describing the pair wise relationships among genes, which are depicted in cluster trees 

and heat maps. Conversely, high throughput microarray data analysis technologies 
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(singular value decomposition, tests of differential expressions) can also be used to 

promote interesting problems in network theory.  

 

This work presents a method for identifying condition-specific gene co-expression 

networks. The method combines the weighted co-expression network mining and 

condition- specific co-expression relationship detection using a chi-square test based 

enrichment analysis. By applying this method to a breast cancer microarray data set 

replete with different subtypes, we were able to identify a large number of condition-

specific co-expression networks in non-basal like breast cancers suggesting that the 

underlying co-expression relationship has been disrupted in the basal like breast cancers. 

These results provide a new perspective for studying gene interaction dynamics in 

cancers and assessing the effects of perturbation on key genes such as transcription 

factors. Specifically, using the first network as an example, we suggest that the decreased 

gene expression level of the LEF1 transcription factor in basal like breast cancers may be 

associated with the disruption of this co-expression network, thus linking this network to 

potential cancer development. Our work provides a way for dynamically characterizing 

the gene interaction networks. 

 

By mapping genes to transcription factors it is found that AR (Androgen Receptor) is 

mostly significantly enriched in sub-networks of both sub groups shows a high fold 

change. There is sufficient proof in the literature that AR is related to breast cancer. 

Further our method can tell us the genes which are regulated by AR. In other words our 

method finds condition specific gene co-expression networks and the transcription factors 
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regulating the condition specific co-expressed genes. Besides AR, transcription factors 

such as GATA2 and CEBPB are found to be significantly enriched. 
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