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Abstract

MicroRNAseq (miRNAseq) is a form of RNAseq technology that has become an increasingly

popular alternative to miRNA expression profiling. Unlike messenger RNA (mRNA), miRNA

extraction can be difficult, and sequencing such small RNA can also be problematic. We designed

a study to test the reproducibility of miRNAseq technology and the performance of the two

popular miRNA isolation methods, mirVana and TRIzol, by sequencing replicated samples using

microRNA isolated with each kit. Through careful analysis of our data, we found excellent

repeatability of miRNAseq technology. The mirVana method performed better than TRIzol in

terms of useful reads sequenced, number of miRNA identified, and reproducibility. Finally, we

identified a baseline noise level for miRNAseq technology; this baseline noise level can be used as

a filter in future miRNAseq studies.
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1 Introduction

In large scale genome-wide association studies (GWAS) over the last decade, researchers

have used genotyping array to identify hundreds of loci harboring common variants that are

associated with complex traits. In GWAS, an effective strategy, often used to alleviate cost,

time and labor, was to genotype pools of DNA from many individuals rather than a single

sample. Pooling was first used in 1985 in a case–control association study of HLA class II

DR and DQ alleles in type I diabetes mellitus (Arnheim et al., 1985). Since then, the concept

of pooling has been extensively applied in other types of genetic studies such as linkage

studies in plants (Michelmore et al., 1991), measuring the allele frequencies of microsatellite

markers and single nucleotide polymorphisms (SNP) (Pacek et al., 1993, Barcellos et al.,

1997, Daniels et al., 1998, Shaw et al., 1998, Krumbiegel et al., 2011, Rivas et al., 2011),

homozygosity mapping of recessive diseases in inbred populations (Sheffield et al., 1994,

Carmi et al., 1995, Nystuen et al., 1996, Scott et al., 1996), and mutation detection (Amos et

al., 2000).

A few previous studies have claimed that data generated from pooling studies are accurate

and reliable. Most recently, Huang et.al. claimed that minor allele odds ratio estimated from

pooled DNA agree fairly well with the minor allele odds ratio estimated from individual

genotyping (Huang et al., 2010). Docherty et al. demonstrate that pooling can be effectively

applied to the genome-wide Affymetrix GeneChip Mapping 500 K Array (Docherty et al.,

2007). Some studies have even found that pooling designs have an advantage in the

detection of rare alleles and mutations. For example, Amos et.al. suggested that mutations in

individuals could be more efficiently detected using pools (Amos et al., 2000). However,

Gastwirth (Gastwirth, 2000) later pointed out that Amos et al. 's method assumed perfect

sensitivity.

The practicality of the pooling strategy applied with high throughput sequencing has been a

controversial topic. On the one hand, researchers have claimed significant findings using

pooled sequencing. For example, researchers have used high throughput pooled sequencing

to identify mutations in NUBPL and FOXRED1 in human complex I deficiency (Calvo et

al., 2010), and mutations in CYP7B1 and SPG7 in sporadic spastic paraplegia patients

(Schlipf et al., 2011). On the other hand, some researchers have argued that, when compared

with individual sequencing, pooled sequencing can generate variant calls with high false-

positive rates (Harakalova et al., 2011). Another study claimed that the ability to accurately

estimate allele frequency from pooled sequencing is limited (Day-Williams et al., 2011).

There have been very few studies aimed at evaluating the accuracy of allele frequency

estimated from pooled sequencing data. In our study, we designed a pooling experiment

using 48 subjects to evaluate the accuracy of allele frequency AFPool estimated from pooled

high throughput sequencing data. We measured the accuracy by comparing AFPool estimated

from sequencing data with allele frequency AFchip computed from SNP chips. For

simplicity, we assume AFchip as the gold standard. Processing of high throughput

sequencing data presents many challenges and any changes in processing or filtering criteria

may significantly affect the outcome. Thus we also described a robust protocol for making

allele frequency calls from raw data, and the filters applied to achieve optimal results.
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2 Materials and Methods

For a successful DNA pooling study, an essential requirement is that the pool must contain

equal amounts of DNA from each sample so that a robust PCR and library can be obtained.

Pools in this study were constructed following previously suggested protocols (Gaukrodger

et al., 2005, Sham et al., 2002, Lavebratt and Sengul, 2006, Nejentsev et al., 2009) with

modifications to ensure equal amounts were pooled from each subject. DNA concentration

was measured twice using the Hoechst Dye method and the PicoGreen method. The DNA

concentration for each individual sample was then averaged from the 4 measurements and

normalized to 100 ng/μl. The DNA pool construction protocol is shown in Table S1. Briefly,

we randomly selected 48 subjects who had SNP Chip data from the Shanghai Women's

Health Study and designed a pooling experiment with 8 overlapping pools (pool A-H). Pools

A, B, C, and D each contained one DNA sample. Pool E contained 12 samples including

samples in Pools A to D. Pool F contained 24 samples including all samples included in

Pool E. Pool G contained 36 samples including all samples included in Pool F. Pool H

contained 48 samples including all samples included in Pool G. Equal amounts of DNA

from each individual DNA sample constituting a pool was added to one tube by a

PerkinElmer JANUS liquid handling system. All 48 subjects were genotyped using the

Affymetrix SNP 6.0 chip; detailed genotyping methods and stringent quality control criteria

are described in Zheng et al. (Zheng et al., 2009).

All data in this study were generated from targeted sequencing on kinome regions (Manning

et al., 2002) on 2 lanes of a Illumina HighSeq 2000 sequencer at the Illumina service center.

The kinome target regions contain 11,229 intervals, total of 3,212,495 bp, 704 genes, and a

median length of 241 bp (range: 116 - 17160). We aligned the FASTQ (Cock et al., 2010)

files to National Center for Biotechnology Information (NCBI) human reference genome

version 37 (HG19) using the program Burrows-Wheeler Aligner (BWA) (Li and Durbin,

2009). We then marked duplicates with Picard and carried out regional realignment and

quality score recalibration using Genome Analysis Toolkit (GATK) (McKenna et al., 2010).

Since Pool A to Pool D contained only a single subject, we performed SNP calls on Pool A

to Pool D using GATK's Unified Genotyper (McKenna et al., 2010) to evaluate the overall

batch quality. SNP consistency rate with genotyping chip for those 4 pools were computed

as a quality control measure to ensure our data batch has the most optimal quality for

pooling analysis.

Using the bam files (Li et al., 2009) from recalibration step, we produced pileup files using

Samtools' mpileup command (Li et al., 2009). After applying a variety of combinations of

base alignment quality Phred scores (BAQ from samtools mpileup) (Cock et al., 2010),

mapping quality Phred score (MAPQ) and depth as filters, we calculated an allele count for

each of the four nucleotides at each aligned position. Based on the allele counts we

computed allele frequency for the SNPs that overlap with SNP chip data. Since the SNP

chip data were from Affymetrix SNP 6.0 chip, which uses HG18 annotation, we had to

convert all HG18 locations on the chip to HG19 using the Liftover tool developed by UCSC.
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Two different statistics were used to measure the accuracy of allele frequency estimated

from pooled sequencing data: Pearson's correlation coefficient and error rate. Pearson's

correlation were commonly used as the primary measurement for allele frequency accuracy

(Day-Williams et al., 2011, Huang et al., 2010); it was computed between the allele

frequency estimated from pooled sequencing data and SNP chip data. However, we will

show that high correlation does not necessarily mean allele frequency estimated from pooled

sequence data is not significantly different from allele frequency estimated from SNP chip.

Thus error rate was calculated as a secondary measurement. Error rate was computed for

each SNP and is defined as |AFchip − AFPool |/ ((AFchip + AFPool )/2 where AFPool the allele

equency estimated from sequencing data, and AFchip is the allele frequency estimated from

SNP chip data. We choose the denominator as ((AFchip + AFPool )/2) instead of to avoid

dividing by zero.

Previously, we have shown that sequencing data generated outside capture regions can still

produce reliable SNP calls (Yan Guo, 2012). In current study, because a significant portion

of the reads aligned outside kinome as expected (Table 1), we separately examined SNPs

inside kinome and outside kinome. To further evaluate pooling sequencing data quality, we

examined SNPs in different minor allele frequency intervals (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4,

and 0.4-0.5) and we separately examined allele frequency for each of the four nucleotides.

3 Results

3.1 GWAS Data Quality

The 48 subjects were genotyped using the Affymetrix SNP 6.0 array in a GWAS (Zheng et

al., 2009). The original study included three quality control samples in each 96-well plate,

and the SNP calls showed a very high concordance rate (mean 99.9%; median 100%) for the

quality control samples. In addition, 742 SNPs were genotyped using alternative genotyping

platforms for a subset of subjects; they also had a high concordance rate with genotypes

obtained from the SNP chip (mean 99.1%; median 99.8%). The SNP chip call rate for the 48

samples used in this study ranged from 97.82% to 97.84%.

3.2 Sequencing Data Quality

We achieved very high quality sequencing data for all pools. From the two lanes on Illumina

HighSeq 2000, we obtained a total of 707 million reads. On average, each pool had 88.4

million reads (range: 79.2 - 96.8), about 98.7% (range: 98.6% -98.8%) of the reads were

properly aligned; 69% (range 64.7%- 71.7%) of the reads were aligned inside the kinome.

The median depth inside the kinome region was 1064 (range: 971 - 1188); the median base

alignment quality score of the kinome region was 37.1 (range: 36.1 - 37.5) and the median

mapping quality score for the kinome region was 60 (range: 60 - 60). Among the 3,212,495

bp in the kinome target regions, 99.4% (range: 99.3% - 99.4%) of those base pairs had a

depth ≥ 10; 98.4% of those base pairs have a depth ≥ 100. Detailed information regarding

alignment quality can be found in Table 1.

We observed many high quality SNPs in the four pools that contained only individual

sample. Using GQ ≥ 10 and DP ≥ 10 as quality control filters, on average, we observed 2759
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(range: 2666 −2911) SNPs per sample in all regions that overlap with SNP chip. The

average consistency rate with genotyping chip is 99.8% (range: 99.6% - 99.8%) (Table S2).

The high quality SNPs observed in these four pools provided us extra confidence in our data

quality.

3.3 Allele Frequency Estimation Accuracy

We computed allele frequency for all genomic positions inside and outside kinome that

passed the filtering criteria. The filtering criteria consisted of combinations of three

measurements: base alignment quality (BAQ), mapping quality (MAPQ), and depth of

coverage. Pearson's correlation coefficient was computed between allele frequency

estimated from sequencing data for each pool and allele frequency estimated from their

matched SNP chip data.

We found that there was no significant correlation difference between SNPs inside capture

regions (Figure 1) and SNPs outside capture regions (Figures S1). For example, in Pool E,

the correlation was 0.993 for SNPs inside capture regions, and the correlation was 0.988 for

SNPs outside capture regions. Outside capture regions contained a slightly larger number of

SNPs. The number of SNPs outside capture regions is highly dependent on capture

efficiency of the capture kit and the size of capture regions. The error rate for SNPs outside

capture regions and inside capture regions were also very similar. Furthermore, from pooled

sequencing data we separately computed allele frequency for the four nucleotides, and

calculated their Pearson's correlation coefficients with SNP chip data. We observed high

correlations for all four nucleotides in Pool E to Pool H regardless of capture region (Figure

S2).

To ensure the robustness of this study, we also computed allele frequency correlation and

error rate at different minor allele frequency intervals for inside capture regions (Figure 2)

and outside capture regions (Figure S3). SNPs at lower minor allele frequency (MAF) had

higher allele frequency correlation and higher error rate, SNPs at higher MAF had lower

allele frequency correlation and lower error rate. The correlation at each minor allele

frequency interval was lower than the overall correlation. This was due to an artifact from

MAF estimation from SNP chip data, which was not truly continuous. For example, in a

pool of 12 samples, only 12 possible MAF values are possible. Thus, when dividing into

small MAF intervals, the correlation will decrease. Such effect can also be visualized in

Figure 1.

We have found that, in general, MAPQ is negatively correlated with error rate and have little

effect on total number of SNPs and correlation (Table 2). For example, in Pool E and in

capture regions, at BAQ ≥ 0, MAPQ ≥ 20 and Depth ≥ 100, there were 739 SNPs that

overlap with Affymetrix 6.0 SNP chip. By fixing BAQ and Depth and increasing MAPQ ≥

40, the total number of SNPs stayed at 739, correlation only dropped 0.1%, and the mean

error rate decreased from 56.62% to 49.80%. Also in Pool E and in capture regions, by

increasing depth filter from 50 to 500 had little effect on correlation. The total number of

SNPs, however, dropped from 739 to 665, roughly a 10% decrease; and the error rate

increased slightly from 56.62% to 58.58%. Surprisingly, increasing BAQ filter did not

produce any positive result. For example, in Pool E and in capture regions, at depth ≥ 100,
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MAPQ ≥ 20 and BAQ ≥ 0, there were 739 SNPs. By fixing depth, MAPQ and increasing

BAQ to ≥ 40, the number of SNPs decreased to 469, correlation decreased from 0.993 to

0.179 and the mean error rate increased from 56.62% to 180.46%. Similar patterns were

observed in all four pools (E-H).

Based on the results observed (Table 2), we do not recommend using BAQ computed by

Samtools as a filtering criterion when using pooled sequencing to estimate allele frequency.

Increasing BAQ filter will significantly decrease the number of SNPs identifiable, and

significantly lower the correlation and increase the error rate. On the other hand, using

MAPQ and depth as filters can produce very high correlation between allele frequencies

estimated from pooled sequencing data and SNP chip data without losing too many SNPs.

The ideal MAPQ filter is around 20, and the ideal depth filter varies, depending on the

sequencing depth. In our study, depth ≥ 100 produced good results. The details of

associations between different filter criteria and results were documented in Table S3-S10

for all four pools (E-H) for both inside capture regions and outside capture regions,

respectively.

Moreover, we computed the accuracy for each pool using error rate ≤ 1%, 2%, 3%, 4%, 5%

as acceptable thresholds. Accuracy is computed as number of SNPs with error rate greater

than the threshold divided by the total number of SNPs. Pool E to Pool H showed similar

poor accuracy for all error rate thresholds. For example, using error rate ≤ 5% as the

acceptable threshold, the accuracy is only around 25% for Pool E to Pool H. The graphical

representation can be visualized in Figure 3, S4 for inside and outside capture regions

respectively.

4 Conclusion and Discussion

Our unique study design provided us with an opportunity to evaluate the practicality of

allele frequency estimation using pooled sequencing data. Our analysis results suggest that

pool size does not make a significant difference on allele frequency estimation accuracy.

SNPs outside capture regions and SNPs inside capture regions have comparable allele

frequency estimation accuracy and error rate. However, the quality and number of SNPs

outside capture regions may vary depending on the capture efficiency of the capture kit and

capture region length. We observed no significant difference among the four nucleotides in

allele frequency accuracy.

One phenomenon we observed was that even when the correlation is very high (>0.99), the

error rate can still remain at an alarming level, which is not acceptable in many situations

where high accuracy is required. Correlation has been commonly used to assess allele

frequency accuracy (Day-Williams et al., 2011, Huang et al., 2010). However, correlation

only measures the linear relationship between two variables. With allele frequencies

accuracy measurement, we are more interested in the actual difference between allele

frequencies estimated from pooled sequencing data and SNP chip data rather than their

linear relationship. Error rate on the other hand, is a more appropriate and informative

representation of the actual difference between the two allele frequencies. Thus, higher
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priority should be given to error rate instead of correlation when conducting such an

evaluation.

Several sources may contribute to the high error rate we have observed. Compared to

genotyping of individual samples, pooled DNA comparisons may involve additional sources

of variation. The sources include unequal quantity of DNA contributions to the pool by each

sample, differential allelic amplification and measurement errors. Such problems have been

documented for SNP chip-based studies (Barratt et al., 2002, Downes et al., 2004, Le

Hellard et al., 2002, Hoogendoorn et al., 2000). For high throughput sequencing-based

pooled DNA studies, additional source of variation could potentially also include sample

quality and sequencing depth, library preparation, fragmentation, among others. In practice,

even if the pool was constructed perfectly and the quantity of each subject's DNA in the pool

was equal, the sequencing data generated from the pool may still not represent each sample

equally. This may be due to the nature of high throughput sequencing technology where

variation among samples could be introduced as statistical variation in the sequencing

process. Under the same conditions, it is known that higher quality samples tend to yield

more reads on Illumina sequencer.

Pooling strategy combined with high throughput sequencing technology may permit

researchers to conduct their research at a lower cost. However, due to the high level of

variation associated with the pooling sequencing data, we do not recommend using pooled

sequencing as a substitute for individual sequencing in studies where the primary goal

requires estimating allele frequency.
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Figure 1.
Correlation of allele frequencies and error rate between sequencing and SNP chip inside

capture regions.
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Figure 2.
Correlation of allele frequencies and error rate between sequencing and GWAS by MAF

intervals inside capture regions
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Figure 3.
Overall accuracy acceptable error rate at 1-5%.

Guo et al. Page 13

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2014 July 24.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Guo et al. Page 14

T
ab

le
 1

A
lig

nm
en

t Q
ua

lit
y 

Su
m

m
ar

y

P
oo

l
T

ot
al

 (
m

1 )
A

lig
ne

d 
(m

)
P

ro
pe

rl
y 

P
ai

re
d 

(m
)

R
ea

ds
A

lig
ne

d 
In

K
in

om
e 

(m
)

M
ed

ia
n

D
ep

th
 I

n
K

in
om

e

M
ed

ia
n

B
A

Q
 in

K
in

om
e

M
ed

ia
n

M
A

P
Q

 in
K

in
om

e

K
in

om
e 

%
w

it
h 

de
pt

h 
≥ 1

K
in

om
e 

%
w

it
h 

de
pt

h 
≥ 10

K
in

om
e 

%
w

it
h 

de
pt

h 
≥

10
0

K
in

om
e 

%
w

it
h 

de
pt

h 
≥

20
0

A
 (

n=
1)

81
.7

80
.8

80
.2

57
.1

99
8

37
60

10
0

99
98

96

B
 (

n=
1)

96
.8

95
.4

94
.6

62
.6

10
91

36
60

10
0

99
98

96

C
 (

n=
1)

90
.0

88
.9

88
.3

64
.3

11
13

37
60

10
0

99
98

96

D
 (

n=
1)

95
.3

94
.2

93
.4

68
.3

11
88

37
60

10
0

99
98

97

E
(n

=
12

)
90

.5
89

.2
88

.4
60

.3
10

54
37

60
10

0
99

98
96

F 
(n

=
24

)
89

.2
88

.1
87

.3
61

.5
10

73
37

60
10

0
99

98
96

G
 (

n=
36

)
79

.2
78

.2
77

.6
55

.0
97

1
37

60
10

0
99

98
96

H
(n

=
48

)
84

.7
83

.5
82

.8
58

.8
10

23
37

60
10

0
99

98
96

M
ea

n
88

.4
87

.3
86

.6
61

.0
10

63
.9

37
.1

60
.0

99
.5

99
.4

98
.4

96
.3

SD
6.

2
6.

1
6.

0
4.

2
69

.0
0.

4
0.

0
0.

0
0.

0
0.

1
0.

2

1.
 R

ea
d 

co
un

t i
n 

m
ill

io
ns

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2014 July 24.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Guo et al. Page 15

T
ab

le
 2

Fi
lte

ri
ng

 c
ri

te
ri

a’
s 

ef
fe

ct
 o

n 
SN

P 
nu

m
be

r,
 c

or
re

la
tio

n 
an

d 
er

ro
r 

ra
te

In
si

de
 C

ap
tu

re
 R

eg
io

ns
O

ut
si

de
 c

ap
tu

re
 R

eg
io

ns

B
A

Q
M

A
P

Q
D

P
SN

P
s

C
or

re
la

ti
on

M
ea

n 
E

rr
or

B
A

Q
M

A
P

Q
D

P
SN

P
s

C
or

re
la

ti
on

M
ea

n 
E

rr
or

Fi
xi

ng
 D

ep
th

 a
nd

 M
A

PQ
0

20
10

0
73

9
0.

99
3

56
.6

2%
0

20
10

0
87

5
0.

98
7

45
.7

6%

10
20

10
0

73
9

0.
99

48
.5

6%
10

20
10

0
86

9
0.

98
6

38
.8

4%

20
20

10
0

73
6

0.
92

8
45

.3
8%

20
20

10
0

84
5

0.
93

5
38

.1
2%

30
20

10
0

70
3

0.
50

7
11

5.
50

%
30

20
10

0
73

0
0.

59
6

10
9.

76
%

40
20

10
0

46
9

0.
17

9
18

0.
46

%
40

20
10

0
30

1
0.

15
1

19
1.

40
%

Fi
xi

ng
 D

ep
th

 a
nd

 B
A

Q
0

20
10

0
73

9
0.

99
3

56
.6

2%
0

20
10

0
87

5
0.

98
7

45
.7

6%

0
30

10
0

73
9

0.
99

2
49

.9
8%

0
30

10
0

86
6

0.
98

3
40

.2
0%

0
40

10
0

73
9

0.
99

1
49

.8
0%

0
40

10
0

86
4

0.
98

2
40

.4
0%

Fi
xi

ng
 B

A
Q

 a
nd

 M
A

PQ
0

20
50

73
9

0.
99

3
56

.6
2%

0
20

50
11

07
0.

97
8

44
.8

6%

0
20

10
0

73
9

0.
99

3
56

.6
2%

0
20

10
0

87
5

0.
98

7
45

.7
6%

0
20

20
0

73
6

0.
99

3
56

.7
2%

0
20

20
0

65
3

0.
99

49
.2

8%

0
20

30
0

72
2

0.
99

3
57

.3
2%

0
20

30
0

49
4

0.
99

1
51

.0
2%

0
20

40
0

68
8

0.
99

3
57

.8
8%

0
20

40
0

37
4

0.
99

1
49

.9
4%

0
20

50
0

66
5

0.
99

3
58

.5
8%

0
20

50
0

27
7

0.
99

48
.2

2%

Int J Comput Biol Drug Des. Author manuscript; available in PMC 2014 July 24.


