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Abstract

Bayesian-like operational taxonomic unit examiner (BOTUX) is a new tool for the classification 

of 16S rRNA gene sequences into operational taxonomic units (OTUs) that addresses the problem 

of overestimation caused by errors introduced during PCR amplification and DNA sequencing 

steps. BOTUX utilises a grammar-based assignment strategy, where Bayesian models are built 

from each word of a given length (e.g., 8-mers). de novo analysis is possible with BOTUX as it 

does not require a training set, and updates probabilistic models as new sequences are recruited to 

an OTU. In benchmarking tests performed with real and simulated datasets of 16S rDNA 
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sequences, BOTUX accurately identifies OTUs with comparable or better clustering efficiency 

and lower execution times than other OTU algorithms tested. BOTUX is the only OTU classifier, 

which allows incremental analysis of large datasets, and is also adept in clustering both 454 and 

Illumina datasets in a reasonable timeframe.
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1 Background

Large-scale metagenomic assays of 16S ribosomal RNA genes, in which hyper-variable 

regions of the 16S rRNA genes are used to identify and quantify individual microbes in 

complex communities, have become common in recent years. Many metagenomic sequence 

classification methods that proceed by aligning sequences to a reference database (Mitra et 

al., 2011; Wang et al., 2007) often fail to identify novel organisms because the reference 16S 

rDNA databases are incomplete. As an alternative, de novo sequence clustering methods, 

such as UCLUST (Edgar, 2010) and other methods implemented by Mothur (Schloss et al., 

2009) and QIIME (Caporaso et al., 2010), have been developed to classify 16S rDNA 

sequences into operational taxonomic units (OTUs). However, commonly used OTU-based 

algorithms that use pairwise and heuristic alignment algorithms often overestimate diversity 

due to errors introduced in the polymerase chain reaction (PCR) amplification and DNA 

sequencing steps (Huse et al., 2010). A number of solutions have recently been suggested to 

reduce OTU overestimation; these include the development of new chimera checking 

programs (Edgar et al., 2011; Wright et al., 2012), denoising tools (Quince et al., 2009, 

2011; Reeder and Knight, 2010), and protocols for prefiltering sequences (Schloss et al., 

2011). Other groups have devised new OTU assignment algorithms such as AbundantOTU 

(Ye, 2011) and GramCluster (Russell et al., 2010). These two algorithms use different 

approaches for OTU assignment. AbundantOTU infers consensus sequences and clusters 

sequencing reads that align to the consensus sequences, whereas GramCluster relies on a 

grammar-based distance metric to cluster sequences into OTUs.

Here, we present the Bayesian-like operational taxonomic unit examiner (BOTUX), a new 

OTU assignment method that performs clustering at the same or better precision than several 

other OTU algorithms (i.e., Mothur (Schloss et al., 2009), UCLUST (Edgar, 2010), 

AbundantOTU (Ye, 2011), and GramCluster (Russell et al., 2010)). Our algorithm is a naïve 

Bayesian-like classifier, where each of the attributes of a given class is considered to each 

contribute independently to the probability of class membership (Domingos and Pazzani, 

1997). Bayesian methodology has been successfully utilised in other classification 

programs, such as the RDP Classifier (Wang et al., 2007), and some of the methodology 

used for BOTUX is based on the RDP algorithm. BOTUX conceptually differs from the 

RDP Classifier as it permits de novo clustering and probability models are updated as new 

sequences are recruited to an OTU. Moreover, BOTUX uses a different scoring approach for 

OTU assignment.
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2 Implementation

2.1 BOTUX algorithm

After reading in the sequences, BOTUX sorts them starting from the longest to the shortest 

sequence. All sequences are the trimmed to a maximum of the nth percentile read length 

(default: n = 75). Duplicate sequences are collapsed into the same sequence with appropriate 

frequency. This results in significant savings in execution time, if the duplication levels are 

very high in the input sequences. The sequence string is then broken down into eight-base 

long subsequences or words. A frequency count of each possible 8-mer word is maintained 

relative to each sequence. It should be noted that the default word size of 8, which can be 

edited by the user at runtime, is shown to be the most accurate with the least memory 

requirements (Wang et al., 2007). The first sequence then becomes the first OTU, provided 

no OTU model is loaded in. An OTU can be considered as a word-bank, with the 8-mer 

words coming from the sequences it contains and their respective frequencies. The sequence 

identifier of each sequence assigned to an OTU is also stored to print detailed read-by-read 

OTU assignments after successful completion of BOTUX. The algorithm is represented as a 

flowchart in Figure 1. Each subsequent sequence is compared against all the existing OTUs, 

and the sequence is then either:

• assigned to an existing OTU if set conditions are met, or

• used as the seed for a new OTU.

Words from the query sequence are compared to collective word banks for each existing 

OTU. An overall similarity score, that is analogous to a Bayesian posterior probability, is 

calculated as described below.

For each word from the query that occurs in the word bank of the target OTU, the proportion 

of occurrences of that word in that OTU word bank is added to the similarity score. Query 

words that do not match the target OTU’s word bank do not contribute to the score.

(1)

Equation (1) is used to calculate the score for a query sequence against a particular OTU, 

where S is the similarity score, Q is the current query, O is the current OTU, WQ is a word 

from the query, Lseed is the length of the OTU’s seed sequence, and Lquery is the length of 

the query sequence. This formula was adapted from Bayes’ Formula in probability theory 

and includes an adjustment factor to account for the length of the query sequence.

(2)

Equation (2) shows the formula for calculating the score for a word from a given query that 

is present in the word bank of a particular OTU, where n(WQ∈Q) represents the frequency of 

the word in the query, n(WQ ∈Q) represents the frequency of the word in the OTU’s word 

bank, and nWi represents the frequency of a word Wi in the OTU’s word bank. The query 

sequence is assigned to the OTU with the highest similarity score if the score exceeds the 
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threshold score (default 0.75). Otherwise, the query is used to create a new OTU. The user 

has the option to decrease or increase the threshold score if more conservative or aggressive 

clustering is desired, respectively. Upon assignment of a query sequence to the OTU, the 

word bank frequencies of the OTU are updated and sequence ID information stored to the 

OTU. If the newly assigned query sequence has words not present in the OTU’s word bank, 

then these words are appended with appropriate frequencies. After all query sequences are 

exhausted, read-by-read OTU assignments, overall OTU profile, and the existing OTU 

model are saved in different output files.

BOTUX saves the OTU model upon completion, which can be preloaded before running the 

next set of sequencing reads. This is referred to as ‘incremental’ mode of BOTUX. We 

believe that BOTUX is the only OTU classifier, which permits clustering in an incremental 

mode. Incremental analysis is very useful for sequence classification in studies that are 

periodically updated with new sequences, as most on-going studies are. The incremental 

mode can also be applied to clustering datasets using existing models, in a manner similar to 

how the RDP Classifier works with previously trained models. BOTUX, however, allows 

the creation of new OTUs in the incremental mode, thus new OTUs are added as sequences 

from new taxa are encountered.

In case of paired-end FASTQ files from an Illumina sequencing run, the concatenated read1 

and read2 sequence is used for duplicate identification. The query sequences and OTUs each 

have two distinct word-banks corresponding to read1 and read2. For each query paired-end 

sequence to OTU comparison, two scores, corresponding to read1 and read2, are calculated 

and both need to exceed the threshold score for the best scoring OTU to claim assignment of 

the read.

2.2 BOTUX code

BOTUX is written using Python (version 2.7.2). Apart from the standard python modules, 

BOTUX utilises the HTSeq (https://pypi.python.org/pypi/HTSeq) module for reading in 

query sequences from different file formats. The program accepts a standard FASTA file 

from a 454 run or a standard FASTQ file as single-end Illumina data or a pair of FASTQ 

files as in paired-end Illumina data. Along with the input file, BOTUX also accepts a project 

name, which is used for naming output files. The output of successful BOTUX run contains 

three files

• read-by-read OTU assignments text file

• OTU profile text file

• OTU model file, which is a binary file generated using Python’s pickle module.

A detailed manual is available together with the Python scripts at github.com/nisheth/

BOTUX.

2.3 OTU algorithms for testing and validation

BOTUX, Mothur (Schloss et al., 2009) (version 1.8), UCLUST (Edgar, 2010) (version 

6.0.301), GramCluster (Russell et al., 2010) (version 1.3), and AbundantOTU (Ye, 2011) 

(version 2.0) were used in testing and validation of different sample datasets. An identity 
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distance threshold of 0.97 was used while running UCLUST and Mothur. Default 

parameters were selected for BOTUX, GramCluster, and AbundantOTU. In all cases, the 

query sequences were not subjected to any additional pre-processing steps before clustering 

into OTUs.

2.4 Real and simulated datasets

Four mock 16S rDNA sequence datasets of known composition were used in validation 

studies: the Priest (Quince et al., 2009) dataset of 38,351 454 GSFLX sequences of V5/V6 

region amplicons from a mix of 23 divergent clones from an environmental 16S rDNA clone 

library obtained from a eutrophic lake (Short Read Archive: SRX002564); the Sue (Huse et 

al., 2007) dataset of 99,189 454 GS20 sequences of the V6 region from 43 divergent clones 

obtained from diffuse flow hypothermal vents; and the HMP Mock 1 (A-2) and HMP Mock 

2 (B-18) datasets, which both contain V1-V3 region 16S rDNA reads derived from the same 

HMP (http://www.hmpdacc.org/) mock community sample containing 22 bacterial species. 

The Priest dataset had an average read length of 266 bp, while the Sue dataset was 97 bp. 

Vaginal Microbiome Consortium members at VCU performed genomic DNA extraction, 

PCR amplification and 454 FLX DNA sequencing independently for the two HMP Mock 

sample replicates according to the protocols of the Vaginal Human Microbiome Project 

(Buck et al., 2010). Selection of organisms and the preparation of the HMP mock 

community sample are to be described as part of a HMP consortium manuscript. The HMP 

Mock sample datasets contained 12,592 and 47,073 reads with average read lengths of 317 

bp and 315 bp, respectively.

For further extensive validation of BOTUX against all other clustering software, we utilised 

the 10 MID-barcoded 16S rDNA bacterial samples with normal read length distribution, 

power law rank-abundance and richness, and varied β-diversity simulated using Grinder 

(Angly et al., 2012). It has been shown that Grinder is capable of generating realistic 

amplicon libraries and modelling the effect of 454 homopolymer errors on 16S microbial 

community profiling. All of the datasets used herein consist of 5000 simulated amplicon 

reads with simulated pyrosequencing errors and are freely available with the original 

Grinder publication (Angly et al., 2012).

To validate the utility of BOTUX in clustering Illumina reads, we generated three datasets 

each for 2 × 100, 2 × 150, 2 × 200 and 2 × 250 read length configurations, with an estimated 

25, 40, and 50 OTUs, respectively. The curated dataset of the V1-V3 regions of 16S genes 

from 973 bacteria, which is distributed as part of STIRRUPS (Fettweis et al., 2012), was 

used as a reference for generating these simulated FASTQ files. Each dataset contained 

100,000 reads and random mutation rate of 1% was used to simulate sequencing error 

(Claesson et al., 2010; Schloss et al., 2011).

2.5 Clustering similarity metrics

Rand indices, Jaccard coefficients (Halkidi et al., 2001), and sequence differentiation were 

calculated according to equations (3), (4) and (5) respectively. Rand index and Jaccard 

coefficient have a value ranging from 0 to 1 and are a quantitative measure of the accuracy 

the OTU clustering algorithms. The sequence differentiation fraction also ranges from 0 to 1 
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and verifies if the algorithm correctly separates distinct OTUs. We also calculated the 

cluster dilution, which is the ratio of the expected OTUs to the predicted OTUs, and the 

percentage of query reads that could not be clustered. The reads belonging to OTUs 

containing a total of four or less reads are termed as ‘unclustered’. This is a measure of the 

stringency of the clustering method.

(3)

(4)

(5)

Here, ss represents the number of sequence pairs derived from the same species that are 

placed in the same OTU; sd is the number of sequence pairs, which are derived from the 

same species, but classified in different OTUs; ds is the number of sequence pairs, which are 

not derived from the same species, but belong to the same OTU; while dd accounts for the 

number of sequence pairs, which are truly derived from different species and are classified 

into different OTUs. It should be noted that all possible sequence pairs are considered during 

these calculations. In addition to these metrics, for cases where we have prior knowledge of 

each read’s expected OTU assignment and the sample profile, i.e., species-level percent 

compositions, we also calculated the percent of incorrectly assigned reads, and the Pearson 

and Spearman correlation coefficients in order to examine the OTU clustering accuracy.

3 Results and discussion

3.1 Mock datasets

Four sequence datasets from Priest, Sue, and HMP DACC (A-2 and B-18) with prior 

knowledge of the number of distinct species present were classified using AbundantOTU 

(Ye, 2011), BOTUX, GramCluster (Russell et al., 2010), Mothur (Schloss et al., 2009) and 

UCLUST (Edgar, 2010). We measured the number of OTUs predicted by each program as 

the number of OTUs, which contained five or more query sequences assigned to them. All 

other reads were considered ‘unclustered’. Table 1 shows the clustering performances of all 

the clustering methods based on the number of OTUs predicted, percentage of unclustered 

reads, and the wall-time required for execution. It should be noted that all programs were 

run in a single processor mode even though parallelisation is possible in some cases. Mothur 

and UCLUST largely overestimated the number of OTUs in all cases, while GramCluster 

largely overestimated for one sample. AbundantOTU and BOTUX seemed to best predict 

the number of OTUs for all the samples, but AbundantOTU always has a significantly larger 

number of unclustered reads than BOTUX. It appears that UCLUST, which performs the 

fastest, has 3–16% of unclustered reads, while for all other programs this percentage is much 

smaller. The Sue dataset, which contains a high percentage of duplicate sequences (~95%), 

runs much faster with BOTUX than with AbundantOTU or GramCluster. This is because, 
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like Mothur, BOTUX decreases the number of sequences to be clustered into OTUs by 

considering sequence duplication prior to OTU assignments.

3.2 Simulated realistic datasets with high diversity

Ten realistic metagenomic datasets freely available with the Grinder publication (Angly et 

al., 2012) are clustered into OTUs using AbundantOTU, BOTUX, GramCluster, Mothur, 

and UCLUST. Each of these samples contained simulated amplicon 5000 reads with 

simulated pyrosequencing errors. These reads are split into three files with 2000, 2000 and 

1000 reads, respectively, and the OTU clustering was repeated using BOTUX in an 

incremental mode (BOTUX_incr), i.e., the OTU model from the first 2000 reads is 

preloaded for the next 2000 reads, which is then used for the last 1000 reads. This 

demonstrates BOTUX’s ability of performing incremental analyses, which is its major 

differentiating feature when compared against other methods. Figure 2 indicates the results 

of OTU clustering quantified using various cluster similarity metrics. A Rand index and 

Jaccard coefficient value significantly less than 1 for GramCluster and UCLUST, indicates 

more aggressive clustering performance with default parameters. For all of the algorithms, 

the percent of unclustered reads are between 0.4–0.6%.

In all of these datasets, we have a prior knowledge about which species was used as a 

reference to generate each read in the dataset, and thus we can calculate the percent of reads 

that have been assigned to incorrect species or ‘misassigned’ by the clustering algorithm. 

With the exception of GramCluster, it can be seen from Figure 3, that all the clustering 

algorithms have low (<~5%) number of ‘misassigned’ reads. Figure 3 also shows the 

Pearson correlation coefficient and the Spearman rank correlation coefficient depicting the 

accuracy of the OTU clustering by each program. The Pearson coefficient shows the 

correlation between the expected and predicted percentage compositions of each species in 

the sample and a value closer to 1 suggests a strong positive correlation. The Spearman 

coefficient indicates the correlation between the expected and predicted relative abundance 

ranking of the species in the sample, and a value closer to 1 suggests more accurate 

predictions. The Pearson coefficient is found to be close to 1 for all programs except 

UCLUST. This is because almost all programs accurately predict the percentage 

compositions of high abundance species in each sample, and those of low abundance species 

are too insignificant to affect its overall value. However, inaccurate ranking of low 

abundance species in the samples will lower the value of the Spearman coefficient, as seen 

for AbundantOTU, GramCluster, and UCLUST. It should be noted that the performances of 

BOTUX and BOTUX_incr are almost identical indicating successful implementation of the 

incremental mode. Running BOTUX in incremental mode for real incremental samples can 

result in significant savings in computational resources.

3.3 Simulated illumina datasets

Twelve 100,000 read datasets, three datasets each for four different read lengths, were 

simulated to illustrate the performance of BOTUX with paired-end Illumina data. Figure 4 

shows the various metrics used to evaluate the performance of the algorithm. All of the 

metrics seem to be within acceptable limits for all the samples considered and accuracy 

seems to be improving with read length. Sequence differentiation equal to 1, no unclustered 
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reads, and cluster dilution of 1 suggests that BOTUX performs best at a read length of 2 × 

250. The execution takes between 265 to 840 seconds as shown in Figure 5. As expected, 

the longest sequence dataset with the most number of expected OTUs takes the most time to 

execute.

4 Conclusions

Overall, we found the clustering efficiency of BOTUX is comparable to or better than the 

other clustering tools tested, including tools that have been widely adopted, as well as more 

recently-developed algorithms (i.e., AbundantOTU and GramCluster) where the OTU 

assignment step was directly targeted to address the issue of overestimation. Furthermore, 

BOTUX has the option of being run in incremental mode resulting in considerable savings 

in time and computational resources when applied to large datasets of the same samples 

coming from different sequencing runs. To our knowledge, BOTUX is the only OTU 

clustering tool with this feature. It is clear from our tests that running BOTUX in 

incremental mode does not adversely affect the results when compared to a de novo 

approach.

Although not the fastest OTU algorithm, BOTUX in most cases utilises less memory than 

programs that do exhaustive comparisons, and is significantly faster than those using more 

time-consuming pairwise alignment. Elimination of duplicate sequences prior to clustering 

also results in significant reductions in runtime and memory usage for high duplication 

datasets. While both GramCluster and BOTUX proceed by breaking the sequence into 

words, GramCluster relies more on the size of the dictionaries, whereas BOTUX matches 

individual words, discriminating words that are more conserved from others less so within a 

species.

BOTUX has been extended to single-end and paired-end Illumina datasets with considerable 

accuracy and efficiency. It performs acceptably at read lengths ranging from 100 bp to 250 

bp, with accuracy improving with increasing read length. Finally, although BOTUX has 

been tested here using 16S rDNA genes as targets, it can easily be extended to other gene 

sets
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Figure 1. 
BOTUX algorithm flowchart. This shows the various steps involved in classifying 

sequences into operational taxonomical units (OTUs) using BOTUX
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Figure 2. 
Various clustering similarity metrics comparing AbundantOTU, BOTUX, GramCluster, 

Mothur and UCLUST for Grinder simulated datasets. Sequence clustering similarity is 

quantified using Rand index, Jaccard coefficient and sequence differentiation fraction. 

BOTUX_incr represents execution of BOTUX in incremental mode
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Figure 3. 
OTU clustering accuracy for Grinder simulated datasets using AbundantOTU, GramCluster, 

Mothur, BOTUX and UCLUST. Pearson correlation coefficient, Spearman rank correlation 

coefficient and Percent of misassigned reads for various clustering algorithms on the 

Grinder simulated datasets. BOTUX_incr represents execution of BOTUX in incremental 

mode
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Figure 4. 
Clustering similarity metrics for simulated paired-end Illumina data for various read lengths. 

Note that 1% of the bases are randomly mutated to simulate sequencing error
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Figure 5. 
BOTUX execution times in seconds for simulated Illumina data. The read length refers to 

the length of one of the reads in a paired-end read pair from a simulated Illumina dataset 

containing 100000 pairs. As expected, the longest read length with highest expected number 

of OTUs takes longest to cluster
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