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Abstract: Cloud computing is an evolving and fast-growing
computing paradigm that has gained great interest from both industry
and academia. Consequently, universities are actively integrating
cloud computing into their IT curricula. One major challenge facing
cloud computing instructors is the lack of a teaching tool to
experiment with. This paper introduces TeachCloud, a modeling
and simulation environment for cloud computing. TeachCloud can
be used to experiment with different cloud components such as:
processing elements, data centers, storage, networking, Service Level
Agreement (SLA) constraints, web-based applications, Service Oriented
Architecture (SOA), virtualization, management and automation, and
Business Process Management (BPM). Also, TeachCloud introduces
MapReduce processing model in order to handle embarrassingly
parallel data processing problems. TeachCloud is an extension of
CloudSim, a research-oriented simulator used for the development and
validation in cloud computing.
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1 Introduction

Cloud computing is a new computing paradigm that is continuously evolving and
spreading. Many experts believe it will become the dominant IT service delivery
model by the end of the decade. As a result, universities worldwide are introducing
cloud computing technologies in their curricula by updating existing courses
or developing new ones. Cloud computing builds on a wide range of different
computing technologies such as high-performance computing, distributed systems,
virtualization, storage, networking, security, management and automation, Service-
Oriented Architecture (SOA), Business Process Management (BPM), Service-Level
Agreement (SLA), Quality of Service (QoS), etc. This complexity presents a major
obstacle for the students to grasp and thoroughly understand cloud computing.
The diversity of cloud computing related areas requires the students to put great
efforts to understand each one of these areas alone in addition to integrating them
in a single platform. This creates many challenges in teaching this rising technology
for two main reasons: First, in order for a student to be able to grasp all aspects of
cloud computing, the student must have adequate and sufficient background in the
many areas listed above. Unfortunately, this is not always the case. For example,
we found that while Computer Engineering students had sufficient background
in the areas of high-performance computing, distributed systems, virtualization,
storage, and networking, Computer Science students were lagging in these areas.
On the other hand, Computer Science students had sufficient background in
SOA, BPM, and management, areas Computer Engineering students were lagging
in. Second, and more importantly, the fact that there are no teaching tools to
cover the different aspects of cloud computing as a whole makes teaching more
theoretical-oriented, and therefore, less effective. Although there exists teaching
tools for most of the cloud components alone, no full-system tool exists yet.

Table 1 Challenges in Teaching Cloud Computing as Identified by Students

Challenge or Difficulty Percentage Agreed

Lack of hands-on experience 93%
Lack of a comprehensive textbook 63%
Lack of help material on the Internet 57%
Insufficient background 17%

Vast amounts of different topics 17%

At Jordan University of Science and Technology, we were one of the first
universities in the Middle East to introduce cloud computing concepts in our
courses for both graduate and undergraduate students. Our first attempt to teach
a cloud computing course was during the spring semester 2011 as an elective
course for senior students. During the course, we identified several key challenges
in teaching cloud computing that we list in Table 1. At the end of the course, we
conducted a students’ survey and asked the students to identify which challenges
they thought were most important. The vast majority of the students (93%)
agreed that the biggest challenge was lack of hands-on experience. Although a real
cloud system can be used by the students to run experiments, the criticality and
frangibility of the system poses many limitations and risks. A better solution is the
use of a full cloud-system simulator tool with which students can play around and
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experiment risk-free. Other, but less important, challenges include lack of a single
comprehensive textbook that covers all aspects of cloud computing, limited help
material on the Internet, insufficient students’ background, and the sheer amount
of topics covered during a single semester.

Consequently, we moved forward to find an experimental environment to
be used in teaching cloud computing. One available option was the CloudSim
simulator from the University of Melbourne, Australia (Calheiros et al. (2011)).
CloudSim is a very promising tool for teaching cloud computing. However,
CloudSim shows several limitations and shortcomings: First, it lacks a Graphical
User Interface (GUI) which is important to students as it makes it easier for them
to use the tool. Second, it is built on top of a grid computing environment which
puts limitations on the infrastructures it can simulate. Third, it only includes a
basic and simplified network model and a limited workload generator. Fourth,
CloudSim does not provide efficient processing for embarrassingly parallel data
problems. Fifth, it lacks BPM and SLA components.

As a result of these limitations in CloudSim, we started to develop TeachCloud
as a cloud computing educational toolkit for use in cloud computing courses.
TeachCloud uses CloudSim as the basic design platform and introduces many new
enhancements on top of it. These enhancements and extensions include:

• Developing a GUI for the toolkit.

• Adding the Rain cloud workload generator (Beitch et al. (2010)) to the
CloudSim simulator.

• Integrating MapReduce framework into CloudSim to handle embarrassingly
parallel data processing paradigms.

• Adding new modules related to SLA and BPM.

• Adding new cloud network models (VL2, BCube, Portland, and DCell) to
represent the actual topologies that exist in real cloud environments.

• Introducing a monitoring outlet for most of the cloud system components.

• Adding an action module that enables students to reconfigure the cloud
system and study the impact of such changes on the total system
performance.

One use case scenario for TeachCloud will be presented in section 7. The rest of
the paper is organized as follows: Section 2 introduces the CloudSim simulator and
the TeachCloud toolkit interface. Section 3 discusses the Cloud workload generator
and the Rain generator that TeachCloud supports. In section 4, the MapReduce
data processing model is introduced. We discuss the SLA constraints and BPM
in Section 5. Then in Section 6, we describe the network topologies that were
integrated in the TeachCloud toolkit. Section 7 shows some simulation results that
were generated using TeachCloud. And finally, Section 8 concludes the paper.

2 CloudSim: The underlying framework for TeachCloud

CloudSim is a cloud computing modeling and simulation tool that was developed
at the University of Melbourne, Australia (Calheiros et al. (2011)). It aims to
provide cloud computing researchers with a comprehensive experimental tool
to conduct cloud computing-related research. It supports the modeling and
simulation of various cloud computing components, including power management,
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performance, data centers, computing nodes, resource provisioning, and virtual
machines provisioning (Kim et al. (2009)).

CloudSim is a layered design framework written in Java and was initially built
on top of SimJava and GridSim (Buyya et al. (2009)). SimJava is a discrete event
simulator that has been widely used. GridSim is a grid computing simulator that
uses SimJava library. However, SimJava has several scalability limitations that
led the developers of CloudSim to implement a new discrete event management
framework which is the CloudSim core simulation engine ((Calheiros et al. (2011)).
The following is a brief description of the different cloud computing features and
components and how CloudSim models them:

• Data centers represent the core infrastructure in a cloud system and include
the hardware and software stack. In defining the data centers, the modeler
needs to identify the number of hosts in each data center.

• Hosts are modeled using the class Host which models a physical resource
such as a computer or a server. A data center can have multiple hosts.

• Cloud federation governs multiple geographically distributed cloud systems
(private and/or public) that are inter-connected through a network topology.

• Cloud tasks are represented by Cloudlets which are the cloud-based
application services. In this class, computational metrics are used to model
the complexity of applications.

• Brokering is performed through the use of the DatacenterBroker class. The
researcher establishes the contracts between the cloud users and the service
providers.

• Storage in the grid is modeled using the SANStorage class.

• Virtual machines (VM) are modeled in the class V irtualMachine.

• Coordination is performed using the CloudCoordinator class which models
the communication between different cloud coordinators and cloud brokers.
In addition, it monitors the internal state of each data center that is
connected to it.

• Bandwidth provisioning services are modeled using the BWProvisioner
class.

• Memory provisioning and the policies for allocating memory to VMs are
modeled using the MemoryProvisioner class.

• Virtual machine provisioning is performed using the VMProvisioner class
which allocates VMs to the hosts.

• VM allocation policies are maintained by the class VMMAllocationPolicy
which models the policies for allocating processing power to VMs. Allocation
can be space-shared or time-shared.

• Power consumption is modeled in the PowerModel class which models data
centers power consumption.
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To the best of our knowledge, CloudSim was never used as a teaching tool.
This is mainly related to the difficulties in using it by students. Nevertheless, the
capabilities of CloudSim are very promising for cloud computing teaching. In this
work, an extension is provided in order to make it convenient for teaching. Hence,
a Graphical User Interface along with several new key features were added. The
GUI allows students to easily create the main components in a cloud system. For
example, as shown in Figure 1, a student can create data centers and define their
parameters such as the number of hosts on each data center. Figures 2, 3, and 4
demonstrate the creation of Cloudlets, virtual machines, and brokers, respectively.
The new features that were added as part of TeachCloud are described in Sections
3, 5, and 6.

Figure 1 Creating data centers in TeachCloud

Figure 2 Creating Cloudlets in TeachCloud
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Figure 3 Creating virtual machines in TeachCloud

Figure 4 Creating cloud brokers in TeachCloud

3 Woload generation and the Rain workload generator

Cloud computing (CC) systems promise to handle and fulfill different customers’
workload requirements. CC applications and services vary widely ranging from
data intensive (i.e. big-data) applications to financial applications and web
services. CC workloads differ in their size, execution times, memory footprints,
and QoS requirements, among other factors. Moreover, such diverse workloads
are very dynamic and show different patterns of execution phases during an
application’s life span. Hence, CC systems are required to dynamically adapt
their operational environment on the fly to cope with these workload dynamics.
Workloads characterization is very crucial in a CC system in order to achieve
proper resources provisioning, cost estimation, and SLA considerations. CC
application developers and hosting companies need to predict changes in the
workload patterns to be able to adjust promptly when variations in the patterns
occur. Moreover, a detection of any possible system bottlenecks is needed before
actually porting the application to the real system. Cloud applications updates
after deployment may also cause problems in the actual cloud system. These
updates may change the workload patterns and dynamics. These changes will
affect the cloud system resources allocation and QoS measurements. As a result, a
mechanism to test cloud applications before their actual deployment or updates is
of the utmost necessity.

Based on the aforementioned facts, an accurate and comprehensive workload
modeling environment is an essential component in any CC simulation tool.
Current workload modeling environments for systems such as grid computing do
not fit or match the workloads found in real CC systems. CloudSim provides
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a basic cloud workload modeling structure that fails to capture many of the
characteristics of current CC workloads. Hence, CloudSim users need to extend
available modules to generate the required patterns. CloudSim models the
workload as an extension to the Cloudlet entity and introduces the Utilization
Model which is an abstract class that needs to be extended by users to
implement the workload patterns related to the application (Calheiros et al.
(2011)). The Utilization Model provides methods and variables in order to
specify resources requirements of applications during the deployment phase.
The input to this method is a discrete time parameter, while the output is a
percentage of computational resources that is required by the Cloudlet. CloudSim
workload modeling requires CloudSim users to generate the required workload
patterns by overwriting the getUtilization() method. The main drawback
of this approach stems from the fact that the user himself is required to
accurately represent the application workload patterns with no guarantees of their
correctness. Consequently, any related measurements based on this workload may
be misleading to the user. Also, this approach will incur an extra overhead on the
user (i.e. the student in our case). Moreover, it suffers from the lack of flexibility
and scalability.

TeachCloud provides advanced workload modeling capabilities by introducing
the Rain workload generator framework from the University of California at
Berkeley (Beitch et al. (2010)). The Rain framework presents accurate and
comprehensive CC workload characteristics. Rain is an open source workload
generator that is available to the cloud computing community. This motivates
us to utilize the advanced capabilities of Rain to achieve a meaningful load
generator that is able to handle different CC applications. TeachCloud replaces
the basic workload generator framework available in CloudSim by integrating the
Rain workload generator as demonstrated in figure 5. The integration process
is simplified by the fact that both CloudSim and Rain were written in Java.
The three main workload characteristics that Rain provides are: 1) Variations
in workload intensity (e.g. small, medium, and large amounts). 2) Variations in
the operations mix performed by the system components (e.g. data intensive vs.
computing intensive and tasks dependencies). 3) Variations in the data access
patterns and frequency, also known as data hot spots. Predicting data hot spots
enables efficient access to them which reduces access time and overhead. It is
obvious that the aforementioned workload variations are closely related to each
other and need a careful handling by any successful workload generator.

3.1 Rain workload generator architecture

Rain is a unique statistics-based workload generator that overcomes many of
the other workload generators limitations. It provides the user with ability
to easily reuse, configure, and schedule cloud applications workloads. The
cloud applications variations in Rain are achieved efficiently by using empirical
probability distributions. Rain architecture handles the variations in the load
intensity and the mix of operations by using load scheduling mechanisms. On
the other hand, changes in the mix of operations and the realization of access
patterns and data hot spots are done using application-specific request generators
(Beitch et al. (2010)). Moreover, Rain architecture diverges from current workload
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Figure 5 Rain workload generator as part of the TeachCloud tool

generators in the way workload requests are handled. While current generators
couple request generation with its execution, Rain decouples request generation
from request execution which adds flexibility to requests management. Another
limitation of current generators is related to the fact that the thread that generates
the request is also responsible for its execution; this is known as thread-affinity
problem. Thread-affinity problem impacts the performance of the generator as one
thread cannot generate new requests until it completes the current one. Rain solves
this problem by changing the logic of thread and request relation. Any request
generated by a certain thread can be executed by any other thread. This solution
provides flexibility, scalability and improves the generator performance.

Rain architecture consists of the following components (Beitch et al. (2010)):
1) The Scenario component is responsible for the experiment configuration
parameters (e.g. maximum number of users, experiment duration, etc.).
2) The Generator component uses the configuration from the Scenario component
to create requests and operations that will be used by the other components.
3) The Scoreboard component is used to present experiment results and summary.
4) The Threading component contains the available threads for executing the
tasks produced by the request generator component.
5) The Benchmark component is responsible for running the entire experiment. It
interacts with other components by loading the Scenario that needs to be handled
by the threading components. It also initializes the Scoreboard and presents the
results at the end of the experiment.

3.2 Rain workload generation scenario component

A new workload will be initialized by using the scenario where each entity, i.e. user,
will be assigned to a certain generator and assigned to a thread. The thread will
request a new operation from the generator. When the thread finishes executing
the operations assigned by the generator, it will generate a summary (e.g. status,
execution results, etc) and write its details on the scoreboard. All these steps
will be controlled by the benchmark component. TeachCloud users will use the
workload generator in many ways. First, students can experiment with different
workload patterns and mix of operations while using a fixed system configuration
(e.g. VMs, network, etc.). This will help in understanding how workloads impact
CC system components utilization and its impact on the SLA. Second, students
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can conduct experiments with different resources provisioning algorithms and
assess how these algorithms react to workload variations. Third, students will
be able to study the impacts of different workload patterns in the CC system
components (VMs, network topology, etc.). Fourth, students can apply an intensive
workload scenario to detect any bottlenecks in the system.

4 MapReduce Model

MapReduce (Dean and Ghemawat (2004)) has been widely used as a strong
parallel data processing model. It is a programming model that has efficiently
solved problems of large datasets using large clusters of machines. MapReduce
is used in distributed grep, distributed sort, web-link graph reversal, web-access
log stats, document clustering, machine learning, etc. (Xiao and Xiao (2011)).
Cloud computing is a suitable environment for processing and analyzing terabytes
of data through utilization of many resources connected through a topology
(Armbrust et al. (2009)). Most cloud providers such as Amazon EC2, Microsoft
Azure, Google, Yahoo and Facebook, adopted MapReduce in their computing
environments.

Because on the fact that it is difficult to perform benchmarking experiments
for MapReduce in real infrastructures, TeachCloud gives a simulation solution
to achieve that. Users can use TeachCloud toolkit to perform experiments under
non-static conditions (e.g. availability and workload pattern) in a controllable
environment where tests can be re-executed.

4.1 Design and implementation of MapReduce

This subsection provides finer details about the fundamental classes of
MapReduce. The class design diagram for MapReduce and its correlation with
CloudSim is shown in Figure 6. The list of classes are:

Figure 6 MapReduce class design diagram
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1. Master: This class contains instances of all mappers and reducers that belong
to the same user. Also, it contains information about the status and data
locations during the execution of the mappers and reducers.

2. Map: It models the mapper’s information and behaviors such as: input
dataset size, output dataset size, and utilization model.

3. Reduce: It models the reducer’s information and behaviors such as: input
dataset size, output results size, and utilization model.

4. MapReduceSchedulerSpaceShared: This class extends an abstract class
CloudletScheduler. It represents the behavior’s policy between the mapper
and reducer. For example, it determines the share policy of processing power
among mappers and reducers in a virtual machine.

In the MapReduce algorithm, the input data is partitioned and distributed to
a set of sub-problems which in turn can be partitioned further into smaller sub-
problems. This allows the computing grid or cluster to process small size problems
in parallel. The output is constructed by collecting all the results back from the
sub-problems in a fashion that yields a correct result for the initial problem.
The illustration in Figure 7 shows the flow of a MapReduce operation (Dean
and Ghemawat (2004)). When a user program simulates MapReduce tasks, the
following sequence of actions occur:

1. The workload in the user experiment is read and parsed to initiate the list
of map and reduce instances. Each instance has parameters that are used
to simulate the MapReduce model. The parameters include: ID, input data
size, output data size and utilization models.

2. The master node assigns the instances created in step 1 to computing
nodes in the cluster. The master also keeps track of mappers and reducers
information such as: datacenter id, host id, virtual machine id, and status
(created, ready, waiting, running, success, failed, canceled). Then each
mapper or reducer is submitted to the cloud computing environment using
the utilization models with an idle state called ready state.

3. After the submission of the mappers (initially in ready state), the simulation
of MapReduce starts while taking into account each map’s status and
utilization model.

4. When a mapper finishes processing, it stores the data set result in a specific
location and informs the master of the address.

5. When all mappers finish processing, the master sends signals to all reducers
to start working on the data sets that were produced.

6. During MapReduce simulation, TeachCloud toolkit continuously collects
data to be displayed for statistical analysis when the simulation is over.
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Figure 7 Flow of MapReduce operation

5 Service Level Agreements and Business Process Management

Traditionally, business aspects have received little attention in computing
curricula. As a result, injecting the business flavor in cloud computing courses is
no easy task. Service Level Agreement (SLA) and Business Process Management
(BPM) are considered among the basic pillars of CC today (Faniyi and Bahsoon
(2011)). Based on our teaching experience, students show much concern regarding
SLA and BPM, and how they are related to CC. In TeachCloud we made efforts
to introduce SLA to the students in a simple and effective manner. Starting from
the basic definition of SLA as a contract between the service provider and the
service user, which defines in measurable terms the service quality that the user
expects to receive. TeachCloud provides a set of these measurable terms that
the user can change while studying their impact on other system components.
These measurable terms include, but are not limited to: number of users who
can use the system simultaneously (e.g. 1000 active user), service availability
(e.g. 99.9%), service cost, service outage handling terms, business continuity and
disaster recovery, network performance, security measures, service metering tools
available to the user, user compensation in case of SLA violation, and customer
support by the service provider. To make things more realistic, we connect the
SLA terms with the application sensitivity to the availability of the service, as
some of the applications cannot handle availability of less than 100%. TeachCloud
will enable the students to study the effect of the SLA terms on the cloud system,
service cost with different SLA configurations and different QoS requirements.
Further, TeachCloud will integrate the Web Service Level Agreement (WSLA)
framework that is proposed to handle SLA monitoring and enforcement (Patel et
al. (2009)). Figure 8 shows the SLA component of TeachCloud.
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Figure 8 SLA parameters in TeachCloud

Furthermore and as a part of the next phase in TeachCloud development,
BPM modeling will be introduced. This will help the students in understanding
business-related issues in a cloud system and how CC supports customers’ business
success. Further, the students will be able to perform feasibility studies for running
applications on the cloud system versus on a private computing system based on
Capital Expenditure (CapEx) and Operating Expenditure (OpEx).

6 Network topologies in TeachCloud

Data centers in a cloud computing infrastructure normally contain thousands of
physical servers connected through switches, routers or other network devices.
Hence, the proper design of the data center network plays a critical role in the
cloud environment since it directly affects the performance and the throughput
of cloud applications. VMFlow (Mann et al. (2011)), for example, is a framework
for placement and migration of VMs to reduce cost. It shows that the network
topology along with network traffic demands should be taken into consideration
in order to meet the objective of network power reduction. As shown in Figure 9,
conventional data centers are organized in a hierarchy of three layers: core,
aggregation and servers. The core layer consists of the core routers that connect
the aggregation switches to the Internet. In the servers layer, the servers are
organized in racks and connected to access switches (normally called Top-of-
Rack switches) which are in turn connected to the aggregation switches. The
aggregation layer may provide some functions such as domain service, location
service, server load balancing, and more (Zhang et al. (2010)). This simple design
suffers from some limitations as stated in (Greenberg et al. (2009)). First, while
going up in the hierarchy, it becomes very hard technically and financially to
sustain high bandwidth which results in preventing idle servers from being assigned
to overloaded services which affects the data center performance. Second, the
protocols that are normally used in the core and aggregation layers limit the
utilization of the links to less than 50% of the maximum utilization. Third, the
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performance of communication depends on distance and the addressing scheme of
the hierarchy which causes the services to scale up to nearby servers for rapid
response and performance. That requires some unused capacity to be reserved for
a single service for future scale up and not to be shared with others.

Figure 9 Conventional data centers hierarchy

The diversity of the applications that can be deployed on cloud environments
makes it difficult to use real cloud infrastructures such as Amazon EC2 (Amazon
EC2 (2012)), Google App Engine (AmazonEC2 (2012)) or Microsoft Azure
(Chappell (2008)) for performance, throughput and cost evaluation because each
application may have different configuration and deployment requirements. It is
extremely hard to reconfigure such real infrastructures during the applications
development and over the multiple test runs. Moreover some of the parameters are
not even configurable by the developer. This motivates the use of cloud simulation
tools that provide a controllable environment for developers to test and tune their
application services before deploying them on real clouds.

CloudSim was proposed to overcome the limitations of existing distributed
grid and network simulators since none of them offers the environment that
can be directly used for modeling CC. CloudSim supports modeling large
scale cloud computing environments and data centers along with many novel
features such as simulating network connections between the different entities
in the system. NetworkCloudSim was developed to simulate the behavior of
parallel and distributed applications in cloud computing environments (Garg
and Buyya (2011)). NetworkCloudSim offers the basic entities and classes
to simulate different network topologies in a cloud environment such as
Switch (RootSwitch, AggregateSwitch and EdgeSwitch), NetworkDatacenter and
NetworkDatacenterBroker as show in Figure 10.

However, NetworkCloudSim does not support the common network topologies
in cloud computing such as VL2 (Greenberg et al. (2009)), BCube (Guo et al.
(2009)), Portland (Mysore et al. (2009)), and DCell (Guo et al. (2008)). Hence,
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Figure 10 Class diagram of NetworkCloudSim

these topologies were integrated into our TeachCloud tool (Jararweh et al.
(2012)). Also, TeachCloud supports a GUI to drag and drop entities, define
their properties, and establish the connections between them which results in a
customized network topology. In our implementation, each network topology has
a structure similar to the one shown in Figure 11, which describes the structure of
a VL2 topology. The workload of the simulation which describes the users tasks is
converted to a list of NetworkCloudlets and AppCloudlets. Each NetworkCloudlet
has information regarding the required bandwidth and the destination resources.
The NetworkCloudlet traverses through switches from RootSwitch down to
AgreggateSwitches until it reaches the corresponding EdgeSwitch which has
appropriate destination resources. Each EdgeSwitch is connected to a number
of servers running virtual machines. The VM would be the host for the
NetworkCloudlet processing.

Figure 11 VL2 network structure in TeachCloud simulator
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In addition, TeachCloud supports a graphical interface that allows users to
build and implement customized network topologies. Figure 12 shows the modules
that are supported in TeachCloud GUI. As shown in the figure, there are two
methods to build a network topology, the first is to load a previously-saved
topology from a file and display it in the Visual Designer Canvas. The second
alternative is to use a Palette and Properties tool to design the network into Visual
Designer Canvas, the palettes contain different objects that can be dragged and
dropped into the Visual Designer Canvas. Each object has a list of attributes (e.g.
bandwidth and delay) that can be filled in a properties window. After the network
topology is completed, the GUI contains Simulation Control buttons that can be
used to start and control the simulation. Once the simulation is finished, the results
are displayed as charts of different types.

Figure 12 TeachCloud network GUI builder model

7 Simulation and experiments

In order for TeachCloud users to comprehend the different aspects of cloud
computing environments, they can simulate experiments by specifying some
infrastructure configurations. For example, the following scenario assumes that
a user with ID=0 has a cloud environment that consists of two data centers
(datacenter 1 and datacenter 2). Each data center has the parameters shown in
Table 2. Moreover, each data center has four identical physical nodes (hosts)
each with the properties shown in Table 3. Two virtual machines (VM) are
executing on each host which results in eight VMs for each data center. The virtual
machines share the resources of the host equally. In addition, in this scenario,
VL2 network topology is used with the specifications shown in Table 4. The
workload that was used to carry out this simulation is a Rain workload. Figure 13
shows the utilization and power consumption results of the simulation produced
by TeachCloud.

To demonstrate the capabilities of TeachCloud in simulating different
configurations, Figure 14 shows the experimental results produced by TeachCloud
for another cloud system configuration. The configuration is identical to the
pervious one except that there is only one virtual machine per host, the task
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Table 2 Data center configuration

ISA x86

Operating System Linux
Virtual Machine Monitor (VMM) Xen

Time Zone current time

Cost per Processing Second 0.03 cents
Cost per Memory Unit 0.05 cents

Cost per Storage Unit 0.001 cents

Cost per Bandwidth Unit 0.01 cents
Virtual Machine Allocation Policy Allocate VM to the host with lowest utilization

Table 3 Host properties

Host ID A unique ID automatically generated in the range 0-3
Storage Capacity 1 TB

Number of CPUs 2
Cores per CPU 4

MIPS for each core 1024

Memory capacity 2 GB
Bandwidth 10 Mbps

Virtual Machine Scheduler Space shared

Table 4 VL2 network topology structure

Switching levels 3

Types of switches One root switch, two aggregate switches, two edge switches
Delays Root switch = 0.00285 ms, aggregate switch = 0.00245 ms, edge switch = 0.00157 ms
Bandwidth Root switch = 100 Mb, aggregate switch = 100 Mb, edge switch = 40 Mb

scheduler is time shared, and a customized network topology with one level of
switching is used.

Figure 13 Host utilization and power consumption with VL2 network topology
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Figure 14 Host utilization and power consumption after configuration modification

8 Conclusion and future work

This paper presented TeachCloud, a comprehensive, easy-to-use, and efficient
cloud computing modeling and simulation toolkit. TeachCloud fills a large gap
in teaching cloud computing caused by the lack of such a comprehensive and
easy-to-use tool, in addition to the high-risks and costs of allowing students to
experiment using a real cloud system. TeachCloud provides a rich, yet simple, GUI
to build cloud infrastructure and present results and charts. TeachCloud allows a
user to customize all aspects in a cloud infrastructure from the host processing
nodes to the network topology. In addition, MapReduce model is integerated
in TeachCloud to allow the processing of large datasets. It also allows users
to integrate the SLA and other business aspects into the tool. Furthermore, it
includes an extensive workload generator capable of representing real world cloud
applications accurately. Moreover, the modularity in TeachCloud’s design allows
users to integrate new components or extend existing ones easily and effectively.

TeachCloud makes it easy for users to comprehend the different cloud system
components and their roles in the whole system. Users can modify the different
components and their parameters, run simulations, and analyze results. As
future work, our goal is to formulate practical exercises using TeachCloud which
instructors can use as guidelines in the teaching process. TeachCloud will be
available as an open source toolkit for academic use along with the practical
exercises.

References

Zhang, Qi and Cheng, Lu and Boutaba, Raouf (2010) ‘Cloud computing: state-of-the-
art and research challenges’, Journal of Internet Services and Applications, Vol. 1,
pp.7–18.

Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., Maltz, D. A.,
Patel, P. and Sengupta, S. (2009) ‘VL2: a scalable and flexible data center network’,
SIGCOMM Comput. Commun. Rev., Vol. 39, pp.51–62.

Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y. and Lu, S. (2008) ‘Dcell: a scalable
and fault-tolerant network structure for data centers’, Proceedings of the ACM
SIGCOMM 2008 conference on Data communication, Seattle, WA, USA, pp.75–86.



18

Buyya, R., Ranjan, R. and Calheiros, R.N. (2009) ‘Modeling and simulation of
scalable Cloud computing environments and the CloudSim toolkit: Challenges and
opportunities’, Proceedings of the international conference on high performance
computing and cimulation (HPCS), 2009, Leipzig, Germany, pp.1–11.

Dean, J. and Ghemawat, S. (2004) ‘Mapreduce: simplified data processing on large
cluster’, Proceedings of the 6th conference on Symposium on Opearting Systems
Design and Implementation, 2004, USENIX Association, Berkeley, CA, USA.

Garg S. K. and Buyya R. (2011) ‘NetworkCloudSim: modelling parallel applications in
cloud simulations’, Proceedings of the 4th IEEE International Conference on Utility
and Cloud Computing (UCC 2011), Melbourne, Australia.

Xiao, Z. and Xiao, Y. (2011) ‘Accountable MapReduce in cloud computing’, Proceedings
of the IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), 2011, pp.1082–1087.

Jararweh, Y., Alshara, Z., Jarrah, M., Kharbutli, M., and Alsaleh, M.N. (2012)
‘TeachCloud: Cloud Computing Educational Toolkit’, Proceedings of the 1st
International IBM Cloud Academy Conference, ICA CON 2012, 2012. North
Carolina, USA, April 2012.

Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I. and others (2009) ‘Above the clouds:
A berkeley view of cloud computing’, EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi, Y., Tian, C., Zhang, Y. and
Lu, S. (2009) ‘BCube: a high performance, server-centric network architecture for
modular data centers’, Proceedings of the ACM SIGCOMM 2009 conference on Data
communication, Barcelona, Spain, pp.63–74.

Faniyi, F. and Bahsoon, R. (2011) ‘Engineering Proprioception in SLA Management
for Cloud Architectures’, Proceedings of the 9th Working IEEE/IFIP Conference on
Software Architecture (WICSA), 2011, Boulder, CO, USA, pp.336–340.

Kim, K. H., Beloglazov, A. and Buyya, R. (2009) ‘Power-aware Provisioning of Cloud
Resources for Real-time Services’. Proceedings of the 7th international workshop
on middleware for Grids, Clouds and e-Science. Urbana Champaign, Illinois, USA,
2009.

Patel, P., Ranabahu, A. and Sheth, A. (2011) ‘Service Level Agreement in Cloud
Computing’, In Cloud Workshops at OOPSLA09, 2009

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F. and Buyya, R.
(2011) ‘CloudSim: a toolkit for modeling and simulation of Cloud computing
environments and evaluation of resource provisioning algorithms’, Software: Practice
and Experience, Vol. 41, pp.23–50.

AmazoneEC2 (2012) ‘Amazon Elastic Compute Cloud (Amazon EC2)’,
http://http://aws.amazon.com/ec2/.

GoogleApp (2012) ‘Google App Engine’, http://appengine.google.com.

Mysore, R. N., Pamboris, A., Farrington, N., Huang, N., Miri, P., Radhakrishnan, S.,
Subramanya, V. and Vahdat, A. (2009) ‘PortLand: a scalable fault-tolerant layer 2
data center network fabric’, SIGCOMM Comput. Commun. Rev., Vol. 39, pp.39–50.

Chappell, D. (2008) ‘Introducing the Azure Services Platform’, White Paper, sponsored
by Microsoft Corporation.

Beitch, A., Liu, B., Yung, T., Griffith, R., Fox, A. and Patterson, D. A. (2010) ‘Rain: A
Workload Generation Toolkit for Cloud Computing Applications’, Technical Report
UCB/EECS-2010-14.



19

Mann, V., Kumar, A., Dutta, P. and Kalyanaraman, S. (2011) ‘VMFlow: Leveraging
VM Mobility to Reduce Network Power Costs in Data Centers’, Lecture Notes in
Computer Science (NETWORKING 2011), Vol. 6640, pp.198-211.


